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Abstract

MicroRNA arrays possess a number of unique data features that challenge the assumption key to many normalization
methods. We assessed the performance of existing normalization methods using two microRNA array datasets derived from
the same set of tumor samples: one dataset was generated using a blocked randomization design when assigning arrays to
samples and hence was free of confounding array effects; the second dataset was generated without blocking or
randomization and exhibited array effects. The randomized dataset was assessed for differential expression between two
tumor groups and treated as the benchmark. The non-randomized dataset was assessed for differential expression after
normalization and compared against the benchmark. Normalization improved the true positive rate significantly in the non-
randomized data but still possessed a false discovery rate as high as 50%. Adding a batch adjustment step before
normalization further reduced the number of false positive markers while maintaining a similar number of true positive
markers, which resulted in a false discovery rate of 32% to 48%, depending on the specific normalization method. We
concluded the paper with some insights on possible causes of false discoveries to shed light on how to improve
normalization for microRNA arrays.
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Introduction

Normalization is an essential step of microarray data prepro-

cessing [1]. It aims to remove non-biologic effects resulting from

the experimental process so that biologic effects can be accurately

identified [2,3]. Methods for array normalization have been

developed in the context of mRNA expression arrays. Main-stay

approaches, such as median normalization and quantile normal-

ization, are based on the data of all genes on the array, which we

call ‘‘all-gene’’ methods [4,5]. They rely on the assumption that

only a very small proportion of the molecular markers on the array

are differentially expressed, or that the numbers of over- and

under-expressed markers are similar.

MicroRNAs (miRNAs) are a prevalent class of small single-

stranded non-coding RNAs that negatively regulate gene expres-

sion by inducing mRNA degradation and translational repression,

and are involved in a wide variety of cellular functions such as

proliferation, differentiation, and apoptosis [6–8]. MiRNA arrays

possess a number of unique data characteristics comparing with

mRNA arrays. First, miRNA arrays contain markers for a much

smaller number of miRNAs – the Agilent miRNA arrays (release

16.0) have markers for about 1,300 miRNAs, while mRNA arrays

typically have markers for tens of thousands of genes. Second,

differential expression is more likely to be common and

asymmetric among miRNAs. The majority of miRNAs are

expected to express in a very tissue-specific manner [9–12]. They

were found to be important in tumorigenesis and show widespread

differential expression between malignant and normal cells caused

by mechanisms such as chromosomal alterations, DNA point

mutations, and epigenetic changes [11,13]. As a result, miRNA

array data challenge the assumption of the all-gene methods (that

the proportion of differentially expressed markers is small or the

amount of over- and under-expression is similar). Therefore, the

performance of normalization methods needs to be re-assessed for

miRNA arrays using genuine benchmark datasets that realistically

represent miRNA array data characteristics.

In this paper, we report the results from an empirical evaluation

of normalization methods using a pair of miRNA array datasets

generated at Memorial Sloan Kettering Cancer Center [14]. This

study examined miRNA expression in a set of 96 high-grade

serous ovarian cancer samples and 96 endometrioid endometrial

cancer samples, which were all newly diagnosed, previously

untreated, and collected at Memorial Sloan Kettering Cancer

Center between 2000 and 2012, using Human miRNA micro-

arrays (Agilent Technologies). Two datasets were generated for the

same set of tumor samples using different experimental designs: (1)

in one dataset, arrays were assigned to samples using a blocked

randomization design and handled by an experienced technician

in one single run; (2) in another dataset, arrays were processed in

the order that specimen were collected and handled by two

technicians in multiple runs. The randomized dataset contained

no confounding array effects and required no normalization, while

the non-randomized dataset possessed array effects and needed

normalization. The randomized dataset was assessed for differen-

tial expression between two tumor groups and treated as the

benchmark. The non-randomized dataset was assessed for

differential expression after normalization (with or without a
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separate batch adjustment step) and compared against the

benchmark. We concluded the paper by providing insights on

possible causes of false discoveries and potential directions to

further improve normalization for microRNA arrays.

Methods

The use of human tumor tissues in our study was approved by

the Memorial Sloan Kettering Cancer Center Institutional Review

Board.

