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Abstract

Brain activities related to cognitive functions, such as attention, occur with unknown and variable delays after stimulus
onsets. Recently, we proposed a method (Common Waveform Estimation, CWE) that could extract such brain activities from
magnetoencephalography (MEG) or electroencephalography (EEG) measurements. CWE estimates spatiotemporal MEG/EEG
patterns occurring with unknown and variable delays, referred to here as unlocked waveforms, without hypotheses about
their shapes. The purpose of this study is to demonstrate the usefulness of CWE for cognitive neuroscience. For this
purpose, we show procedures to estimate unlocked waveforms using CWE and to examine their role. We applied CWE to
the MEG epochs during Go trials of a visual Go/NoGo task. This revealed unlocked waveforms with interesting properties,
specifically large alpha oscillations around the temporal areas. To examine the role of the unlocked waveform, we
attempted to estimate the strength of the brain activity of the unlocked waveform in various conditions. We made a spatial
filter to extract the component reflecting the brain activity of the unlocked waveform, applied this spatial filter to MEG data
under different conditions (a passive viewing, a simple reaction time, and Go/NoGo tasks), and calculated the powers of the
extracted components. Comparing the powers across these conditions suggests that the unlocked waveforms may reflect
the inhibition of the task-irrelevant activities in the temporal regions while the subject attends to the visual stimulus. Our
results demonstrate that CWE is a potential tool for revealing new findings of cognitive brain functions without any
hypothesis in advance.
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Introduction

Brain activities related to cognitive functions, such as attention

and decision making, occur with unknown and variable delays

after stimulus onsets. Therefore, to reveal such brain activities

from magnetoencephalography (MEG) or electroencephalography

(EEG) measurements, it is necessary to examine spatiotemporal

MEG/EEG patterns occurring with unknown and variable delays

after stimulus onsets, which are referred to as unlocked waveforms

in this paper. There are two difficulties in examining unlocked

waveforms: their estimation and their interpretation.

The conventional averaging procedures, such as stimulus-

triggered averaging, cannot be used to estimate unlocked

waveforms because they cancel out the unlocked waveforms

owing to their variable delays. Previously, several methods have

been proposed for examining unlocked brain activities, such as

using time-frequency analyses [1–3]. To avoid the cancellation of

unlocked activities, time-frequency analyses are first applied to

single-trial EEG epochs, and then the obtained time-frequency

powers are averaged across trials. The limitation of this method is

that it only provides power information on the unlocked activities,

while some information is lost, such as phase relations across

channels, frequencies and time. To preserve the rich information

of unlocked activities, it is preferable to estimate their waveforms.

Some studies have proposed methods to estimate waveforms of

unlocked activities [4–6]. However, these methods have a

limitation in that they assume only one waveform in a MEG/

EEG epoch and cannot estimate multiple waveforms. In the case

of cognitive stimulus-response tasks, such as Go/NoGo tasks, it is

assumed that there are three types of waveforms: stimulus-locked,

response-locked, and unlocked. Therefore, to estimate unlocked

waveforms from MEG/EEG data during cognitive tasks, estimat-

ing multiple waveforms is necessary. Recently, we proposed a

general method to estimate MEG/EEG waveforms that are

common across trials (Common Waveform Estimation, CWE) [7].

The main advantage of CWE is its ability to estimate multiple

waveforms without hypotheses about their shapes, even if their

delays are variable and unknown. Therefore, applying CWE is a

suitable solution for the estimation of unlocked waveforms in

studies of cognitive functions.

However, the second difficulty, interpretation of the estimated

unlocked waveforms, remains to be solved. Many studies have

already examined the roles of MEG/EEG waveforms by

comparing their amplitudes across different conditions. For
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example, the role of P300 was examined by comparing amplitudes

across target and non-target conditions. If the amplitude is larger

in one condition that needs a specific brain function, such as

attention, the waveforms are believed to reflect this. In this

procedure, it is implicitly assumed that compared waveforms

reflect the same brain function based on the fact that they occur

with the same delay to the same event, such as stimulus onsets, in

similar conditions. If waveforms in different conditions reflect

different brain functions, such as attention and decision making,

comparing their amplitudes does not make sense. Because they are

not time-locked to externally observable events, it is not clear

whether unlocked waveforms estimated from different conditions

reflect the same brain function. Therefore, comparing amplitudes

of unlocked waveforms may result in a misleading interpretation.

This difficulty of interpretation discourages the use of CWE for

examining the cognitive brain activities occurring with unknown

and variable delays.

The purpose of this study is to demonstrate the usefulness of

CWE in cognitive neuroscience studies. Toward achieving this

aim, we show the procedure used to examine the role of the

unlocked waveform. In this procedure, we attempted to estimate

the strength of the brain activity of the unlocked waveform under

various conditions. We made a spatial filter to extract the

component that reflects the target brain activity corresponding

to the unlocked waveform. This spatial filter was applied to MEG

data under various conditions. The powers of the components

extracted by the spatial filter were calculated while assuming that

these powers indicate the strengths of the target brain activity.

This study was conducted in a data-driven way. MEG epochs

during the Go trials of a visual Go/NoGo task were assumed to

consist of stimulus-locked, response-locked, and unlocked wave-

forms. Without any hypotheses on their shapes, using CWE

allowed us to estimate the three waveforms from the MEG epochs.

We found that the estimated unlocked waveforms had large alpha

oscillations at 8–10 Hz around the temporal areas. Together with

the suggested roles of alpha oscillations in previous studies [8–13],

we hypothesized that the unlocked waveforms reflected the

inhibition of the task-irrelevant activities in the temporal regions

while the subject attends to the visual stimulus. We calculated the

powers of the components reflecting the brain activities of the

unlocked waveforms under different conditions: a passive viewing,

a simple reaction time, and Go/NoGo tasks. Using these powers,

we tested our hypothesis in the following three ways. First, to

examine whether the unlocked waveforms are related to attention,

we compared the powers across conditions that either require or

do not require attention. Second, to examine whether the

unlocked waveforms reflect the inhibition of the task-irrelevant

activities, we examined the relation between the powers and the

variability of reaction times (RTs) under the Go condition. Finally,

to examine whether the unlocked waveforms are specifically

related to ‘‘visual’’ attention, we compared the powers between the

‘‘visual’’ and ‘‘auditory’’ Go/NoGo conditions. The above

analyses all supported our hypothesis.

Materials and Methods

Subjects
Nine healthy subjects participated in this study. All gave written

informed consent for the experimental procedures, which were

approved by the ATR Human Subject Review Committee. All

had normal or corrected-to-normal visual and auditory acuity.

