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Abstract

Background: It has been demonstrated that Tongxinluo (TXL), a traditional Chinese medicine compound, improves
ischemic heart disease in animal models via vascular endothelial growth factor (VEGF) and endothelial nitric oxide synthase
(eNOS). The present study aimed to investigate whether TXL protects against pressure overload–induced heart failure in
mice and explore the possible mechanism of action.

Methods and Results: Transverse aortic constriction (TAC) surgery was performed in mice to induce heart failure. Cardiac
function was evaluated by echocardiography. Myocardial pathology was detected using hematoxylin and eosin or Masson
trichrome staining. We investigated cardiomyocyte ultrastructure using transmission electron microscopy. Angiogenesis
and oxidative stress levels were determined using CD31 and 8-hydroxydeoxyguanosine immunostaining and
malondialdehyde assay, respectively. Fetal gene expression was measured using real-time PCR. Protein expression of
VEGF, phosphorylated (p)-VEGF receptor 2 (VEGFR2), p–phosphatidylinositol 3-kinase (PI3K), p-Akt, p-eNOS, heme
oxygenase-1 (HO-1), and NADPH oxidase 4 (Nox4) were measured with western blotting. Twelve-week low- and high-dose
TXL treatment following TAC improved cardiac systolic and diastolic function and ameliorated left ventricular hypertrophy,
fibrosis, and myocardial ultrastructure derangement. Importantly, TXL increased myocardial capillary density significantly
and attenuated oxidative stress injury in failing hearts. Moreover, TXL upregulated cardiac nitrite content and the protein
expression of VEGF, p-VEGFR2, p-PI3K, p-Akt, p-eNOS, and HO-1, but decreased Nox4 expression in mouse heart following
TAC.

Conclusion: Our findings indicate that TXL protects against pressure overload–induced heart failure in mice. Activation of
the VEGF/Akt/eNOS signaling pathway might be involved in TXL improvement of the failing heart.
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Introduction

Heart failure is a major cause of mortality worldwide. A

common cause of heart failure is chronic pressure overload due to

hypertension or aortic stenosis, which leads to cardiac hypertrophy

that may progress to heart failure [1]. Heart failure has a complex

phenotype that includes reduced cardiac diastolic and contractile

function, increased myocyte cell death, and myocardial fibrosis.

Although the mechanism mediating the pathological changes

responsible for heart failure has not been fully elucidated,

experimental evidence suggests that disruption of coordinated

tissue growth and angiogenesis may contribute to the development

of pressure overload–induced cardiac hypertrophy and heart

failure [2,3]. In mice, myocardial capillary density is decreased at

the early stage of transverse aortic constriction (TAC) [4]. It has

been reported that insufficient angiogenic response to myocardial

hypoxia leads to cardiac dysfunction [5]. Vascular endothelial

growth factor (VEGF) is the main regulator of angiogenesis. In

rats, gene therapy of VEGF overexpression ameliorates angiotensin

II–induced diastolic dysfunction by promoting angiogenesis and

anti-inflammation function [3]. However, the clinical safety of

gene therapy has not been determined.

Tongxinluo (TXL) is a traditional Chinese medicine compound

that has been used to treat angina pectoris in the clinic for the past

18 years. Using rabbits, we previously demonstrated that TXL

enhances the stability of vulnerable plaques dose-dependently

through lipid-lowering, anti-inflammatory, and antioxidant effects

[6]. In pigs, TXL reduces myocardial no-reflow and ischemia/

reperfusion injury by stimulating endothelial nitric oxide (NO)

synthase (eNOS) phosphorylation via the protein kinase A

pathway [7]. It has been demonstrated that NO is effective

against hypertrophy and for inhibiting cardiac remodeling [8]. It

has been reported that augmented eNOS signaling by drugs such

as angiotensin-converting enzyme inhibitors [9], statins [10], and
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beta-blockers [11] is associated with improvement of heart failure.