Justification for the randomized data as the benchmark
Analysis of variance (ANOVA) has been successfully used to

model the relation between mRNA gene expression and sample

group, which attributes gene expression variation to factors such as

marker effect, sample effect, and stochastic noise [15–18]. Here we

use ANOVA to model miRNA expression and thus obtain insights

on how randomization removes confounding array effects.

Let y�gi denote the true underlying expression level for marker g

and sample i, andxidenote sample group (an indicator variable

taking values 0 and 1 for a two-group study such as a case-control

study). We can model y�gi as the sum of marker effect bg, sample

effect xicg, and stochastic noise egi.

y�gi~bgzxicgzegi

Let ygijp denote the observed expression level measured by

microarray j for marker g, sample i, and replicate p. Agilent

release 16.0 arrays contain 3,523 markers (that is, probes)

representing 1,347 miRNAs and 10–40 replicates for each marker.

Since j = 1 for all samples in the randomized data, we will use ygip

for simplification. ygipcan be modeled as the sum of true

expression level y�gi, array effect agi, and measurement error egip.

ygip~y�gizagizegip

~bgzxicgzagiz(egizegip)

In the setting of marker-specific comparisons (that is, one

between-group comparison per marker), we assume that (1) bg is a

fixed effect representing the baseline expression for marker g, (2)

cgis a fixed effect representing the difference of expression between

sample groups for marker g and is the parameter of interest, (3) agi

is a random effect whose mean depends on non-biologic factors

such as array production batch, hybridization run, technician, and

scanner, (4) egiand egip are random effects each normally

distributed with mean 0, and (5) all the random effects are

independent. Our model uses a most general form for array effects

and allows it to be marker- and sample-specific. When a sample is

profiled on only one array, array effect agi is not identifiable from

sample effect egi. The goal of normalization hence is to introduce

reasonable assumptions and effectively model array effects across

markers so as to make array effects identifiable, estimable, and

subsequently removable.

Different from normalization, randomization requires no

modeling of array effects and it removes their confounding effect

by balancing them between two sample groups. The mean of the

observed expression ygip among control samples and case samples

are denoted as E0(ygip) and E1(ygip), respectively, and they can be

expressed as:

E0(ygip)~E(ygipjxi~0)

~E(agijxi~0)zbg

~a0
gzbg

E1(ygip)~E(ygipjxi~1)

~E(agijxi~1)zbgzcg

~a1
gzbgzcg

Hence the difference in the observed average expression

between cases and controls is

E1(ygip){E0(ygip)~(a1
g{a0

g)zcg~Dagzcg

That is, the difference in observed means is biased by Dag.

The variance of the observed expression ygip can be expressed

as

var(ygip)~var(agi)zvar(egi)zvar(egip)

Thus the presence of array effects influences both the accuracy

and precision of the estimate of cg, and consequently the accuracy

of the hypothesis test for detecting markers that are truly

differentially expressed. The estimated cg, the parameter of

interest, will achieve the best accuracy and precision when

Dag~0 and var(agi)~0.

The randomized dataset in our study included 192 arrays.

Agilent miRNA arrays have an 8-plex block design, with eight

arrays on each slide arranged as two rows and four columns.

When assigning arrays to sample groups we used the blocked

randomization design with row and column balance in order to

ensure the best balance. There are six possible configurations

where the numbers of cases and controls are equal on any row and

any column of a slide [14]. We assigned the 24 slides for the 192

samples to one of the six configurations with equal probabilities

and dedicated the arrays to one of the two sample groups. We then

assigned each group of arrays to a random permutation of the

samples in the corresponding group. As the result of randomiza-

tion, Dag is close to zero for all markers in the randomized data.

We carefully planned our study for generating the randomized

dataset. All 192 arrays were ordered from the same manufacture

batch. Their hybridization and production were processed in one

run by a single experienced technician at the Memorial Sloan

Kettering Cancer Center Genomics Core Lab. As a result of the

uniform array handling, var(agi) is minimal in the randomized

data.

