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Abstract

The study investigated potential effects of the presentation order of numeric information on retrospective subjective
judgments of descriptive statistics of this information. The studies were theoretically motivated by the assumption in the
naı̈ve sampling model of independence between temporal encoding order of data in long-term memory and retrieval
probability (i.e. as implied by a ’’random sampling’’ from memory metaphor). In Experiment 1, participants experienced
Arabic numbers that varied in distribution shape/variability between the first and the second half of the information
sequence. Results showed no effects of order on judgments of mean, variability or distribution shape. To strengthen the
interpretation of these results, Experiment 2 used a repeated judgment procedure, with an initial judgment occurring prior
to the change in distribution shape of the information half-way through data presentation. The results of Experiment 2 were
in line with those from Experiment 1, and in addition showed that the act of making explicit judgments did not impair
accuracy of later judgments, as would be suggested by an anchoring and insufficient adjustment strategy. Overall, the
results indicated that participants were very responsive to the properties of the data while at the same time being more or
less immune to order effects. The results were interpreted as being in line with the naı̈ve sampling models in which values
are stored as exemplars and sampled randomly from long-term memory.
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Introduction

People often make intuitive statistical judgments from previously

experienced data with little or no information about the upcoming

judgment before any data is presented. A recent framework for

intuitive statistical judgments has suggested that people approach

such judgments as naı̈ve intuitive statisticians [1–5] and that the

generic cognitive process they engage in could be described by the

naı̈ve sampling model (NSM) [4]. The NSM suggests that judgments

of statistical properties are computed on small samples of

observations retrieved form memory at the time of judgment

[1,4], a strategy that resembles lazy algorithms [1,5] (In making the

distinction between lazy and eager algorithms throughout this

paper, we intend to make a qualitative comparison on a larger

scope between these concepts. Thus, the aim is not to test the

performance of any particular implemented algorithm quantita-

tively.) that can be found both in cognitive science [6] and

machine learning [7]. While a lazy strategy affords computational

flexibility in complex situations it requires, for efficiency, that a

sufficiently large portion of undistorted data is accessible from

memory at the time of a judgment. As of yet, little research has

addressed if this is the case for intuitive statistical judgments. In

addition, a lazy strategy requires a minimum of assumptions about

the experienced variable in order to represent statistical properties.

However, few studies have addressed the extent to which people

enter laboratory tasks with assumptions about properties of the

data.

In the following, we first review research concerned with

people’s ability to act as intuitive statisticians for a variety of

statistical properties. The second part of the introduction reviews

evidence suggesting that people use lazy strategies to form intuitive

statistical judgments and research investigating order effects in

judgments of statistical properties. We then present two experi-

ments investigating a) if people sample from all of the experienced

data at the time of a query in a random fashion, or if memory

effects, similar to primacy and recency, influence intuitive statistical

judgments and, b) if people enter our laboratory task with

expectations about the properties of data. Here we take primacy

and recency to mean effects on memory that could be accounted for

by the data being presented either early on or late in a sequence.

Thus, primacy and recency is not used in the perhaps more strict

sense found in research investigating the serial position effect.

Intuitive Judgments of Statistical Properties
To what extent are people able to estimate the statistical

properties of experienced data? The research investigating this

question has mainly focused on the extent to which estimates of

descriptive properties (e.g., central tendency and variability) are

normative. This research has found that while some properties

(e.g., central tendency) are often accurately reported, others (e.g.,

variability) are consistently biased [8,9]. Even though early

research in the field depicted people as able intuitive statisticians

[10] later research has indicated that statistical judgments are
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often informed by inefficient heuristics and subject to biases

[11,12].

The focus of much of the previous research has been on lower

level properties (first and second moment) of the experienced data.

However, using primarily variables encountered in everyday life,

some studies [13–17] have also investigated people’s ability to

estimate higher order properties, like distribution shape. The study

of higher order properties, although to a lesser extent, has also

been conducted in laboratory settings with variables being

experienced by participants on a trial-by-trial basis [1,5,18]. The

results from studies on higher order properties, with respect to

accuracy, are mixed. Some studies report very accurate judgments

[15,18] whereas other studies indicate that factors such as what

information is accessible in the environment [14,16], where people

find themselves in the distribution [3,17], and the properties of the

underlying distribution [1,14] influence the accuracy of judgments.

In addition, researchers have investigated if people can use their

knowledge of higher order properties to make predictions

[5,15,18]. Some of these studies indicate that people can use their

knowledge to make remarkably accurate predictions [15,18] while

others suggest that accuracy is dependent on properties of the

underlying variable [5].

Lazy or Eager: The Cognitive Process of Statistical
Judgments

With a few exceptions [1,5,19], and in contrast to related areas

like categorization learning [20,21], multiple-cue judgments

[22,23], and function learning [24,25], research concerned with

statistical judgment has paid little attention to the cognitive process

underlying the judgment. However, a recent framework for

statistical judgments [2–4], where people are considered naı̈ve

intuitive statisticians, has suggested a general process model for

how some statistical judgments are formed.