Previously, we demonstrated that TXL ameliorates cardiac

remodeling after myocardial infarction in mice by promoting

angiogenesis by enhancing VEGF levels and eNOS phosphoryla-

tion [12]. However, it is not known whether TXL has an effect on

heart failure. We hypothesized that TXL may protect against

heart failure involving VEGF/eNOS pathway activation. To test

this idea, we evaluated the effects of long-term treatment with

different doses of TXL on cardiac remodeling and function in a

murine model of ventricular pressure overload induced by TAC

surgery, and attempted to determine the possible mechanisms of

action.

Materials and Methods

Preparation of TXL Ultrafine Powder
TXL ultrafine powder was obtained from Yiling Pharmaceu-

tical (Shijiazhuang, China). The herbal drug was authenticated

and standardized to marker compounds according to the Chinese

Pharmacopoeia 2005 [13]. The components of the TXL powder

and detailed preparation methods have been described previously

[6].

Ethics Statement
All animal studies were approved by the Ethics Committee of

Shandong University (No. 011 in 2011 for Animal Ethics

Approval) and all efforts were made to minimize suffering.

Figure 1. TXL improves cardiac function and reduces mortality following TAC. (A) Transthoracic echocardiography at the end of 12 weeks.
Evaluation of (B) FS%, (C) EF%, (D) E/A ratio, and (E) LVPWd (n= 7–8 per group). (F) Kaplan-Meier survival curves for different groups (n = 15 per
group). Data are mean 6 SEM. *P,0.05, **P,0.01, ***P,0.001. Sham, sham group; TAC, mice that underwent TAC surgery without treatment; TAC+
TL, mice that underwent TAC surgery treated with low-dose TXL; TAC+TH, mice that underwent TAC surgery treated with high-dose TXL; NS, not
significant.
doi:10.1371/journal.pone.0098047.g001
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Animals and Experimental Protocols
We used wild-type male C57BL/6 mice (9 weeks old; Vital

River Laboratory, Beijing, China). The mice were randomly

assigned to four groups prior to TAC surgery (n = 15 per group):

Sham, TAC, TAC with low-dose TXL (TAC+TL), and TAC with

high-dose TXL (TAC+TH). Mice in the latter three groups

underwent TAC surgery. On day 3 post-surgery, the TAC+TL
and TAC+TH groups were fed orally with 0.38 g?kg21?d21 and

1.5 g?kg21?d21 TXL ultrafine powder, respectively, for 12 weeks.

The Sham and TAC groups were fed orally with equal volumes of

physiological saline once daily for 12 weeks.

TAC
Mice were subjected to TAC-induced pressure overload as

previously described [14,15]. Briefly, the mice were anesthetized

with ketamine (20 mg/kg) and xylazine (1 mg/kg) until they were

unresponsive to toe pinching. Then, they were orally intubated

and placed on a ventilator to maintain respiration. The transverse

aortic arch was accessed via an incision in the second intercostal

space and surgically ligated around a 27-G needle. The needle was

immediately removed after ligation. Sham group animals under-

went the same procedure but without aortic ligation.

Echocardiography
We used a Vevo 770 imaging system equipped with a 30-MHz

transducer (VisualSonics, Toronto, Canada) for transthoracic

echocardiography. Mice were anesthetized with an isoflurane

(2%) and O2 (2 L/min) mixture. We measured the left ventricular

(LV) posterior wall at diastole (LVPWd), LV internal dimension at

diastole (LVIDd), and LVID at systole (LVIDs) in M-mode.

Percentage fractional shortening (FS%) and percentage ejection

fraction (EF%) were calculated as described previously [16]. We

evaluated peak E, peak A, and the E/A ratio based on transmitral

flow velocity variables using pulsed Doppler echocardiography.

Figure 2. TXL prevents pressure overload–induced cardiac hypertrophy. (A) Representative photographs of hearts and HE staining of the
hearts at 12 weeks post-surgery. (B) Heart weight/tibial length (HW/TL) and lung weight/tibial length (LW/TL) ratios at 12 weeks post-surgery (n = 7–8
per group). Reverse transcription–PCR (RT-PCR) of relative mRNA levels of (C) ANP, (D) BNP, (E) b-MHC, and (F) SERCA2a. (G) HE-stained transverse
sections of left ventricles. Scale bar, 50 mm. (H) Quantification of cross-sectional area of cardiomyocytes from HE-stained sections (n = 5 per group).
Data are mean 6 SEM. *P,0.05, **P,0.01, ***P,0.001. NS, not significant.
doi:10.1371/journal.pone.0098047.g002
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Transthoracic echocardiography was performed at baseline (week

0), week 6, and week 12 post-surgery.