Statistical analysis of the randomized data
Data preprocessing. We analyzed the data both with and

without background subtraction, and found similar results in terms

of the relative performance of normalization methods. We report

the results for the analyses without background subtraction here.

There was minimum variation among replicates for the same

probe [14]. We summarized data from replicates for the same

probe using the median on the log2 scale.

Evaluation of MicroRNA Array Normalization
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Figure 1. Density curves for the benchmark data and the test data with or without normalization. Each density curve represents the data
for one array. Arrays for endometrial samples are colored in blue, and arrays for ovarian samples in red.
doi:10.1371/journal.pone.0098879.g001
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Differential expression analysis. We assessed evidence

against the null hypothesis of equivalent expression, using the t

statistic comparing two sample groups in the randomized data

[19]. A separate test was performed for each of the 3,523 markers

on the Agilent array and a two-sided p-value was calculated. The

p-values were then used to derive a marker set at a given

significance level: markers whose p-values were smaller than the

significance level were declared differentially expressed, and those

having larger p-values were declared non-differentially expressed.

Statistical analysis of the non-randomized data
Data preprocessing. We preprocessed the non-randomized

data with array normalization followed by probe summarization

on the log2 scale. We applied commonly-used methods for

normalization and used the same approach to probe summariza-

tion as for the randomized dataset. The normalization methods we

used were median normalization, quantile normalization, cyclic

loess normalization, and variance stabilizing normalization (Table

S1). Briefly, median normalization shifts the data on an array by a

constant so that arrays share the same median [20]; quantile

normalization calculates a reference distribution as the averaged

order statistics across arrays and then reset the order statistics on

each array to this reference distribution [4]; cyclic loess

normalization iterates through array pairs in a pre-specified order,

and for each pair, it plots the difference of the two arrays versus

their average intensity, fits a loess curve, and uses it as the new

horizontal axis [4]; variance stabilizing normalization transforms

the data (before log2 transformation) using a family of parametric

transformations so that the variance of the resulted data is

independent of the mean [21]. All four methods are based on the

data of all markers on the array. In addition to normalization, we

also tested whether adding a batch adjustment step before

normalization can further improve the accuracy of biomarker

discovery. We used two batch adjustment methods that have been

proposed to adjust for gross differences between arrays: (1)

standardization and (2) ComBat [22,23].

Differential expression analysis. The preprocessed data

were analyzed for differential expression using the same approach

as that for the randomized dataset. The resulting p-values and the

differential expression status based on the non-randomized data

were compared with the differential expression status derived from

the randomized data using ROC curves and cross tabulation,

respectively [24].

Results and Discussion

Empirical evaluation of array normalization
For the purpose of evaluating the effect of normalization on the

accuracy of biomarker discovery, we called the randomized data

as the benchmark data and the non-randomized data as the test

data. Figure 1 shows the effect of normalization on the overall

distribution of the test data. Table 1 shows the relative accuracy of

biomarker detection in the normalized test data comparing with

the benchmark data.

Among the 3,523 markers on the Agilent array, 351 markers

(10%) were identified to be differentially expressed in the

benchmark data, indicating a moderately abundant level of

asymmetric differential expression. Without normalization, 1934

markers (55%) were identified to be differentially expressed at a p-

value cutoff of 0.01 in the test data, which was associated with a

true positive rate (TPR) of 185/351 (53%), a false positive rate

(FPR) of 1749/3172 (55%), and a false discovery rate (FDR) of

90%. Almost all of the false positive markers had very low

expression levels and some of the false negative markers had

medium to high expression levels in the benchmark data (Figure

S1).

With normalization, the number of differentially expressed

markers was reduced to 639 (TPR: 85%, FPR: 11%, FDR: 54%)

Table 1. Results of differential expression analysis of the test data before and after normalization, in comparison with the
benchmark data.

Number of Markers
Claimed Positive True Positive Rate False Positive Rate False Discovery Rate

No normalization 1934 0.53 (185/351) 0.55 (1749/3172) 0.90

Median normalization 639 0.85 (297/351) 0.11 (342/3172) 0.54

Quantile normalization 708 0.93 (328/351) 0.12 (380/3172) 0.54

Cyclic loess normalization 732 0.96 (336/351) 0.12 (396/3172) 0.54

Variance stabilizing normalization 723 0.89 (314/351) 0.13 (409/3172) 0.57

doi:10.1371/journal.pone.0098879.t001

Table 2. Results of differential expression analysis of the test data before and after a combination of ComBat and normalization, in
comparison with the benchmark data.