The general model is derived from the NSM [4], originally

outlined for intuitive confidence intervals, that describes how

people realize their knowledge of an experienced variable. The

model describes how data is handled during encoding and when

making a judgment. According to the model, all experienced data

is stored in long-memory (LTM) as raw data points (exemplars)

during exposure and no operations are carried out on the data.

When a person is queried for a judgment, a small random sample

of experienced data is retrieved from memory and becomes active

in short-term memory (STM). Finally, calculations of statistical

properties are carried out on the small sample active in STM and

the results are used by the person as a proxy for population

properties [1,4,5]. The model thus describes a lazy cognitive

algorithm operating on experienced data to make intuitive

judgments. The features of the process imply that judgments will

be constrained by several cognitive limitations. First, the size of the

samples on which computations are made will have to be of a size

that can be activated in STM, often estimated to 462 [26].

Second, the information integration will be constrained by the

sequential real-time properties of a controlled judgment process

[4]. Further, because some sample properties (e.g., mean and

proportion) are unbiased under random sampling while others

(e.g., variance and coverage) are not, the resulting judgments will

tend to be accurate for the former but not for the latter type of

property.

The lazy process model outlined above has been contrasted

against an eager process model for statistical judgments [1,5]. An

eager model assumes that summary information is extracted from

the data on-line during exposure to the variable. The process thus

resembles the spontaneous calculation of the intuitive equivalents

of a running mean or variance, updated as each new data point is

being presented.

The distinction between an eager and a lazy cognitive model is

similar to the distinction between ‘‘eager’’ and ‘‘lazy’’ learning

algorithms in artificial intelligence [7] and that between on-line

and retrospective models in cognitive science [27]. Lazy

algorithms, rather than pre-computing statistical summaries for

every conceivable future demand, postpone computations until the

specific need of them is specified by a query. While the pre-

computed summary statistics of eager algorithms may succeed well

in closed and well defined environments, it has been suggested

[6,27] that lazy algorithms, such as exemplar models [21], the

NSM [1,4,5], the Minerva 2 model [28], and the enumeration

model [29], afford greater efficiency and flexibility. It has even

been suggested that models relying on on-line computations of

statistical properties (e.g., cue validities) quickly become compu-

tationally intractable as the complexity of the environment

increases [27]. In addition, previous research has shown that

people at least under specific circumstances may have access to

data after encoding [30], in contrast to what is expected by the

destructive nature of models that extract descriptive parameters

during exposure and then disregard the data, and that estimates of

descriptive parameters seem to be constrained by STM capacity

[31]. Further, statistical judgments such as confidence intervals

[4], point predictions [5], and proportions [1] seem to be

generated by a lazy cognitive algorithm. In sum: both theoretical

arguments and previous empirical findings indicate support for the

idea that people, in general, form statistical judgments by

computations made on small samples drawn post hoc from

memory.

Several research areas assume that people have access to or can

generate estimates of statistical properties, without necessarily

specifying the process by which this is done [32]. In Bayesian

accounts of human cognition [33,34], for example, cognitive

processes are thought to be adaptations to distributions in the

environment and it is reasonable to assume that these environ-

mental distributions need to be represented in memory and made

available at the time of a judgment. Further, research concerned

with binary gambles has seen a recent interest in tasks where

probabilities and outcomes are learned experientially [35], rather

than by explicit top down verbal information [36], thereby

requiring participants to generate statistical judgments from

memory at the time of a query. Also, recent work on social

judgments has suggested that people infer how other people are

doing (e.g., the distribution of income) by sampling data available

in their immediate social environment [14]. Because the use of one

cognitive algorithm over another is likely to enforce boundary

conditions whenever a statistical judgment is made, like in the

examples above, the question of whether statistical judgments are

generated from a lazy or an eager process is thus not exclusively of

interest to the specific area of statistical judgments.

While there is reasonable evidence to support the claim that

people generally construct statistical judgments with a lazy

cognitive algorithm, there are several boundary conditions and

assumptions for a possible lazy process that are yet to be

empirically explored. First, because the lazy model includes raw

data being stored and retrieved from LTM, common memory

effects such as primacy and recency may influence judgments.

Indeed, some previous research has indicated that this might be

the case [31]. In the extant formulation of the NSM all data are

treated equal in sampling, and by this account it thus predicts the

absence of either primacy or recency effects. However, it may well

be the case that this assumption, that human judges have the
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ability to override the common-day memory phenomena of

primacy/recency, is overly optimistic.

Second, a defining feature of eager cognitive algorithms is that

they require assumptions about the experienced variable (e.g., the

distribution shape) in order to store higher order properties [1]. In

contrast, lazy algorithms require a minimum of such assumptions.