Transmission Electron Microscopy
Freshly dissected heart tissues (0.56165 mm) were fixed with

2% glutaraldehyde overnight, washed three times with 0.2 M

phosphate buffer, fixed with 1% osmium tetroxide, washed with

0.2 M phosphate buffer, and dehydrated in a series of ethanol

concentrations. Specimens were immersed in Epon 812 resin/

acetone (1:1) for 30 min, then fresh Epon 812 resin for 30 min,

and then embedded and incubated overnight at 70uC. The tissues
were sectioned into 50-nm thick slices using an LKB-8800

ultramicrotome (LKB-Produkter AB, Bromma, Sweden). Cardio-

myocyte mitochondria and sarcomeres were observed with an H-

7000FA transmission electron microscope (Hitachi, Tokyo, Japan)

at 610000 magnification.

Histology and Immunohistochemical Analysis
Freshly dissected heart tissues were fixed with 4% paraformal-

dehyde, dehydrated, and embedded in paraffin. After deparaffi-

nization and rehydration, myocardial sections were stained with

hematoxylin and eosin (HE) or Masson’s trichrome. Digital images

were obtained at 6400 magnification by microscopy (Olympus,

Tokyo, Japan). Single cardiomyocytes containing a nucleus were

selected from HE-stained transverse sections. We counted 40

myocytes to assess the mean cross-sectional area using Image-Pro

Plus 5.0 (Media Cybernetics, Houston, TX, USA). For degree of

fibrosis, we analyzed 10 randomly selected frames from Masson

trichrome–stained sections using Image-Pro Plus 5.0. We used

primary antibodies against 8-hydroxydeoxyguanosine (8-OHdG;

Abcam, Cambridge, UK) and CD31 (Santa Cruz Biotechnology,

Santa Cruz, CA, USA) for immunohistochemical analysis. We

counted the number of 8-OHdG–positive nuclei and CD31-

positive vessels manually under 6400 magnification, and calcu-

lated the number of vessels per mm2 to determine the number of

vessels per field. We analyzed 10 random microscopic fields from

each sample.

Malondialdehyde Assay
We assayed myocardial malonaldehyde (MDA) levels using a

commercially available kit according to the manufacturer’s

instructions (Jiancheng Bioengineering Institute, Nanjing, China).

Real-time Reverse Transcription–PCR
Total RNA was extracted from heart tissue with TRIzol

(Invitrogen, Carlsbad, CA, USA) and reverse-transcribed using a

complementary DNA reverse transcription kit (Takara Biotech-

nology, Tokyo, Japan). Reactions were performed in a real-time

PCR thermocycler (iQ5; Bio-Rad, Hercules, CA, USA) using

SYBR green as the fluorescence dye. The mRNA expression of the

target genes was normalized to the control glyceraldehyde-3-

phosphate dehydrogenase (GAPDH) using the comparative thresh-

old cycle (22DDCt) method. Table S1 lists the primer sequences

used.

Western Blotting
Total protein from heart tissues or cells was extracted using

radioimmunoprecipitation lysis buffer (Beyotime, Shanghai, Chi-

Figure 3. TXL reduces cardiac fibrosis and ameliorates
myocardial ultrastructure derangement after TAC. (A) Masson
trichrome–stained sections of left ventricles. Scale bar, 50 mm. (B)