Number of Markers
Claimed Positive True Positive Rate False Positive Rate False Discovery Rate

No normalization 275 0.66 (232/351) 0.01 (43/3172) 0.16 (43/275)

Median normalization 434 0.84 (296/351) 0.04 (138/3172) 0.32 (138/434)

Quantile normalization 623 0.93 (327/351) 0.09 (296/3172) 0.48 (296/623)

Cyclic loess normalization 545 0.91 (318/351) 0.07 (227/3172) 0.42 (227/545)

Variance stabilizing normalization 465 0.89 (311/351) 0.05 (154/3172) 0.33 (154/465)

doi:10.1371/journal.pone.0098879.t002
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for median normalization, 708 (TPR: 93%, FPR: 12%, FDR:

54%) for quantile normalization, 732 (TPR: 96%, FPR: 12%,

FDR: 54%) for cyclic loess normalization, and 723 (TPR: 89%,

FPR: 13%, FDR: 57%) for variance stabilizing normalization. We

also evaluated how accurately the test-data p-values ranked the

markers using the ROC curve and observed similar results (Figure

S2). Normalization improved the detection of differentially

expressed markers with both an increased number of true positive

markers and a decreased number of false positive markers in the

empirical analysis of our data. However, even with the application

of normalization, the number of false positive markers was still as

many as the number of true positive markers, corresponding to a

false discovery rate of about 50%, regardless of the specific

normalization method used.

Empirical evaluation of array normalization following
batch adjustment

We next examined whether an addition of a batch adjustment

step before array normalization can further improve the accuracy

of differential expression detection. We compared the accuracy of

calling differentially expressed markers with versus without batch

adjustment, in combination with each normalization method

tested in our study. It showed that normalization alone called

highly similar markers positive to normalization combined with

standardization, and moderately similar to normalization com-

bined with ComBat (Figure S3).When comparing with the

benchmark data, adding standardization to normalization made

virtually no change to the number of false and true positive

markers (Figure S4); adding ComBat further reduced the number

of false positive markers while maintaining a similar number of

true positive markers, which led to a FDR of 32% to 48%

depending on the specific normalization method (Table 2 and

Figure S4). Taken together, these results support the use of

ComBat in combination with normalization to improve the

accuracy of biomarker discovery in the analysis of miRNA array

data. The choice of normalization method, however, depends on a

trade-off of true positive rate and false positive rate. When

combined with ComBat, quantile normalization (TPR: 93%, FPR:

9%, FDR: 48%) and cyclic loess normalization (TPR: 91%, FPR:

7%, FDR: 42%) had a high TPR but a relatively high FPR, while

median normalization (TPR: 84%, FPR: 4%, FDR: 32%) and no

normalization (TPR: 66%, FPR: 1%, FDR: 16%) had a relatively

low TPR but a low FPR.

Figure 2. Scatter plot comparing mean differences (ovarian mean – endometrial mean) in the benchmark data and that in the test
data for (A) no normalization, (B) median normalization, and (C) quantile normalization. Black ‘‘x’’: true positive markers. Red ‘‘x’’: false
positive markers. Blue ‘‘x’’: false negative markers. Black dots: true negative markers.
doi:10.1371/journal.pone.0098879.g002

Figure 3. Scatter plot comparing pooled standard deviations in the benchmark data and that in the test data for (A) no
normalization, (B) median normalization, and (C) quantile normalization. Black ‘‘x’’: true positive markers. Red ‘‘x’’: false positive markers.
Blue ‘‘x’’: false negative markers. Black dots: true negative markers.
doi:10.1371/journal.pone.0098879.g003
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Causes of false positive and false negative markers
There are two possible mechanisms through which false

negative (or false positive) markers can occur as a result of array

effects and attempted removal of array effects by normalization:

one is by introducing bias to the data, and another is by increasing

(or decreasing) the variability of the data. In order to examine

these two possibilities we looked at scatter plots of the following

summary statistics: (1) mean expression differences between two

tumor groups for the benchmark data versus that for the test data,

in order to look at the level of biases in the test data; and (2)

marker-specific standard deviations for the benchmark data versus

that for the test data, in order to look at the change of data

variability.