One subject was excluded owing to too many wrong responses

(about 30%) in the Go trials of the Go/NoGo task. All analyses

were conducted using the remaining eight subjects (ages 32.167.1

(mean 6 standard deviation [SD]), including one female).

Experimental Design
We conducted MEG and functional Magnetic Resonance

Imaging (fMRI) experiments. The fMRI data were used as prior

information in estimating the current sources of the MEG

waveforms [14].

For the MEG and fMRI experiments, the same experimental

stimuli and event-related design were used (Figure 1). Each trial

began with a warning beep. Following the beep, a white cross was

presented for a variable duration of 1–1.5 s, and subjects were

instructed to fixate on it. Then a cue stimulus ‘‘.’’ or ‘‘,’’ was

presented for 1 s to instruct subjects to initiate a task. Cue stimuli

‘‘.’’ and ‘‘,’’ were presented in random order at equal

probability. The cue stimulus onset is referred to as the stimulus

onset. Following the cue stimulus, a gray cross was presented for a

variable duration of 3–4 s. Subjects were allowed to blink only

during this period. Each run consisted of 50 trials. Different runs

had different sequences.

Three tasks were conducted in the following order: a passive

viewing (Passive) task, a simple reaction time (SRT) task, and a

Go/NoGo task. In the Passive task, subjects passively viewed the

cue stimulus. In the SRT task, subjects pushed a button with their

right index finger immediately after the stimulus onset. In the Go/

NoGo task, subjects pushed a button with their right index finger

immediately after the ‘‘.’’ stimulus onset (Go) and did not push it

after the ‘‘,’’ stimulus onset (NoGo). We set the Go condition as

the target, in which unlocked waveforms were examined, and used

the other conditions for comparison. For the Passive and SRT

tasks, all subjects participated in two runs (100 trials). For the Go/

NoGo task, one subject participated in five runs (125 Go and

NoGo trials) and the other subjects participated in four runs (100

Go and NoGo trials).

Data Acquisition
MEG recording. A whole-head 400-channel system (210-

channel Axial Gradiometer and 190-channel Planar Gradiometer;

PQ1400RM; Yokogawa Electric Co., Japan) was used for the

MEG recording. The sampling frequency was 1 kHz. An electro-

oculogram (EOG) value was simultaneously recorded. Before the

MEG experiment, the subject’s face and head shape were scanned

using a hand-held laser scanner and a stylus marker (FastSCAN

Cobra; Polhemus, U.S.A.) for later co-registration of the MEG

and MRI results. To measure the head position in the MEG

system, four calibration coils were bilaterally mounted on the

subject’s temporal skin (two for the superior superciliary and two

for anterior subauricular regions). Electromagnetic calibration of

the coil positions was conducted before and after each MEG

recording run by applying alternating currents to the coils.

MRI recording. Three Tesla MR scanners (MAGNETOM

Trio 3T for three subjects and MAGNETOM Verio 3T for the

others; Siemens, Germany) were used to obtain the structural and

functional MRI data.

The following are the acquisition parameters for the T1-

weighted images: repetition time 2250 ms, time of echo 3.06 ms,

flip angle 9u, slice thickness 1 mm, field of view 256|256 mm,

imaging matrix 256|256 and 192 slices.

The following are the acquisition parameters for the echo-

planar images (EPIs): repetition time 3 s, time of echo 30 ms, flip

angle 80u, slice thickness 3 mm, field of view 192|192 mm, and

imaging matrix 64|64 with 50 slices for the three subjects and 47

slices for the others.

Revealing Time-Unlocked Brain Activity
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Data Analysis
MEG data. Preprocessing. To remove artifacts and noise

from the MEG data and reshape them for the common waveform

estimation, the MEG data were passed through a low-pass finite

impulse response (FIR) filter with a cutoff frequency of 40 Hz,

sampled at 100 Hz, and passed through a high-pass FIR filter with

a cutoff frequency of 2 Hz. Using the reference sensor data,

environmental noise was removed by time-shift Principal Com-

ponent Analysis (PCA) [15]. The MEG data were segmented into

5-s epochs from 2 s before the stimulus onset to 3 s after it. For

each sensor, EOG artifacts were removed by generating a multiple

linear regression model to predict eye-movement-related compo-

nents in the MEG epochs by the EOG data and then removing the

prediction from the MEG epochs. RTs were defined as the

intervals between the stimulus onsets and the button-push signal

(response) onsets. We excluded the trials in the SRT task and the

Go condition with RTs either shorter than 0.1 s or longer than

0.8 s. Trials were also excluded if subjects made button-push

responses in the Passive task and the NoGo condition. If the

maximum value of the MEG epoch from 0.5 s before the stimulus

onset to 1 s after it exceeded 2|10212 T absolute value, we

excluded that trial. Cardiac artifacts and sensor noise were

removed by Independent Component Analysis (ICA) [16] using

MATLAB code provided by Makeig et al. [17]. We obtained

99.960.4 trials for the Passive task, 97.464.3 trials for the SRT

task, 100.669.7 trials for the Go condition, and 98.163.9 trials for

the NoGo condition. The mean RTs for the SRT task and Go

conditions were 0.2960.05 s and 0.3860.04 s, respectively.

Common Waveform Estimation. To estimate unlocked wave-

forms, we applied CWE to the preprocessed 400-channel MEG

epochs of the Go condition.

CWE is a general method for estimating waveforms that are

common across trials from MEG/EEG epochs. When waveforms

spatiotemporally overlap, the averaging procedure cannot estimate

exact waveforms because they are mutually contaminated [18–

23]. Furthermore, when the delays of waveforms are variable and

unknown, the averaging procedure cannot be used [3,24]. CWE

was proposed to overcome these limitations and provide a way to

work in more general and severe situations, where we do not know

the number of waveforms common across trials, their delays in

individual trials, and all of the waveforms. In CWE, a MEG epoch

of a channel is assumed to consist of waveforms common across

trials and is expressed by

y(ch)
n (t)~

PK
k~1

x
(ch)
k (t{tn,k)zv(ch)

n (t), ð1Þ

where y(ch)
n (t) represents a MEG epoch of channel ch in trial n,

x
(ch)
k (t) represents the k-th waveform of channel ch, tn,k represents

the delay of x
(ch)
k (t) in trial n, v(ch)

n (t) represents the noise of

channel ch in trial n, and K represents the number of waveforms.

Only from y(ch)
n (t), CWE estimate K , x

(ch)
k (t), and tn,k. In the

Fourier domain, they are iteratively searched for, with the aim of

minimizing the residual error between the observed and recon-

structed MEG epochs. Using CWE, we can obtain exact

waveforms, which are not contaminated with each other, without

any knowledge of their shapes and delays in individual trials.