Even though previous research has indicated that people enter

some statistical tasks with strong prior assumptions [37,38] it is still

an empirical question if similar assumptions exists for higher order

statistical properties.

Order Effects in Judgments of Statistical Properties
Studies examining effects of presentation order on statistical

judgments are almost entirely missing when it comes to descriptive

statistics of univariate numeric information. In contrast, a number

of studies have examined such effects on judgments of contingency

or covariation between two variables. The reason for the interest

in order effects in this area is the aim to distinguish between

associative and rule based theories [39] of how judgments of this

statistical property are formed. According to rule based accounts,

people encode specific exemplars of each piece of information and

calculate the contingency from these exemplars by applying a

specific rule [39]. According to the associative account, contin-

gency judgments are based on accumulating changes in associative

strength updated on a trial-by-trial basis by connectionist learning

rules. The emphasis in rule-based accounts is thus on higher order

cognitive reasoning like processes, whereas associative accounts

concern lower level conditioning-like processes present in animals

and infants. If judgments are made on basis of all exemplars stored

in memory, as typically in rule based accounts the order in which

the information is presented should have no effect. On the other

account, however, such as connectionist implementations of the

Rescorla-Wagner model [40], fundamental order effects are

predicted, in which the most recent information will have the

largest impact on judgments [41]. Whereas some studies [42] have

obtained such recency effects, others [43,44] have instead found a

primacy effect inconsistent with the Rescorla-Wagner model.

Glautier [45] found a primacy effect, but showed that this effect

could be reversed by requesting judgments by participants in the

midst of the information presentation sequence.

To summarize: There is a shortage of studies on order effects on

descriptive statistics of numeric information. Several studies of

contingency judgments have shown profound order effects at odds

with both rule based and associative accounts, and found strong

effects of whether or not judgments are requested intermixed with

information presentation. The aim of the present study is to

examine if corresponding order effects exist for judgments of

descriptive statistics of numeric information presented sequential-

ly, or whether these are consistent with judgments of an intuitive

statistician who stores, and has access to, all encountered data.

The Present Study
In the present study we conducted two experiments aimed at

addressing two major questions. First, to what extent do people

have access to all data encountered during exposure in subsequent

subjective statistical judgments? Note that by this we do not imply

that all of the data is incorporated in the final judgment but rather

that all of the data is equally available for sampling by the

cognitive algorithm that produces the judgment, irrespective of

presentation order. Put differently, having access to all the data

would be equivalent to randomly sampling from all of the

encountered data at the time of a query while possible memory

effects would imply sampling conditionally on whether the data

was encountered early on (primacy) or late (recency) during

encoding. Second, do people enter our laboratory task with

expectations about the statistical properties of the data?

In both experiments participants experienced a numerical

variable on a trial-by-trial basis. They were later asked to perform

a series of tasks designed to evaluate their knowledge of the

statistical properties of the experienced variable. In Experiment 1

we investigated whether memory effects such as primacy and/or

recency are present for statistical judgments. We designed

Experiment 2 to rule out alternative interpretations of the results

of the first experiment. In addition, the design of Experiment 2

allowed us to evaluate the extent to which participants enter the

laboratory task with expectations about the properties of the data

and whether people have the ability to update their previously

expressed beliefs when the structure of the information suddenly

changes, or if they do anchor on these prior beliefs.

Further, both an eager and a lazy cognitive algorithm

presuppose that participants inform statistical judgments by a

computation of properties on experienced data. It is, however,

possible that some tasks could be solved successfully without such

computations if memory for specific values could be used directly.

To address this possibility, we also included a manipulation, in

both experiments, designed to evaluate whether the observed

responses were due to memory for specific values or if participants

made inferences of statistical properties from the data.

Experiment 1

During learning participants observed 120 uniformly distributed

values. The values were presented in one of three sequential orders

(described below) with markedly different distributions for the first

and last 60 values. The design is illustrated in Figure 1.

Participants were later asked to perform a set of tasks designed

to measure their knowledge of the statistical properties of these

numbers. These tasks, described below, are illustrated in Figure 2.

The experiment was designed to investigate if memory mecha-

nisms influence statistical judgments.

Method
Ethics Statement. In both experiments of the present study

all participants received an information sheet on the study and

provided verbal informed consent before undertaking the study.

The nature of the study was not in any way invasive, or

unpleasant, did not involve deception, part taking was voluntary

and participants were explicitly told that they could abort the

study whenever they wished. In addition, no personal information

was recorded. There was no further documentation of the

informed consent, and such documentation was not a requirement

of the ethic committee. The ethic committee of Uppsala University

approved the research and the consent procedure. In accordance

with the recommendations of the American Psychological

Association, the data from the study are available on request.

Participants. Participants were 48 undergraduate (12 male)

students from Uppsala University (M = 24.5 years, SD = 4.8)

receiving a movie voucher or course credit for participating.