Quantification of cardiac fibrosis area from Masson trichrome–stained
sections (n = 5 per group). (C) Transmission electron micrographs of
cardiomyocytes the respective treatment groups. Scale bar, 2 mm. Data
are mean 6 SEM. **P,0.01, ***P,0.001. NS, not significant.
doi:10.1371/journal.pone.0098047.g003
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Figure 4. TXL promotes myocardial capillarity after TAC. (A)
Representative immunostaining of LV myocardial capillaries (CD31+) at
12 weeks post-surgery. (B) Quantification of LV myocardial capillary
density at 12 weeks post-surgery. (C) Capillary number/cardiomyocyte
ratios at 12 weeks post-surgery. Data are mean 6 SEM, n = 5 per group.
*P,0.05, **P,0.01, ***P,0.001. NS, not significant.
doi:10.1371/journal.pone.0098047.g004

Figure 5. TXL attenuates 8-OHdG expression and MDA content
after TAC. (A) 8-OHdG–immunostained sections of LV myocardium.
Scale bar, 50 mm. (B) Quantitative analysis of the proportion of 8-
OHdG–positive nuclei at 12 weeks post-surgery. (C) Quantification of
MDA in homogenized fresh heart tissues at 12 weeks post-surgery. Data
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na). The primary antibodies used were as follows: anti-VEGF

(Proteintech, Chicago, IL, USA); anti–NADPH oxidase 4 (Nox4),

anti–heme oxygenase-1 (HO-1, Abcam); anti–phosphatidylinositol

3-kinase (PI3K) p85a, anti-phosphorylated (p) PI3K p85a

(Tyr508) (Santa Cruz Biotechnology); anti-VEGF receptor 2

(VEGFR2), anti–p-VEGFR2 (Tyr1175), anti-Akt, anti–p-Akt

(Ser473), anti–p-eNOS (Ser1177), anti-GAPDH (Cell Signaling

Technology, Danvers, MA, USA); anti-eNOS (Sigma, St. Louis,

MO, USA). Bands were visualized with a FluorChem E data

system (Cell Biosciences, Santa Clara, CA, USA) and quantified

by densitometry using Quantity One 4.52 (Bio-Rad).

are mean 6 SEM, n= 5 per group. *P,0.05, **P,0.01, ***P,0.001. NS,
not significant.
doi:10.1371/journal.pone.0098047.g005

Figure 6. TXL activates the VEGF/Akt/eNOS pathway after TAC. Western blot analysis of (A) VEGF, (B), VEGFR2 and p-VEGFR2 (Tyr1175), (C),
PI3K and p-PI3K (Tyr508), (D), Akt and p-Akt (Ser473), (E), eNOS and p-eNOS (Ser1177), (F), Nox4, and (G) and HO-1 expression at 12 weeks post-
surgery. (H) Nitrite content of the respective treatment groups at 12 weeks post-surgery. Data are mean 6 SEM, n= 5 per group. *P,0.05, **P,0.01,
***P,0.001. NS, not significant.
doi:10.1371/journal.pone.0098047.g006
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Nitrite Assay
We measured the level of nitrites (stable NO metabolites) in

heart tissues spectrophotometrically using the Griess reagent

system (Promega, Madison, WI, USA) as previously described

[17]. Briefly, tissue samples were homogenized in buffer, and then

centrifuged. The supernatant (100 ml) was incubated with 100 ml
Griess reagent at room temperature for 10 min away from light.

Then, the absorbance was measured at 540 nm using a microplate

reader. The nitrite content was determined by comparison with

the nitrite standard reference curve.

Statistics
Data are presented as the mean 6 SEM. Differences between

groups were compared by one-way ANOVA. We used the

Kaplan-Meier method for survival analysis; we tested between-

group differences in survival using the log-rank (Mantel-Cox) test.

All statistical analyses were performed using Prism 5 (GraphPad

Software Inc., San Diego, CA, USA). P,0.05 was considered

statistically significant.

Results

TXL Attenuated Pressure Overload–induced Cardiac
Dysfunction and Mortality
To investigate the effect of TXL on pressure overload–induced

heart failure, we performed TAC surgery on mice and evaluated

cardiac systolic and diastolic function by echocardiography. At six

weeks post-surgery, decreased FS% was prevented in the TXL-

treated groups compared with the TAC group (Table S2, P,0.05).