In this experimental design, we assumed three waveforms in a

MEG epoch: a stimulus-locked waveform, a response-locked

waveform, and an unlocked waveform. We set the delays of the

stimulus-locked waveforms to 0 s and the delays of the response-

locked waveforms to the RTs. That is, we simplified the

assumption from Eq. (1) to

y(ch)
n (t)~s(ch)(t)zr(ch)(t{rtn)zu(ch)(t{tn)zv(ch)

n (t), ð2Þ

where s(ch)(t) represents the stimulus-locked waveform of channel

ch, r(ch)(t) represents the response-locked waveform of channel ch,

u(ch)(t) represents the unlocked waveform of channel ch, rtn

represents the RT in trial n, and tn represents the delay of the

unlocked waveform in trial n. By CWE, we estimated s(ch)(t),

r(ch)(t), u(ch)(t), and tn from y(ch)
n (t) and rtn. We searched for the

delays of the unlocked waveforms by setting the initial delays to

Gaussian random numbers (0.3560.20 s) and the range of the

delay to 60.25 s. After the search, it was necessary to adjust the

averages across the trials of the delays. This is because the delays

are defined as the interval between the stimulus onsets and the

onsets of the unlocked waveforms, and the onsets of the unlocked

waveforms are arbitrarily determined when searching for the

delays. We adjusted them so that the delays represented the

interval between the stimulus onsets and the maximum peak of the

unlocked waveforms.

Comparing Estimated Waveforms with Averages across Trials.

To examine the validity of the estimation, the estimated stimulus-

locked waveforms, response-locked waveforms, and unlocked

Figure 1. Experimental design. Each trial began with a warning beep. Following the beep, a white cross was presented for a variable duration of
1–1.5 s. Subjects were instructed to fixate on it. Then a cue stimulus, ‘‘.’’ or ‘‘,’’, was presented for 1 s to instruct subjects to initiate the task.
Following the cue stimulus, a gray cross was presented for a variable duration of 3–4 s. Subjects were allowed to blink only during this period.
doi:10.1371/journal.pone.0098014.g001
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waveforms were compared with the averages across the trials of

the MEG epochs that were triggered on the stimulus onsets

(stimulus-triggered averages), the response onsets (response-

triggered averages), and the estimated delays of the unlocked

waveforms (estimated delay-triggered averages), respectively.

Theoretically, the stimulus-triggered average should be more or

less different from the stimulus-locked waveform. According to Eq.

(2), the stimulus-triggered average is expressed by

1

N

XN

n~1

y(ch)
n (t)~s(ch)(t)z

1

N

XN

n~1

r(ch)(t{rtn)

z
1

N

XN

n~1

u(ch)(t{tn)z
1

N

XN

n~1

v(ch)
n (t),

where N represents the number of trials. This includes not only

the stimulus-locked waveform but also contamination by the other

waveforms (the second and third terms on the right side). This is

also true for the response-triggered average. Indeed, the stimulus/

response-locked waveforms are different from the stimulus/

response-triggered averages to some extent (see Figures 2A and

3A). The differences are attributed to contamination by the

response/stimulus-locked waveforms in the stimulus/response-

triggered averages [18–23]. To confirm this assumption, we

simulated the contaminated waveforms and compared them with

the stimulus/response-triggered averages. Stimulus-locked wave-

forms contaminated by response-locked waveforms were calculat-

ed by s(ch)(t)z1=N
PN

n~1 r(ch)(t{rtn). Response-locked wave-

forms contaminated by stimulus-locked waveforms were calculated

by r(ch)(t)z1=N
PN

n~1 s(ch)(tzrtn).

Current Source Estimation of Waveforms. To examine the

current sources of the estimated waveforms, we applied Varia-

tional Bayesian Multimodal EncephaloGraphy (VBMEG) [14] to

the estimated waveforms of the 210 axial sensors.

From MEG data, VBMEG estimates distributed currents using

fMRI data as the prior information on the current variance

distribution. The reliability of VBMEG has been confirmed by

both computer simulation [14,25] and experiment [26–32].

For each subject, a polygon model of the cortical surface was

constructed based on MR structural images using FreeSurfer

software [33]. We assumed about 3,000 single-current dipoles

equidistantly distributed on and perpendicular to the cortical

surface. The fMRI information from the Go condition was used

for the prior information on the current variance distribution. The

variance magnification parameter was set at 100 [26]. The

confidence parameter was set at 10 [26]. A spatial smoothness

constraint on the current distribution along the cortical surface

was incorporated into the estimation (6 mm full-width at half-

maximum). We assumed that the pattern of the cortical activity

changes with time. Therefore, we divided the estimated waveforms

into time windows (100-ms long with 50-ms overlap). Then, we

separately calculated an inverse filter for each time window.

Cortical currents were estimated every 10 ms (100 Hz) from the

estimated waveforms using the filter. In the overlap periods, they

were averaged between two time windows.

Here, we show the power distribution over the cortex of the

estimated currents. The power was obtained by calculatingPt2

t~t1
DHcur(t)D2

�
(t2{t1z1), where Hcur(t) is the Hilbert trans-

form of the estimated current at a dipole, and t1 and t2 are,

respectively, 0 s and 0.5 s after the stimulus onset for the stimulus-

locked waveforms, 20.25 s and 0.25 s after the response onset for

the response-locked waveforms, and 20.25 s and 0.25 s after the

peak for the unlocked waveforms. Powers over 0.3 of the

maximum value across the dipoles are shown.

Relation between Unlocked Waveform and Alpha Oscillations.

The unlocked waveforms have alpha oscillations at 8–10 Hz (see

Figure 4A). Therefore, we examined the relation between the

unlocked waveform and alpha oscillations originally included in

the MEG epochs during the Go condition.

The alpha oscillations in the MEG epochs were extracted by

filtering the MEG epochs with a FIR bandpass filter of 8–10 Hz

and then aligning the filtered MEG epochs to the estimated delays

of the unlocked waveform.

We compared amplitude distributions over space between the

unlocked waveform and the alpha oscillations of the original MEG

epochs. The amplitude of the unlocked waveform was calculated

by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

t2{t1z1

Xt2
t~t1

DHu(t)D2

vuut , ð3Þ

where Hu(t) is the Hilbert transform of the unlocked waveform

at a sensor, and t1 and t2 are 20.5 s and 0.5 s, respectively, after

the peak of the unlocked waveform. The amplitude of the alpha

oscillations in the MEG epochs was calculated byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=N

PN
n~1 1=(t2{t1z1)

Pt2

t~t1
DHa(t,n)D2

q
, where Ha(t,n) is

the Hilbert transform of the alpha oscillation in the MEG epoch

at a sensor in trial n, and t1 and t2 are 20.5 s and 0.5 s,

respectively, after the peak of the unlocked waveform.