Materials and procedure. The computerized task consisted

of an exposure phase and a test phase. During exposure,

participants observed values described as ‘‘test player ratings of a

fictitious computer game’’. They were told that the ratings were a

random sample of ratings from all test players and that the ratings

were in a 1 to 1000 range. Participants’ task was to ‘‘observe the

ratings carefully in order to answer questions about them at a later

point’’.

Two sets (E and T) of 120 numbers were uniformly sampled

from the interval [1, 1000] with the constraint that each of the
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subintervals [1, 100], [101, 200] … [901, 1000] contained 12

values. One of the sets, E, was presented during exposure while the

other, T, was withheld until the sampling task (see below) of the

test phase. Each of the values in E was shown once during

exposure accompanied by a nonsense player identification code.

Presentation was self-paced but each number remained on the

screen for a minimum of 3 seconds before participants could

proceed. The same sets of values were used for all participants.

A partitioning of E into two subsets (Ea and Eb) of 60 values

defined the three conditions. In the unimodal-bimodal (U-B) and

bimodal-unimodal (B-U) conditions the values of Ea were chosen to

be unimodally distributed (Beta distribution with shape parameters

[2.4, 2.4]). The remaining values, Eb, were then bimodally

distributed, where Eb is the reflection of Ea with respect to a

uniform distribution. Participants in the U-B-condition experi-

enced the Ea set first followed by the Eb set while the order was

reversed in the B-U-condition. In the uniform (UN) condition the

values for Ea and Eb were distributed randomly across order

positions 1–120, with a resulting uniform distribution of values. All

values thus only occurred once. All participants were given an

independent presentation order given the above constraints. The

transition from Ea to Eb was not announced or in any other way

implied in any condition. Participants were randomly assigned to

one of the three conditions with an equal number of participants

(n = 16) in each condition. The test phase included four tasks

described below.

In the identification task, participants chose one of 7 histograms

that ’’best described the distribution of the numbers’’. One graph

was uniform, three were unimodal with decreasing variance and

three were bimodal with increasing variance. An explanation of

the graphs was given prior to their presentation. The explanation

included explicit exemplifications (e.g., ’’A graph which is higher

to the sides than in the middle indicates that most of the values

were either high or low.’’). The graphs were provided without

metric information on the axes.

In the production task, participants assessed how many of the

values from E that fell into ten equally wide intervals ([1, 100],

[101, 200] … [901, 1000]) with frequencies required to sum to

120.

Each of the 8 trials in the sampling task presented participants

with a 566 matrix containing 30 values. Matrices were presented

one at a time and participants were asked to choose 10 values out

of the 30 presented values in each matrix. They were asked to

choose the 10 values from each matrix that ‘‘were the most

representative of the experienced values’’. Four of the matrices

contained values from E (old) and four contained values from T

(new). The values in each matrix were distributed uniformly in [1,

1000]. Prior to the task participants were given explicit details of

how to interpret the instructions. It was explained that the sample

being representative of E meant that it should not be systematically

different from E (i.e., to have the same properties as E) and that

this could occur without any specific values from E being present

in the sample.

In the descriptive task, participants estimated the central tendency

(mean and median) and variability (mean absolute deviation;

MAD) of E. They were given a brief definition of the measures in

terms of an explicit exemplification of its calculation (e.g. ‘‘The

mean for a set of numbers is the sum of the numbers divided by

Figure 1. Illustration of the design of the learning phase of Experiment 1 and 2.
doi:10.1371/journal.pone.0097686.g001
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the count of the numbers. For example, the mean of 4, 8, 12 is 8

because (4+8+12)/3 = 8.’’, ‘‘The median is the middle value in a

list of all values arranged from the lowest to the highest value.’’

Mean absolute deviation was explained as ‘‘The mean of the

distances of each value from their total mean.’’). The order of the

three first tasks was counterbalanced over participants while the

descriptive task was carried out last.

Results
Central tendency and variability. Participants gave esti-

mates of both mean and median. There was no difference in the

accuracy of these estimates and the data were therefore collapsed

to create one measure of central tendency. To investigate both

accuracy and possible bias of estimates of central tendency and

variability we calculated absolute and signed deviation, respec-

tively, between participants’ estimates and the normative value of

each statistic. One outlier was removed from the analyses reported

below. The absolute and signed deviations were calculated as

Des{nsD and es{ns respectively, where es is the participant’s

estimate of the statistic and ns is the normative value of the statistic.

The absolute deviation was entered as dependent variable into a

362 mixed ANOVA with condition (U-B/B-U/UN) as between-

subjects independent variable and measurement type (central

tendency/variability) as within-subjects independent variable. For

all ANOVAs reported below, Levene’s test of homoscedasticity

was performed. In no case did the test indicate violation of this

assumption. The analysis revealed a significant main effect of

measurement type (F(2, 44) = 10.9, p = .002) with better estimates

(for the absolute deviation) of central tendency (M = 78.6,

SD = 46.7) than of variability (M = 119.6, SD = 81.7). Neither the

effect of condition nor the interaction effect was significant (Fs,1).