At 12 weeks after surgery, the LVIDs was significantly decreased

in TXL-treated mice (Table S2 and Figure 1A, P,0.01 or P,

0.001) and the EF%, FS%, and E/A ratio were significantly

increased (Table S2 and Figure 1A–D, P,0.05 or P,0.01)

compared with the TAC group. At 12 weeks after surgery, the

LVPWd increase was inhibited in TXL-treated mice compared

with the TAC group, but the differences were not statistically

significant (Table S2 and Figure 1E). Furthermore, at the end of

the 12 weeks, mortality in the TXL-treated groups was lower than

that in the TAC group (Figure 1F, P= 0.1833 or P= 0.0591).

These data suggest that low- and high-dose TXL reduces TAC-

induced mortality in mice.

TXL Prevented Pressure Overload–induced Cardiac
Hypertrophy
We evaluated heart morphology and weight to assess hypertro-

phic remodeling following TAC. TXL inhibited cardiac dilatation

and significantly reduced the heart weight/tibial length and lung

weight/tibial length ratios at 12 weeks post-surgery (Figure 2A and

2B, P,0.05). To investigate established gene markers of cardiac

hypertrophy, we analyzed myocardial mRNA expression of atrial

natriuretic peptide (ANP), brain natriuretic peptide (BNP), b-
myosin heavy chain (b-MHC), and sarcoplasmic reticulum Ca2+

adenosine triphosphatase (SERCA2a). The increase in ANP, BNP,

and b-MHC was suppressed (Figure 2C–E, P,0.05) and the

SERCA2a decrease was ameliorated in the TAC+TH group

compared with the TAC group (Figure 2F, P,0.05). Moreover,

the cardiomyocyte cross-sectional area was decreased in the TXL-

treated groups compared with the TAC group (Figure 2G and 2H,

P,0.05).

TXL Reduced Pressure Overload–induced Cardiac Fibrosis
and Ameliorated Myocardial Ultrastructure Derangement
To assess TXL improvement of post-TAC cardiac fibrosis, we

examined the collagen volume fraction in the LV myocardium

following Masson trichrome staining. The collagen volume

fraction was reduced significantly in the TAC+TL and TAC+
TH groups compared with the TAC group (Figure 3A and 3B, P,

0.01 or P,0.001). To assess the effect of TXL on myocardial

ultrastructure, we observed mitochondrial morphology and Z-line

structures using transmission electron microscopy. Failing hearts

had mitochondrial morphological alteration and disorganized

cristae, and disorganized Z-line structures (Figure 3C). In contrast

to the TAC group, mitochondrial morphology and Z-line

structures were nearly normal in the TXL-treated groups

(Figure 3C).

TXL Promoted Myocardial Capillary Density
To study the effects of TXL on myocardial capillarity, we

investigated capillary density in the heart using CD31 immuno-

histochemical staining. There was a significant decrease in the

number of CD31-positive vessels in failing hearts compared with

hearts in the Sham group (Figure 4A and 4B, P,0.001). However,

there was significant promotion of capillary density in the TXL-

treated groups compared with the TAC group (Figure 4A and 4B,

P,0.01 or P,0.001) and of the CD31-positive vessel/cardiomy-

ocyte ratio (Figure 4C, P,0.05 or P,0.01).

TXL Attenuated Pressure Overload–induced Cardiac
Oxidative Stress Injury
Oxidative stress is considered an important cause of pressure

overload–induced heart failure [18]. As MDA and 8-OHdG are

cellular oxidative stress biomarkers, we detected 8-OHdG

expression and MDA in the myocardium to evaluate changes in

oxidative stress. MDA and 8-OHdG expression were significantly

increased in failing hearts compared with the Sham group

(Figure 5A–C, P,0.01 or P,0.001). In comparison to the TAC

group, there was reduced accumulation of 8-OHdG–positive cells

and MDA in the TXL-treated groups (Figure 5A–C, P,0.05 or

P,0.01).