Figure 2A and Figure 3A show that array effects led to both a

(dominantly negative) bias in mean differences (that is, ovarian

mean minus endometrial mean) and an overall increase in

variability in the test data. More specifically, the bias primarily

shifted the data towards endometrial tumors: it pulled markers

whose true mean differences are around zero away from zero, and

some markers whose true mean differences are moderately positive

close to zero. Most false positive markers had mean differences

close to zero in the benchmark and were resulted from the

negative biases in mean difference caused by array effects. Most

false negative markers had positive mean differences in the

benchmark and were resulted from the under-estimated magni-

tudes of mean difference. The level of increase in data variability is

similar for the majority of markers. This increase partly

contributed to the occurrence of false negative markers.

We generated similar scatter plots for the test data after median

normalization (Figure 2B and Figure 3B). Median normalization

corrected the bias in mean difference caused by array effects but

with some over-correction. It also decreased the level of data

variability but also with a level of over-correction especially for

markers whose variability was small in the benchmark. False

positive markers after median normalization are primarily caused

by over-estimated mean differences and under-estimated standard

deviations. Most false positive markers were up-regulated in the

benchmark. False negative markers were primarily resulted from

under-estimated absolute mean differences, predominantly among

markers that are down-regulated in the benchmark.

Similar plots showed that quantile normalization effectively

corrected the bias caused by array effects; however, it overly

compressed the variability of the data (Figure 2C and Figure 3C).

The false positive markers after quantile normalization are

primarily caused by under-estimated standard deviations, while

the remaining false negative markers are primarily due to under-

estimated magnitude of mean differences.

Conclusions

We utilized a pair of miRNA array datasets on the same set of

tumor samples to perform an objective and absolute assessment of

normalization performance under genuine data characteristics.

Comparing with previous reports on the assessment of normali-

zation methods for miRNA arrays, our approach provides an

important alternative evaluation that challenges the critical

assumption of the all-gene methods and offers insights on their

performance when the assumptions are violated [25–27].

In the presence of array effects, normalization and batch

adjustment can improve the accuracy of detecting differentially

expressed markers. However, the number of false positive markers

can still be close to the number of true positive markers as

demonstrated in our study.

There is a critical need to develop efficient methods to

normalize miRNA array data with both effective bias correction

and proper variability reduction so that miRNAs having disease

relevance can be identified in an accurate manner.
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Figure S1 Scatter plot comparing group means in the
randomized dataset. True positive markers, false negative

markers, and false positive markers, as determined in the non-

randomized data (without normalization) in comparison with the

randomized dataset as the benchmark, are indicated as ‘‘x’’ in

black, blue, and red, respectively. True negative markers are

indicated as black dots.
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Figure S2 ROC curves comparing the two-sample t-
statistic p-values for the test dataset with (A) no
normalization, (B) median normalization, (C) quantile
normalization, (D) cyclic loess normalization, and (E)
variance stabilizing normalization, with the gold stan-
dard (that is, the differential expression status deter-
mined by the benchmark dataset).
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Figure S3 Comparison of differential expression anal-
ysis of the test data before versus after batch adjust-
ment. Each Venn diagram compares differentially expressed

markers identified in the test data after normalization following no

BEC (yellow circle) versus those with BEC (using either

standardization (green circle) or ComBat (blue circle)).
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Figure S4 Results of differential expression analysis of
the test data before and after batch adjustment, in
comparison with the gold standard derived from the
benchmark data. Each Venn diagram compares differentially

expressed markers identified in the test data after normalization

following no BEC (yellow circle) or BEC (using standardization

(green circle) or ComBat (blue circle)) versus those identified in the

benchmark data (red circle).
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Table S1 List of normalization methods examined in
our study.
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