A corresponding ANOVA for the signed difference investigated a

possible bias in estimates. The significant main effect of

measurement type (F(2, 44) = 50.2, p,.001) is illustrated in

Figure 3, which shows that central tendency is slightly overesti-

mated while variability is underestimated to a large extent. Neither

the effect of condition (B-U: M = 242.4, SD = 117.6; U-B: M = 2

60.1, SD = 110.5; UN: M = 210.6, SD = 108.0) nor the interaction

reached significance (both ps ..11). With the current design, with

symmetric distributions, the average mean presented to partici-

pants is necessarily constant in the first and second half of the data.

However, since participants received individual random sequences

of numbers it is possible to check for order effects on mean

estimates by examining ratings compared to the means actually

occurring early on/late in the sequence. We performed this

analysis on the first/last quarter (30 trials) for each participant.

Because we were primarily interested in the impact of data

presented early on/late in the sequence we did not include the

intermediate data in the analysis. The absolute error based on the

first/last/total mean experienced by participants was entered into

a 363 mixed ANOVA with condition as between-subjects variable

and deviation from first/last/total mean as within-subjects

variable. There were no significant effects, and errors were slightly

larger for the first/last quarter than for the total mean, thus

suggesting neither primacy nor recency effects. This partitioning of

stimuli into first/second quarter is in some sense arbitrary. We

therefore performed corresponding analyses for various other

partitions with no signs of primacy or recency effects.

Performance measure for knowledge of distribution

shape. To evaluate participants’ knowledge of the distribution

shape of E we calculated a shape sensitive index (Shape Index; SI) for

each of the three tasks. With the range [1, 1000] divided in to 10

Figure 2. Illustration of the tasks used in the test phase of Experiment 1 and 2.
doi:10.1371/journal.pone.0097686.g002
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intervals [1, 100], [101, 200] … [901, 1000] numbered according

to 1…i…10, SI is given by

SI~
X2

i~1

pi{xið Þz
X7

i~4

xi{pið Þz
X10

i~9

pi{xið Þ, ð1Þ

where xi is the participant’s judgment of the proportion of the

distribution in the i:th interval and pi is the normative proportion

that had been observed by participants (i.e., because the

underlying distribution is uniform, values within each of ten

intervals occur with proportion .1). The 301–400 and 801–900

intervals are excluded in the formula because these intervals are

uninformative with respect to the unimodal/bimodal distinction of

interest. In the production task xi is the frequency given explicitly

by the participant divided by 120. In the identification task xi was

given by the corresponding values calculated for the chosen graph

(because each graph depicted a distribution through a histogram).

Finally, in the sample task, values chosen by the participant were

categorized into the ten intervals and the proportion of values in

each interval gave xi. Thus, for all tasks SI is both a measure of the

degree to which estimates deviate from the underlying uniform

distribution and sensitive to the shape of the estimated distribution.

SI = 0 will indicate that judgments are uniform while SI.0 and

SI,0 will indicate an estimated ‘‘subjective’’ distribution that is

unimodal and bimodal respectively. SI was defined in line with our

goal to investigate systematic biases towards unimodality/bimo-

dality. This measure cannot capture strongly skewed distributions.

In analyzing data we have not found such tendencies towards

skewed distributions. We also performed calculations on a mean

absolute error defined as the corresponding unsystematic devia-

tions. Since this measure did not add much new information we

have refrained from presenting these analyses not to overburden

the exposition.

Estimates of distribution shape. The influence of presen-

tation order and task format on accuracy was investigated by

entering SI into a 363 mixed ANOVA with condition (U-B/B-U/

UN) as between-subjects independent variable and task (produc-

tion/identification/sample) as within-subjects independent vari-

able. The significant main effect of task (F(2,90) = 5.11, p = .008),

illustrated in Figure 4, indicated higher SI with the identification

task (M = .12, SD = .34) than with the production (M = .07,

SD = .2) and the sample (M = .01, SD = 2.59) tasks. A Scheffé’s

post hoc test showed that only the difference between performance

in the identification and sample task reached significance. Neither

the main effect of condition nor the interaction reached

significance (Fs,1). Figure 4 reveals a bias towards unimodality

both in the identification and production tasks while there is no

such bias in the sample task. Single sample t-tests showed that this

bias was statistically significant (deviation from zero) in both these

conditions (p,.05).

Sampling from Memory. Even though the instructions to

the sampling task asked participants to disregard the recognition of

specific values it is possible that they none the less used this

information, when possible, to solve the task. The accurate

performance in the sampling task may thus be due to specific

memory of the values in E rather than by knowledge of the

properties of E. To investigate this possibility a SI was calculated

for the new (T) and old (E) values separately and entered into a

362 mixed ANOVA with condition (U-B/B-U/UN) as between-

subjects independent variable and matrix type (new/old) as within-

subjects independent variable. The analysis showed that neither

the main effect of matrix type (F(1,45) = 1.61, p = .21; Old:

M = .02, SD = .27; New: M = 2.01, SD = .27) nor the main effect

of condition or the interaction effect (both Fs,1) reached

significance (with the current design have a power of .99 of

detecting a medium effect size for the new/old within-subjects

main effect). This indicates that performance in the sample task

was not related to the specific values seen during exposure.