To focus on the similarity and difference between the two

amplitude distributions over space (Figure 5A and B), we selected

three channels (CHs 1–3). At CHs 1 and 2, the unlocked

waveform and the alpha oscillations in the MEG epochs have

large amplitudes in common. At CH 3, the alpha oscillations in the

MEG epochs have large amplitudes but the unlocked waveform

does not have these.

To show the reasons for the similarity and difference visually,

we prepared time-trial images [16] for CHs 1–3. In these images,

the alpha oscillations in the MEG epochs are shown as color-

coded horizontal lines.

To confirm the reasons for the similarity and difference

quantitatively, we calculated phase-locking values (PLVs) for

CHs 1–3. The PLV was defined as D
PN

n~1 exp (jwn(t))D
.

N, where

wn(t) is the angle of the Hilbert transform of the alpha oscillation

in the MEG epochs in trial n [34].

Properties of Unlocked Waveforms. We examined the proper-

ties of the unlocked waveforms in the following three ways.

First, we examined the amplitude distributions over space of the

unlocked waveforms. The amplitude was calculated by Eq. (3),

where t1 and t2 are 20.5 s and 0.5 s, respectively, after the peak of

the unlocked waveform. The similarity of the amplitude distribu-

tions across the subjects was quantified by calculating the

correlation coefficient. For each subject, we calculated the

correlation coefficient between his/her own and the mean of the

others’ amplitude distributions. A two-tailed sign test was

conducted to assess the null hypothesis that the medium value of

the correlation coefficients was 0.

Second, we examined the power spectra of the unlocked

waveforms. The power spectrum was obtained by taking the

discrete Fourier transform of h(t)u(ch)(t), where h(t) is the Hanning

window.

Revealing Time-Unlocked Brain Activity
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Finally, we examined the correlations between the RTs of the

Go condition and the estimated delays of the unlocked waveforms.

For each subject, the correlation coefficient between the RTs and

the estimated delays of the unlocked waveform was calculated.

Role of Unlocked Waveform. We examined the role of the

unlocked waveform. The roles of MEG/EEG waveforms, such as

P300, have been examined by comparing their amplitudes across

different conditions, implicitly assuming that the compared

waveforms reflect the same brain function. However, this

procedure cannot be used for unlocked waveforms because

unlocked waveforms estimated from different conditions may not

reflect the same brain function.

In this study, to examine the role of the unlocked waveform, we

attempted to estimate the strength of the unlocked waveform’s

brain activity occurring under the various conditions. Using the

Denoising Source Separation (DSS) framework [35,36], we

constructed a spatial filter to extract the component reflecting

the brain activity of the unlocked waveform. In the DSS

framework, spatial filters for separating desired sources can be

constructed using prior knowledge about the sources. In this case,

the brain activity reflected by the unlocked waveform was

regarded as the source. The latencies of the source, which are

the estimated delays of the unlocked waveform, were regarded as

prior knowledge of the source. The spatial filter to separate the

source was constructed using the prior knowledge as follows.

1. A data matrix of size C,T ,N½ � (channeltimetrial) during the

Go condition was prepared.

2. The data matrix was reorganized by concatenating the trials

along the time dimension to obtain a matrix of size C,TN½ �.
3. Using PCA, the reorganized data matrix was whitened, i.e.

the variance for each channel was normalized, and a whitening

matrix W was obtained.

4. The whitened data matrix was reorganized again by trials to

form a 3D matrix of size C,T ,N½ �.
5. By CWE, the reorganized matrix was decomposed into three

2D matrices of size C,T½ �: stimulus-locked, response-locked, and

estimated delay-locked.

6. A second PCA was performed on the third decomposed

matrix, i.e. the estimated delay-locked matrix, and a rotation

matrix R was obtained.

7. The first column of RW, which corresponds to the maximum

variance component, was used as the spatial filter.

The above procedure finds the spatial filter to extract the

component ( 1,T ,N½ �), which includes the large temporal pattern

( 1,T½ �) time-locked to the delays of the unlocked waveform. The

variance of the temporal pattern over time is maximum under the

Figure 2. Stimulus-locked waveform (subject 8). A: Time course of stimulus-locked waveform. Blue and red lines represent stimulus-locked
waveform and stimulus-triggered average. Black lines represent stimulus-locked waveform contaminated by response-locked waveform. Vertical lines
represent stimulus onset. Framed plots are enlarged on the right (a and b). B: Spatial patterns of stimulus-locked waveform at 0.13 s (upper) and
0.2 s (lower) after stimulus onset. C: Current sources estimated from stimulus-locked waveform. Powers averaged across time from 0 to 0.5 s after
stimulus onset are shown. Other subjects show similar results.
doi:10.1371/journal.pone.0098014.g002
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condition that the variance of the component over time and trials

is one. Therefore, the spatial filter enhances the brain activity that

occurred at the estimated delays of the unlocked waveform in the

same manner across the trials, i.e. the brain activity of the

unlocked waveform. By applying the spatial filter to the MEG data

of the various conditions, the brain activity of the unlocked

waveform can be extracted from the various conditions. We

compared the powers of the extracted component across the

conditions, assuming that the powers indicate the strengths of the

brain activity reflected by the unlocked waveform.

The time course of the power was calculated by taking the

moving average of
PN

n~1 DHcomp(t,n)D2
.

N , where the window

width of the moving average is 0.2 s and Hcomp(t,n) is the Hilbert

transform of the component in trial n. To compare the powers

across the conditions, we obtained relative powers by calculatingXt2

t~t1
P(t)

.Xt2

t~t1
PGo(t), where PGo(t), P(t) are respectively

the time courses of the powers of the Go condition and another

condition, and t1 and t2 are 0 s and 1 s, respectively, after the

stimulus onset. The relative power is .1 if the power of the

component of a condition is larger than that of the Go condition,

and ,1 if it is smaller. A two-tailed sign test was conducted to

assess the null hypothesis that the medium value of the relative

powers was 1 with Bonferroni correction.