TXL Augmented the VEGF/Akt/eNOS Pathway in Pressure
Overload–induced Failing Hearts
To understand the molecular mechanisms of TXL-mediated

improvement of pressure overload–induced heart failure, we

investigated the expression of proteins associated with angiogenesis

and antioxidation. At 12 weeks post-surgery, VEGF, p-PI3K

(Tyr508), p-Akt (Ser473), and p-eNOS (Ser1177) protein levels

were higher in failing hearts than in Sham group hearts

(Figure 6A–E, P,0.05, P,0.01, or P,0.001). There was

increased VEGF, p-VEGFR2 (Tyr1175), p-PI3K, p-Akt, and p-

eNOS protein expression in the TXL-treated groups compared to

the TAC group (Figure 6A–E, P,0.05, P,0.01, or P,0.001).

Next, we investigated the expression of Nox4 and the antioxidant

HO-1. At 12 weeks post-surgery, Nox4 expression was signifi-

cantly increased in the TAC group compared with the Sham

group (Figure 6F, P,0.001). Both low- and high-dose TXL

inhibited Nox4 expression significantly (Figure 6F, P,0.05 or P,

0.01). Additionally, HO-1 expression was increased in the TAC

group compared with the Sham group (Figure 6G, P,0.05).

However, TXL further upregulated HO-1 expression in failing

hearts compared with that in the TAC group (Figure 6G, P,0.05

or P,0.01). Furthermore, cardiac nitrite levels in the TAC+TH

Tongxinluo Protects against Heart Failure
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group were significantly higher than that in the TAC group

(Figure 6H, P,0.05).

Discussion

Clinically, pressure overload–induced heart failure commonly

results from hypertension or aortic valvular stenosis. In the present

study, we used a TAC mouse model to mimic pressure overload–

induced stress. We demonstrated that TXL improved pressure

overload induced–cardiac dysfunction and remodeling, promoting

myocardial capillarity and attenuating oxidative stress injury. We

also found that TXL upregulated cardiac nitrite content, increased

VEGF, p-VEGFR2, p-PI3K, p-Akt, p-eNOS, and HO-1 expres-

sion and decreased Nox4 expression in pressure overload–induced

failing hearts.

A previous study demonstrated that cardiomyocyte size and

capillary density are mismatched during the development of heart

failure, which results in myocardial hypoxia [19]. Crucially,

cardiac angiogenesis is involved in the adaptive mechanism of

cardiac hypertrophy, and inhibition of angiogenesis induces

systolic dysfunction in failing hearts [20]. In the present study,

cardiac capillary density was decreased in pressure overload–

induced failing hearts, though the capillary/cardiomyocyte ratio

was relatively increased compared with hearts in the Sham group.

Promoting cardiac angiogenesis by introducing angiogenic factors

restores cardiac dysfunction under chronic pressure overload

[5,20]. In this study, TXL increased capillary density and

improved cardiac function in pressure overload induced–failing

hearts. Thus, TXL-mediated cardiac angiogenesis may play an

important role in protecting against heart failure.

Using a myocardial infarction model, we previously reported

that TXL promotes angiogenesis by upregulating VEGF expres-

sion [12]. VEGF signaling plays a major role in promoting

neoangiogenesis and restoring the blood supply to ischemic tissues

in various pathological states, including heart failure [21].

Hypoxia-inducible factor 1a (HIF-1a) appears to be associated

with increased VEGF expression by binding to a site in the

promoter region of the VEGF gene [22]. We found that VEGF

expression was upregulated in failing hearts, which is consistent

with the data of Shyu et al. [23]. In heart failure, this upregulation

might be compensatory. Nevertheless, exhaustion of VEGF release

during prolonged hypoxia has been considered an important

factor in heart failure [24]. VEGF has other actions, including

stem cell recruitment and homing [25], decreasing apoptosis [26],

and modulating autonomic response [27]. In this study, TXL

significantly increased VEGF expression. Previously, we demon-

strated that TXL increases the DNA-binding activity of HIF-1a
[12]. Thus, we may presume that TXL promotes VEGF

expression in pressure overload–induced failing hearts through

HIF-1a. Moreover, there was p-VEGFR2 upregulation following

TXL treatment. It is well known that VEGF exerts its angiogenic

activity by binding to VEGFR2. VEGFR2 autophosphorylation

and activation play a key role in vascular development and

vascular permeability [28]. Our results suggest that TXL promotes

VEGF-induced angiogenesis.