Figure 3. Signed deviation of estimates of Central tendency
and Variability in Experiment 1. Dashed line indicates unbiased
estimates. Vertical bars denote 95%-confidence intervals.
doi:10.1371/journal.pone.0097686.g003

Figure 4. Performance in Experiment 1 in the three tasks given
by the Shape Index. Dashed line indicates unbiased (uniform)
estimates. Vertical bars denote 95%-confidence intervals.
doi:10.1371/journal.pone.0097686.g004

Are All Data Created Equal?

PLOS ONE | www.plosone.org 6 May 2014 | Volume 9 | Issue 5 | e97686



Discussion
In Experiment 1 we investigated if common memory effects

influenced statistical judgments. We found no effect of the order in

which the data was presented in any of the three tasks. This

evidence seems to indicate that participants have access to all of

the data at the time of a judgment and that the samples used to

estimate statistical properties are not drawn conditionally on when

the data is presented. A caveat to this conclusion is that our

participants might not have been responsive to the underlying

distribution at all but rather gave uniform estimates as the result of

some bias or default strategy under ignorance. In Experiment 2 we

addressed this possibility.

The results of Experiment 1 replicated previous results [1] with

better performance in the production than in the identification

task. Those results were further extended by showing that a task

format (the sampling task) that is analogous to the suggested

cognitive process (sampling from memory), will allow participants

to perform at a higher level. It might be argued that the better

performance in the sampling tasks is the result of a specific

memory of the values shown in the exposure phase. However, the

lack of old-new differences makes this interpretation less probable.

In both the identification task and the production task there was

a tendency for participants’ judgments to be biased towards

unimodality. Previous research [1,5] has argued that this is a

consequence of a lazy cognitive process. However, the results

might also arise if participants enter the task with a prior

assumption that the data will be unimodally distributed. A second

objective of Experiment 2 was to distinguish between these two

possibilities. The results for the estimates of central tendency and

variability indicated no differences between the presentation

orders. However, while estimates of central tendency were fairly

accurate (although slightly overestimated) variability was system-

atically and strongly underestimated. This is consistent both with

previous findings [1,8] and with what could be expected from a

lazy cognitive algorithm.

Finally, as evident from the area of contingency judgments,

having participants make judgments half-way through the

observation phase sometimes has profound effects on primacy/

recency shown in subsequent judgments. In Experiment 2 we were

able to investigate if similar effects would appear for judgments of

descriptive properties.

Experiment 2

Experiment 1 indicated no traces whatsoever of memory effects

on statistical judgments. The lack of effect might, however, be the

result of insensitivity rather than responsivity to the underlying

distribution. In Experiment 2 we aimed at distinguishing between

these possibilities by interrupting the exposure phase with a test

(the production test) to investigate if participants update their

knowledge of the distributional properties of the experienced data.

In addition to answering this question the design of Experiment 2

allowed us to evaluate the degree to which participants enter the

task with any expectation of the distributional properties of the

presented stimuli. Experiment 2 enabled us to examine whether or

not such effects would be elicited by repeated judgments. It may,

for example, be the case that people use their initial judgments as

an anchoring hypothesis about the descriptive statistic, which is

then not sufficiently adjusted by later information, resulting in a

primacy effect. The results of an experiment with judgments of

descriptive statistics may turn out in different ways, all with distinct

interpretations; A) Initial and final judgments turn out similar,

with uniform ratings in all conditions. This would show that the

participants are in fact poor naı̈ve statisticians, and that the overall

uniform pattern is an effect of a bias in presence of ignorance. B)

Initial judgments may correspond well to initial data, whereas final

judgments converge slightly, but are biased towards the initial

judgments. This would show an anchoring effect of making initial

judgments, but sensitivity to data. C) Initial judgments may be

separated, but fully converge on uniformity in the final judgments.

This pattern of data would indicate a high performance level in the

estimates. Participants would be both sensitive to data and able to

update initial beliefs in view of changing information.

Method
Participants. Participants were 42 undergraduate (15 male)

students from Uppsala University (M = 23.1 years, SD = 6.7)

receiving a movie voucher or course credits for participating.

Materials and procedure. Experiment 2 adopted the same

design, materials, and procedure as Experiment 1 with one minor

change. In Experiment 2 the exposure phase was interrupted after

60 values with a test (production task) after which participants

experienced the remaining 60 values. Prior to the final test, after

120 presented values, participants were explicitly instructed to

base their judgments on all of the 120 experienced values.