To examine the relation between the powers and the variability

of the RTs in the Go condition, for each subject we obtained

normalized powers by calculatingPt2

t~t1
DHcompGo(t,n)D2

�
max

n

Pt2

t~t1
DHcompGo(t,n)D2

h i
, where

HcompGo(t,n) is the Hilbert transform of the component of the

Go condition in trial n, t1 and t2 are 0 s and 0.5 s, respectively,

after the stimulus onset, and max
n

An½ � is the maximum value of An

across n. According to the normalized powers, the trials in the Go

condition were divided into two groups: smaller power group and

larger power group. For each group and subject, the SD of the

RTs was calculated. A one-tailed Wilcoxon signed-ranks test was

conducted to assess the null hypothesis that the SDs of the two

groups did not differ.

fMRI data. To obtain the prior information used in

estimating the current sources from the estimated waveforms

[14], we analyzed the fMRI data during the Go condition by

SPM8 (Welcome Department of Cognitive Neurology, UK).

The head motion and slice-timing were corrected, and the

images were smoothed using an 8-mm full-width at half-maximum

Figure 3. Response-locked waveform (subject 8). A: Time course of response-locked waveform. Blue and red lines represent response-locked
waveform and response-triggered average. Black lines represent response-locked waveform contaminated by stimulus-locked waveform. Vertical
lines represent response onset. Framed plots are enlarged on the right (a and b). B: Spatial patterns of response-locked waveform at 20.1 s (upper)
and 0.02 s (lower) after response onset. C: Current sources estimated from response-locked waveform. Powers averaged across time from 20.25 s to
0.25 s after response onset are shown. Other subjects show similar results.
doi:10.1371/journal.pone.0098014.g003
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(FWHM) Gaussian filter. The time series of all voxels were high-

pass filtered to 1/128 Hz.

Statistical analyses were performed for each subject in the event-

related design. The time course of the events, which is the stimulus

onset, was convolved with a canonical hemodynamic response

function to yield regressors in a general linear model. A parameter

was estimated for each regressor, and a t-value of the parameter

was calculated for each voxel. The resulting t-values were used for

the prior information on the current variance distribution [14].

Results

Estimated Waveforms
By using CWE, three types of waveforms were estimated from

the MEG epochs of the Go condition: stimulus-locked, response-

locked, and unlocked. First, we show the three waveforms. Then,

we show the relation between the unlocked waveform and the

alpha oscillations originally included in the MEG epochs during

the Go condition. Finally, we show the properties of the unlocked

waveforms.

Stimulus-locked waveform. Figure 2A shows the stimulus-

locked waveform estimated by CWE (blue lines) at 19 axial

sensors. For comparison, we also show the stimulus-triggered

average, which was obtained by averaging the MEG epochs

triggered on the stimulus onsets (red lines). Around the occipital

areas, the stimulus-locked waveform has as large an amplitude as

the stimulus-triggered average (Figure 2Ab, blue and red lines).

Around the central and left temporal areas, where the response-

locked waveform is large (Figure 3A, blue lines), and around the

mean response onset, the stimulus-locked waveform is different

from the stimulus-triggered average (Figure 2Aa, blue and red

lines). This suggests that the difference is due to the contamination

by the response-locked waveform in the stimulus-triggered average

[18–23]. To confirm this conjecture, the stimulus-locked wave-

form contaminated by the response-locked waveform was calcu-

lated (Figure 2A, black lines). This made the difference disappear

(Figure 2Aa, black and red lines). Therefore, CWE successfully

separated the stimulus-locked waveform from the contamination

of the response-locked waveform, while the stimulus-triggered

averaging procedure did not.

Figure 2B shows the spatial patterns of the stimulus-locked

waveform at 0.13 and 0.2 s after the stimulus onset. The stimulus-

locked waveform is large around the occipital areas.

Figure 2C shows the powers of the current sources estimated

from the stimulus-locked waveform. The currents have large

amplitudes at the right superior occipital gyrus (indicated by

arrows).

Figure 4. Unlocked waveform (subject 8). A: Time course of unlocked waveform. Blue and red lines represent unlocked waveform and
estimated delay-triggered average. Vertical lines represent peak time of unlocked waveform. Framed plots are enlarged on the right (a and b). B:
Spatial patterns of unlocked waveform at 20.02 s (upper) and 0.03 s (lower) after peak of unlocked waveform. C: Current sources estimated from
unlocked waveform. Powers averaged across time from 20.25 s to 0.25 s after peak of unlocked waveform are shown. Other subjects show similar
results.
doi:10.1371/journal.pone.0098014.g004
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Response-locked waveform. Figure 3A shows the response-

locked waveform estimated by CWE (blue lines) at the 19 axial

sensors. For comparison, we also show the response-triggered

average, which was obtained by averaging the MEG epochs

triggered on the response onsets (red lines). Around the central and

left temporal areas, the response-locked waveform has as large an

amplitude as the response-triggered average (Figure 3Aa, blue and

red lines). Around the occipital areas, where the stimulus-locked

waveform is large (Figure 2A, blue lines), and before the response

onset, the response-locked waveform is different from the

response-triggered average (Figure 3Ab, blue and red lines). This

suggests that the difference is due to the contamination by the

stimulus-locked waveform in the response-triggered average [18–

23]. To confirm this conjecture, the response-locked waveform

contaminated by the stimulus-locked waveform was calculated

(Figure 3A, black lines). This made the difference disappear

(Figure 3Ab, black and red lines). Therefore, CWE successfully

separated the response-locked waveform from the contamination

of the stimulus-locked waveform, while the response-triggered

averaging procedure did not.

Figure 3B shows the spatial patterns of the response-locked

waveform at 20.1 and 0.02 after the response onset. The

response-locked waveform is large around the central and left

temporal areas.

Figure 3C shows the powers of the current sources estimated

from the response-locked waveform. The currents have large

amplitudes at the left precentral gyrus and the central sulcus

(indicated by arrows). This is believed to reflect the right finger

movement of pushing the button.

Unlocked waveform. Figure 4A shows the estimated

unlocked waveform (blue lines) at the 19 axial sensors. To our

knowledge, no method other than CWE can simultaneously

estimate the unlocked waveform along with the stimulus- and

response-locked waveforms. The unlocked waveform has large

alpha oscillations at 8–10 Hz (see Figure 6B) around the temporal

areas. The estimated delays of the peak in the unlocked waveform

are 0.4760.15 s. To confirm that the unlocked waveform is not an

artifact generated by CWE, we compared the unlocked waveform

with the estimated delay-triggered average, which was obtained by

averaging the MEG epochs triggered by the estimated delays

(Figure 4A, red lines). The unlocked waveform and the estimated

delay-triggered average do not show clear differences (Figure 4A,

right). This indicates that, at the estimated delays, there is a

spatiotemporal pattern that resembles the unlocked waveform,

confirming that the unlocked waveform is not an artifact.

Figure 4B shows the spatial patterns of the unlocked waveform

at 20.02 s and 0.03 s after the peak of the unlocked waveform.

Prominent activities are observed around the temporal areas.