Akt is a serine/threonine protein kinase that regulates cardiac

growth, myocardial angiogenesis, glucose metabolism, and cell

death in cardiomyocytes [29]. In cardiomyocytes, short-term Akt

activation improves contractile function in pressure overload–

induced heart failure [30]. The Akt signaling pathway is essential

in VEGF-mediated postneonatal angiogenesis [31]. In the present

study, p-Akt, and the upstream kinase of Akt, p-PI3K, was

increased following TXL treatment. This suggests that TXL

activates the PI3K/Akt pathway in pressure overload–induced

failing hearts.

In heart failure, eNOS has been recognized as an important

regulator of cardiac remodeling. Following chronic pressure

overload, there is greater cardiac dysfunction and LV hypertrophy

in eNOS2/2 mice than in wild-type mice [32]. Cardiomyocyte-

specific eNOS overexpression improves LV function and reduces

compensatory hypertrophy after myocardial infarction [33,34].

TXL increases eNOS expression via the PI3K/Akt/HIF-1a
signaling pathway to modulate endothelium-dependent vasodila-

tion [35]. In the present study, TXL upregulated eNOS (Ser1177)

phosphorylation in the heart, but not total eNOS, which is

consistent with the findings of previous studies [12,7]. Further-

more, high-dose TXL upregulated nitrite levels in pressure

overload–induced failing hearts, which is indicative of increased

NO formation following TXL treatment. These data suggest that

TXL activates the VEGF/Akt/eNOS pathway in mouse heart.

Oxidative stress injury induced by the accumulation of reactive

oxygen species in failing hearts plays an important role in cardiac

fibrosis, hypertrophy, and mitochondrial damage [36]. eNOS-

derived NO can have antioxidant signaling actions in cardiomy-

ocytes via the transcriptional activation of HO-1 expression [37].

Sustained HO-1 upregulation in the failing heart is an important

beneficial adaptation that counteracts cardiac remodeling via

antioxidant, antihypertrophic, antifibrotic, and proangiogenic

effects [38]. In this study, TXL upregulated HO-1 expression,

which might contribute to the protective effects of TXL on cardiac

fibrosis and oxidative stress injury in pressure overload–induced

failing hearts. Furthermore, Nox4 expression was increased

following pressure overload, and TXL decreased it significantly.

Nox4 is an NADPH oxidase, a major enzyme responsible for

superoxide production via the transfer of electrons across the

membrane from NADPH to molecular oxygen [39]. Nox4

upregulation influences increases in mitochondrial oxidative stress

directly and the consequent mitochondrial dysfunction and cell

death during pressure overload–induced heart failure [40]. Hence,

reduced Nox4 expression might be an additional mechanism for

clarifying TXL amelioration of oxidative stress injury in mouse

heart following pressure overload.

Taken together, these data suggest that TXL has a direct

cardioprotective effect and affects the improvement of angiogen-

esis and oxidative stress injury in pressure overload–induced heart

failure. These actions might contribute to improvement in the

remodeling of a failing heart. The protective effects of TXL

involve activation of the VEGF/Akt/eNOS signaling pathway.

Supporting Information

Table S1 Mouse primers used for real-time RT-PCR.
ANP, atrial natriuretic peptide; BNP, brain natriuretic peptide; b-
MHC, b-myosin heavy chain; SERCA2a, sarcoplasmic reticulum

Ca2+ adenosine triphosphatase; GAPDH, glyceraldehyde-3-phos-

phate dehydrogenase.

(DOC)

Table S2 Echocardiographic parameters according to
group. Data are mean 6 SEM, n= 7–8 per group. *P,0.05,

**P,0.01, ***P,0.001 vs. Sham; {P,0.05, {{P,0.01, {{{P,
0.001 vs. TAC. LVIDd, left ventricular internal dimension at

diastole; LVIDs, left ventricular internal dimension at systole;

LVPWd, left ventricular posterior wall at diastole; FS, fractional

shortening; EF, ejection fraction; E/A, peak E/A ratio.

(DOC)
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