Participants were randomly assigned to one of the three conditions

with an equal number of participants (n = 14) in each condition.

Results
Intermediate vs. Final test. As in Experiment 1, SI was

used as performance measure for knowledge of distribution shape.

We compared participants performance in the production task in

the intermediate and final test by entering SI as dependent

variable into a 362 mixed ANOVA with condition (U-B/B-U/

UN) as independent between-subjects variable and test time

(intermediate/final) as independent within-subjects variable. The

result, illustrated in Figure 5, indicated a significant main effect of

condition (F(2,39) = 43.5, p,.001) and a significant condition by

test time interaction (F(2,39) = 69.3, p,.001). As is evident from

the figure, the interaction is due to participants in all three

conditions reproducing a distribution consistent with the experi-

enced data, both at the intermediate and final test. The main effect

of test time was not significant (F,1).

Central tendency and variability. The accuracy and

possible biases of estimates of central tendency and variability

were investigated by entering the absolute and signed deviations

respectively into two 362 mixed ANOVAs with condition (U-B/

B-U/UN) as between-subjects independent variable and measure-

ment type (central tendency/variability) as within-subjects inde-

pendent variable. For the absolute deviation only the main effect

of measurement type reached significance (F(1,37) = 21.0, p,.001,

both other Fs,1) with more accurate estimates of central tendency

(M = 43.8, SD = 50.0) than of variability (M = 109.5, SD = 83.1).

With regards to a bias the analysis revealed a significant effect of

task (F(1,37) = 23.7, p,.001, both other Fs,1). As is evident from

Figure 6 there is no bias for estimates of central tendency while

variability is underestimated.

Estimates of distribution shape. Performance in the final

test over the three tasks was compared by performing the same

analysis as in Experiment 1. The analysis showed a significant

main effect of condition, U-B/B-U/UN, (F(2,39) = 4.0, p = .027)

with a unimodality bias in the UN (M = .12, SD = .23) condition,

but only a slight such tendency in the B-U (M = .02, SD = .2)

condition, and a negative SI in the U-B (M = 2.05, SD = .23)

condition. A Sheffé post hoc test indicated that the UN/U-B

difference was the only pairwise difference that reached signifi-

cance. Neither the main effect of task (Identification: M = .03,

SD = .3; Production: M = .04, SD = .14; Sample: M = .03, SD = .22)
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nor the interaction was significant (both ps..32). Single sample t-

tests revealed that only the unimodality bias in the uniform

condition was statistically different from zero (p,.05).

Sampling from memory. As in Experiment 1 we compared

old versus new values in the sampling task. A SI was calculated for

the new (T) and old (E) values separately and entered into a 362

mixed ANOVA with condition (U-B/B-U/UN) as between-

subjects independent variable and matrix type (new/old) as

within-subjects independent variable. The analysis showed no

significant old/new effect (F(1,39) = 0.05, p = .83; Old: M = .025,

SD = .23; New: M = .03, SD = .22) and no interaction (F,1)

indicating that performance in the sample task was not related to

the specific values seen during exposure. There was, however, a

main effect of condition (F(2,39) = 3.59, p = .04) with a more

positive deviation from the normative distribution in the UN

(M = .14, SD = .27) than in the B-U (M = 2.01, SD = .13) and U-B

(M = 2.05, SD = .21) conditions.

Individual Differences. For all individuals in both experi-

ments we obtained measures of various potentially interesting

cognitive abilities. We measured general cognitive ability (Raven’s

matrices), graph literacy [46], long-term memory for numbers (free

recall), and working memory (digit span). Because no effects of the

experimentally manipulated independent variables were found in

either study, we collapsed all data from both studies in order to

increase power when undertaking an individual differences

analysis. We entered the four measures of abilities above as

predictors in multiple regression analyses with the aim to predict

dependent variables of the experiments. Generally, the regression

weights were low and non-significant. However, we found two

interesting correlations. With the SI measure obtained from the

graph task as dependent variable, graph literacy was a significant

predictor (b = 2.23, t(79) = 2.05, p,.05). This indicates that a bias

towards unimodality obtained with this measure is larger for

participants who perform less well in interpreting graphs. With the

difference between old and new stimuli in the sample task (of the

mean absolute error between the normative and chosen stimuli) as

dependent variable long-term memory for numbers was a

significant predictor (b = .27, t(79) = 2.4, p,.05.). This suggests

that participants with good memory for numbers can capitalize on

this ability and perform better for previously presented stimuli

than for new stimuli in the sample task.

Discussion
Experiment 2 investigated two questions. First, Experiment 1

indicated little influence of memorial effects but could not rule out

that this was the result of insensitivity to the underlying

distribution. Experiment 2 explored this possibility by introducing

an intermediate test. The results, illustrated in Figure 5, suggest

both that our participants are sensitive to the underlying

distribution and that they are efficient in incorporating new data

as it is presented. It is possible that the intermediate test makes the

participants more aware of the purpose of the data presentation

and that they thereby will produce a more accurate representation

of the underlying distribution. However, performance on the final

test was very similar to Experiment 1, indicating only a small effect

by the introduction of an intermediate test.