Figure 5. Relation between unlocked waveform and alpha oscillations in MEG epochs during Go condition (subject 8). A: Amplitude
distribution over space of unlocked waveform. B: Amplitude distribution over space of alpha oscillations in MEG epochs. C: Selected channels: CHs 1–
3. At CHs 1 and 2, unlocked waveform and alpha oscillations in MEG epochs have large amplitudes in common. At CH 3, alpha oscillations in MEG
epochs have large amplitudes but unlocked waveform does not. D: Time-trial images of alpha oscillations in MEG epochs at CHs 1–3. Vertical dotted
lines represent peak time of unlocked waveform. E: PLVs at CHs 1–3. In D and E, time 0 corresponds to peak of unlocked waveform. Other subjects
show similar results.
doi:10.1371/journal.pone.0098014.g005
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Figure 4C shows the powers of the current sources estimated

from the unlocked waveform. The currents have large amplitudes

at the left and right superior temporal gyrus (STG) as indicated by

the arrows.

Relation between unlocked waveform and alpha

oscillations in MEG data. The unlocked waveform has large

alpha oscillations at 8–10 Hz (Figure 4A). Here, we examine the

relation between the unlocked waveform and alpha oscillations

originally included in the MEG epochs during the Go condition.

Figures 5A and B show the amplitude distributions over space of

the unlocked waveform and the alpha oscillations in the MEG

epochs, respectively. At CHs 1 and 2 (Figure 5C), the alpha

oscillations in the MEG epochs show large amplitudes as well as

the unlocked waveform (Figure 5A and B). At CH 3 (Figure 5C),

the alpha oscillations in the MEG epochs show large amplitudes,

but the unlocked waveform does not have these (Figure 5A and B).

To elucidate the reasons for the similarity and the difference, we

constructed time-trial images of the alpha oscillations in the MEG

epochs at CHs 1–3 (Figure 5D). For CHs 1 and 2, we can observe

oscillations parallel to the peak of the unlocked waveforms

indicated by vertical dotted lines (black dotted lines in

Figure 5D). This indicates that the alpha oscillations at CHs 1

and 2 are time-locked to the peak. In contrast, for CH 3, we

cannot observe such oscillations, indicating that the alpha

oscillations at CH 3 are not time-locked to the peak.

We can quantitatively confirm these observations from

Figure 5E, which shows the time courses of the PLVs. The PLVs

are large around the peak of the unlocked waveforms for CHs 1

and 2, but not for CH 3. This indicates that the alpha oscillations

are phase-locked to the estimated delays for CHs 1 and 2 but not

for CH 3.

These results show the reason why the amplitudes of the

unlocked waveform are large for CHs 1 and 2 but not for CH 3.

The MEG epochs include various sets of alpha oscillations

synchronized across channels. The calculation of the unlocked

waveform aligned one of these sets, which is dominant at CHs 1

and 2. However, it could not simultaneously align another set,

which is dominant at CH 3. As a result, the alpha oscillations at

CHs 1 and 2 remain, but those at CH 3 are cancelled in the

unlocked waveform.

In conclusion, the unlocked waveform is considered a set of

alpha oscillations synchronized across channels. The time-

frequency analyses [1–3] cannot extract such a set of activities

because it does not take into consideration the phase relation

across channels.

Properties of unlocked waveforms. Figure 6A shows the

amplitude distribution over space of the unlocked waveforms. In

this figure, the amplitude distributions are averaged across the

subjects. Strong amplitudes are observed around the temporal

areas. The amplitude distributions of the individual subjects

resemble each other (r~0:75+0:08, pv0:05, two-tailed sign test).

Figure 6B shows the power spectrum of the unlocked

waveforms. In this figure, the power spectra are averaged across

the sensors and subjects. Strong powers are observed at the alpha

band (8–10 Hz).

The RTs of the Go condition and the estimated delays of the

unlocked waveforms do not show significant correlations for most

of the subjects (r~0:04+0:12, pw0:05 for 7 of 8 subjects).

Role of Unlocked Waveform
Here, we show the procedure for examining the role of the

estimated unlocked waveform.

The conventional procedure used to examine the roles of

MEG/EEG waveforms, such as P300, is to compare the

amplitudes of the waveforms across different conditions. If the

amplitude is larger in one condition that needs a specific brain

function, the waveforms are assumed to reflect this function. In

this procedure, the compared waveforms are assumed to reflect

the same brain function based on the fact that the waveforms

occur with the same delay after the same event, such as stimulus

onset.

In the case of unlocked waveforms, however, this assumption is

not valid. Unlocked waveforms are not time-locked to observable

events, so it is not clear whether unlocked waveforms estimated

from different conditions reflect the same brain function.

Therefore, we cannot use the above procedure.

In this study, we intended to examine the strength of the

unlocked waveform’s brain activity occurring in the various

conditions. To do this, we constructed a spatial filter that works as

the extractor of the component reflecting the brain activity of the

unlocked waveform (see the ‘‘Data Analysis’’ section for detailed

method). By applying the spatial filter to the MEG data during the

various conditions, the components reflecting the brain activity of

the unlocked waveform can be extracted from the various

conditions. Comparisons between the conditions were carried

out by computing the powers of the extracted components,

Figure 6. Properties of unlocked waveforms. A: Amplitude distribution over space of unlocked waveforms. Amplitudes are averaged across
subjects. B: Power spectrum of unlocked waveforms. Powers are averaged across sensors and subjects.
doi:10.1371/journal.pone.0098014.g006
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assuming that the powers indicate the strengths of the brain

activities of the unlocked waveforms.

We first present our hypothesis on the role of the unlocked

waveforms and then test it by using the powers.

Hypothesis. The unlocked waveforms have large alpha

oscillations at 8–10 Hz around the temporal areas (Figures 4A

and 6B). It is generally believed that the alpha oscillations reflect

the inhibition of task-irrelevant activities [8–13]. Based on these

previous studies, we hypothesized that the unlocked waveforms

reflected the inhibition of the task-irrelevant activities in the

temporal regions while the subject attends to the visual stimulus.

Indeed, the estimated delays of the unlocked waveforms are not

correlated with the RTs of the Go condition, suggesting that the

unlocked waveforms are not related to the execution of the Go/

NoGo task, such as decision making.

Using the powers of the components reflecting the brain

activities of the unlocked waveforms, we tested the above

hypothesis in the following three ways. First, to examine whether

the unlocked waveforms are related to attention, we compared the

powers across conditions where attention is required or not.

Second, to examine whether the unlocked waveforms reflect the

inhibition of the task-irrelevant activities, we examined the relation

between the powers and the variability of the RTs in the Go

condition. Finally, to examine whether the unlocked waveforms

are specifically related to ‘‘visual’’ attention, we conducted an

additional experiment of an ‘‘auditory’’ Go/NoGo task and

compared the powers between the ‘‘visual’’ and ‘‘auditory’’ Go/

NoGo conditions.

Comparison across conditions where attention is

required or not. We examined whether the unlocked wave-

forms are related to attention. The Go and NoGo conditions

require that attention be given to the stimulus, but the Passive task

does not. Therefore, the hypothesis expects that the powers of the

components will be large for the Go and NoGo conditions but not

for the Passive task.

Figure 7A shows the time courses of the powers of the

components. In this figure, the powers are averaged across the

subjects. The powers clearly increase after the stimulus onset for

the Go and NoGo conditions (blue and green lines) but not for the

Passive task (black line).

Figure 7B shows the powers of the components relative to those

of the Go condition for each subject. For the NoGo condition, the

relative powers are around 1 (pw0:05, two-tailed sign test,

Bonferroni-corrected), indicating that the powers of the NoGo

condition are not different from those of the Go condition. For the

Passive task, the relative powers are ,1 for all of the subjects

(pv0:05, two-tailed sign test, Bonferroni-corrected), indicating

that the powers of the Passive task are smaller than those of the Go

condition for all subjects.

These results are consistent with our expectation, suggesting

that the unlocked waveforms are related to attention.

Relation to variability of RTs. We examined whether the

unlocked waveforms reflect the inhibition of the task-irrelevant

activities. The task-irrelevant activities are considered sources of

noise for the task-relevant brain process. Therefore, the inhibition

of the task-irrelevant activities is believed to reduce noise. If noise

is reduced, the brain process for the Go response will be less

perturbed and the motor output will be stabilized, i.e. the

variability of the RTs will be small. Therefore, the hypothesis

expects that the variability of the RTs will be small when the

powers of the unlocked waveforms are large.

Figure 8A shows the scatter plot of the powers and the RTs

during the Go condition. In this figure, the powers are normalized

for each subject so that their maximum value becomes one. The

variability of the RTs seems to be small when the powers are large.

To confirm this observation quantitatively, for each subject, the

trials were divided into two groups according to the normalized

powers: the smaller power group and the larger power group. For

7 out of 8 subjects, the SDs of the RTs in the larger power group

are smaller than those in the smaller power group (pv0:05, one-

tailed Wilcoxon signed-ranks test) (Figure 8B). This indicates that

the variability of the RTs is small when the powers are large.

This result is consistent with our expectation, suggesting that the

unlocked waveforms reflect the inhibition of the task-irrelevant

activities.

Additional experiment with auditory Go/NoGo

task. We examined whether the unlocked waveforms are

specifically related to ‘‘visual’’ attention. Parts of the task-irrelevant

brain regions during visual attention, such as the auditory cortex,

are task-relevant during auditory attention. Therefore, the

Figure 7. Powers of components reflecting brain activities of unlocked waveforms. A: Time courses of powers of components. Powers are
averaged across subjects. Time 0 corresponds to stimulus onset. B: Relative powers of components to those of Go condition. Each line corresponds to
one subject.
doi:10.1371/journal.pone.0098014.g007
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hypothesis expects that the powers will be smaller in the case of the

auditory Go and NoGo conditions.

To test this expectation, we conducted an additional experiment

of an ‘‘auditory’’ Go/NoGo task and compared the powers

between the ‘‘visual’’ and ‘‘auditory’’ conditions. In this experi-

ment, nine healthy subjects participated, who gave written

informed consent for the experimental procedures that were

approved by the ATR Human Subject Review Committee. We

conducted visual and auditory Go/NoGo tasks. The visual Go/

NoGo task is the same as the Go/NoGo task described in the

‘‘Experimental Design’’ section. The auditory Go/NoGo task is

the same as the visual Go/NoGo task except for the cue stimulus;

an auditory cue stimulus (1500- or 2000-Hz pure tone) was

presented for 1 s instead of the visual stimulus (‘‘.’’ or ‘‘,’’). The

subjects immediately pushed the button with their right index

finger after the presentation of the 2000-Hz pure tone (auditory

Go) but not for the 1500-Hz pure tone (auditory NoGo). During

the tasks, MEG data were recorded as described in the ‘‘Data

Acquisition’’ section. The powers were calculated also as described

in the ‘‘Data Analysis’’ section: the MEG data were preprocessed,

unlocked waveforms were estimated from the preprocessed MEG

epochs during the visual Go condition, spatial filters were

prepared to extract the brain activities of the unlocked waveforms,

the spatial filters were applied to the MEG epochs during the

individual conditions, and the time courses of the powers were

calculated from the components extracted by the spatial filters.

Figure 9A shows the time courses of the powers. In this figure,

the powers are averaged across the subjects. For the visual Go and

NoGo conditions (blue and green lines), the powers increase

during the task period (from 0 to 1 s after the stimulus onset),

which are consistent with the previous results (Figure 7A, blue and

green lines). For the auditory Go and NoGo conditions (black and

red lines), on the contrary, the powers show transient decreases

after the stimulus onset. We averaged the powers from 0 to 1 s

after the stimulus onset for each condition and subject. The

averaged powers of the auditory conditions are significantly

smaller than those of the visual conditions (pv0:05, two-tailed

Wilcoxon signed-ranks test).

This result is consistent with our expectation, suggesting that the

unlocked waveforms of the visual Go condition are specifically

related to the ‘‘visual’’ attention.

Further, Figure 9A indicates that the brain activities reflected by

the unlocked waveforms of the visual Go condition do not occur

strongly in the case of the auditory conditions. Therefore, if CWE

were also applied to the MEG epochs during the auditory

conditions, it is expected that unlocked waveforms with different

properties would be estimated. To confirm this expectation, we

estimated unlocked waveforms from all of the individual condi-

tions, and compared their amplitude distributions over space

across the conditions.

The unlocked waveforms were estimated as described in the

‘‘Data Analysis’’ section except that the response-locked wave-

forms were not assumed for the NoGo conditions. The amplitude

distributions over space of the unlocked waveforms were

calculated by Eq. (3) as described in the ‘‘Data Analysis’’ section.

Figure 9B shows the amplitude distributions over space of the

unlocked waveforms. In this figure, the amplitudes are averaged

across the subjects. For the visual conditions (top figures), large

amplitudes are observed around the temporal areas, which are

consistent with the previous results (Figure 6A). For the auditory

conditions (bottom figures), in contrast, large amplitudes are

observed around the occipital areas. To examine the similarity of

the amplitude distributions over space between the visual Go

condition and another condition, for each subject, we calculated

the correlation coefficient between their amplitude distributions

over space. The correlation coefficients between the visual Go and

auditory conditions are significantly lower than those between the

visual Go and NoGo conditions (r~0:84+0:11 for the visual Go

and auditory Go conditions, r~0:83+0:12 for the visual Go and

auditory NoGo conditions, r~0:92+0:04 for the visual Go and

visual NoGo conditions, pv0:05, two-tailed Wilcoxon signed-

ranks test). This indicates that the amplitude distributions over

space of the unlocked waveforms of the auditory conditions are

different from those of the visual Go condition.

This result is consistent with our expectation, supporting the

results of Figure 9A.

Discussion

In this study, we showed the usefulness of CWE for revealing

cognitive unlocked brain activities. By using CWE, we successfully

estimated the unlocked waveforms from the MEG data during the

Go trials of the visual Go/NoGo task. The unlocked waveforms

have large alpha oscillation at 8–10 Hz around the temporal

areas. Based on the properties of the unlocked waveforms and the

previous studies [8–13], we hypothesized that the unlocked

waveforms reflected the inhibition of the task-irrelevant activities

in the temporal regions while the subjects attend to the visual

Figure 8. Relation between powers of components reflecting brain activities of unlocked waveforms and variability of RTs in Go
condition. A: Scatter plot of normalized power and RTs. Each dot corresponds to one trial of one subject. B: SDs of RTs in smaller and larger power
groups. In both figures, each color corresponds to one subject.
doi:10.1371/journal.pone.0098014.g008
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stimulus. We verified this hypothesis by comparing the powers of

the components corresponding to the unlocked waveforms across

the various conditions. Without using CWE, this cannot be found.

The unlocked waveform and their delays estimated by CWE

were verified by comparing the unlocked waveform with the

estimated delay-triggered average, which was obtained by

averaging the MEG epochs triggering on the estimated delays.

The similarity between them (Figure 4A) indicates that, at the

estimated delays, there is a spatiotemporal pattern that resembles

the unlocked waveform and that the unlocked waveform is not the

artifact generated by CWE.

The amplitude distribution over space of the unlocked

waveforms (Figure 5A) is different from that of the alpha

oscillations in the MEG epochs during the Go condition

(Figure 5B), although both have the same frequency oscillations

and originate in the same data. The time-trial images and the

PLVs show that the difference comes from the phase relation

between channels (Figure 5D and E). Alpha oscillations have been

reported as being generated by several generators, such as the

visual cortex (e.g. [13]). In the MEG epochs they are mixed, while

the unlocked waveforms only include oscillations synchronized

across channels. Therefore, CWE successfully separated a set of

alpha oscillations synchronized across channels from desynchro-

nized ones.

Based on the previous studies on alpha oscillations [8–13], we

hypothesized that the unlocked waveforms reflect the inhibition of

the task-irrelevant activities in the temporal regions while the

subject attends to the visual stimulus. We then showed four results

consistent with this hypothesis. First, the delays of the unlocked

waveforms are not correlated with the RTs. If the unlocked

waveforms were related to the task execution, such as decision

making, the delays of the unlocked waveforms would be correlated

with the RTs. Second, the powers of the components correspond-

ing to the unlocked waveforms increase during the task period for

the Go and NoGo conditions but not for the Passive task (Figure 7).

This result suggests that the unlocked waveforms are related to

attention. Third, when the powers of the components are large,

the RTs of the Go condition have small variability (Figure 8). This

result suggests that the unlocked waveforms reflect the inhibition

of the task-irrelevant activities. Finally, the powers of the

components do not increase during the task period for the

‘‘auditory’’ Go and NoGo conditions (Figure 9A). This result

suggests that the unlocked waveforms are specifically related to

‘‘visual’’ attention.

Our results and hypothesis are consistent with previous fMRI

and positron emission tomography (PET) studies showing cross-

modal deactivations [37–41]. These studies demonstrated that

attention to a single sensory modality decreases activity in the

cortical regions that process information from an unattended

sensory modality. For example, using fMRI data and a cued

detection paradigm, Mozolic et al. [40] showed the deactivation of

the auditory/visual cortex during visual/auditory attention. Based

on these studies, the inhibition of the brain activities in the task-

irrelevant regions, such as the auditory cortex, may occur when

the subject attends to the visual stimulus in the visual Go/NoGo

task.

Furthermore, our results and hypothesis are consistent with

previous EEG and MEG studies showing cross-modal modulation

of alpha oscillations [13,42–46]. These studies demonstrated that

attention to a single sensory modality increases alpha oscillations in

the cortical regions that process information from an unattended

sensory modality. For example, using EEG data, Pfurtscheller [13]

showed that there is an increase in the alpha band over the

sensorimotor cortex during reading with a simultaneous decrease

in the alpha band over the visual cortex, and vice versa during

movement. The increased alpha oscillations were assumed to

reflect the idling state of cortical networks where the transfer of

specific information is reduced. Based on these studies, the

increase in the alpha oscillation may occur in the task-irrelevant

temporal regions when the subject attends to the visual stimulus in

the visual Go/NoGo task, and CWE might extract the increased

alpha oscillations as unlocked waveforms.

To our knowledge, although relations to visual attention were

reported for the visual alpha (e.g. [47]) and sensorimotor mu

oscillations [13], this has not been reported for the temporal alpha

oscillations or so-called tau rhythms [48,49], except in a monkey

study [50]. In this study, for the first time, CWE could reveal the

relation between the temporal alpha oscillations and visual

attention in human subjects, although we did not expect this

before applying CWE. This demonstrates the powerful ability of

CWE to reveal new findings on cognitive brain functions without

making any hypothesis in advance.

Conclusions

By using CWE, we examined the unlocked waveforms in the

MEG epochs during a cognitive stimulus-response task. In

estimating the unlocked waveforms, we did not hypothesize their

Figure 9. Results of additional experiment with visual and auditory Go/NoGo tasks. A: Time courses of powers of components reflecting
brain activities of unlocked waveforms of visual Go condition. Powers are averaged across subjects. Time 0 corresponds to stimulus onset. B:
Amplitude distributions over space of unlocked waveforms estimated from individual conditions. Amplitudes are averaged across subjects.
doi:10.1371/journal.pone.0098014.g009
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shapes or roles. After the estimation, based on the properties of the

estimated waveforms, we generated a hypothesis on their roles and

tested it. Consequently, CWE worked as a hypothesis generator.

Generally speaking, we believe that CWE is a useful tool for data-

driven and hypothesis-generating research. By applying it to

MEG/EEG data during various cognitive stimulus-response tasks,

we can obtain new scientific hypotheses and findings on cognitive

brain functions.
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