Second, Experiment 2 investigated if participants enter our task

with expectations about the properties of the presented data.

Previous research has indicated that such possible expectations are

likely to be unimodal [47]. As is evident from the results of the

intermediate test, illustrated in Figure 5, participants are clearly

data-driven, but there is a bias towards unimodality in the uniform

condition. However, in terms of prior expectations our partici-

pants seem to have very weak priors concerning the presented

data.

In contrast to Experiment 1 we found no effect of task in

Experiment 2. Previous research has suggested that being engaged

in the production format prior to performing the identification task

boosts performance in the latter by allowing for a more abstract

representation being formed [1]. It is possible that the lack of effect

is due to the introduction of the intermediate test. This would need

Figure 5. Performance in Experiment 2 in the Intermediate and
Final test (production task) in the three conditions. Dashed line
indicates unbiased (uniform) estimates. Vertical bars denote 95%-
confidence intervals.
doi:10.1371/journal.pone.0097686.g005

Figure 6. Signed deviation of estimates of Central tendency
and Variability in Experiment 2. Dashed line indicates unbiased
estimates. Vertical bars denote 95%-confidence intervals.
doi:10.1371/journal.pone.0097686.g006
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to be explored in future research. There was, however, an effect of

condition with participants in the uniform condition performing

slightly worse than those in the other two conditions. This was due

to the tendency for a unimodality bias in the uniform condition

while no such bias was observed in the other two conditions.

Experiment 2 further replicated two of the findings from

Experiment 1. First, while estimates of central tendency were fairly

accurate and unbiased, estimates of variability were inaccurate

and underestimated the normative variability. Second, there was

no old-new difference in the sample task indicating that the

observed results are the product of an inference process rather

than specific memory of values seen during exposure.

General Discussion

The results of the first experiment showed that our intuitive

statisticians were remarkably resistant to memory mechanisms of

either primacy or recency effects. Perhaps most remarkable is the

lack of effects for variability ratings, since this variable undergoes a

dramatic change from the first to the second half of the

information sequence in the present design. The results of this

experiment could, however, alternatively have been due to a

response bias towards uniformity in absence of learning. Previous

research [1,5] has indicated a decent level of performance of

participants under similar conditions, which makes this alternative

interpretation less plausible. To rule out this entirely, however, in

Experiment 2 we measured participants’ meta-knowledge about

the distributions half-way through the information sequence when

the different experimental groups had observed extremely different

conditions (i.e., either bimodal, uniform or unimodal). The results

of these initial ratings showed that participants were far from

ignorant, but diverged in their ratings in the direction and

approximate magnitude suggested by the normative Shape Index

associated with the experienced numeric information. As for the

final judgments, again data showed that participants did not ’’get

stuck’’ in hypotheses guided by their initial observations, but

rapidly converged towards the uniform normative distribution of

the entire data set.

A lazy cognitive algorithm would be expected to perform well in

a changing environment only when there is little temporal

dependency in the presented data and no systematic memory

effects. The results of both experiments indicated no systematic

memory effects, which is consistent with the idea that people rely

on memory processes analogous to the sampling from LTM in the

NSM, in which the sample is modeled independent of temporal

sequence. The lack of both order effects and effects of making

explicit judgments during stimulus observation is in contrast with

observations from the contingency learning paradigm, which

suggest that other processes, possibly more complex or associative

may be operating when one is trying to estimate whether it is

possible to predict variable y from the changes in variable x. It

would be interesting to further investigate the nature of these

differences.

In the present study participants experienced 120 values on a

trial-by-trial basis and were required to report their knowledge of

the properties of these values shortly after. While we found no

memory effects it is possible, however, that a larger set of values or

a longer retention time might introduce such effects. It is an

interesting venue for future research to investigate the limit at

which this immunity to memory effects breaks down and thereby

investigate the capacity of the lazy cognitive algorithm. Whenever

observing a lack of effect, this may of course also depend on a lack

of statistical power to reject the null hypothesis. As for the within-

subjects tests reported above this power as reported above is high.

For the main between subjects comparison the power is

approximately .7 to reveal a large effect (RMSSE = .5). There

may be a smaller effect that we fail to detect with the limited

sample size we rely on. However, there are no trends in the data

suggesting that our results are due to limited statistical power. In

addition, we replicate this finding over two experiments. Never-

theless, it would be nice to replicate this finding in future research

with higher power for the between-conditions comparison.

In the first experiment, the subjective shape index was slightly,

but statistically significantly biased towards unimodality (i.e.,

positive). In the second experiment there was a unimodality bias

only in the uniform condition. The reasons for this difference is

unclear, but we have previously found the unimodality bias to be

elusive and sensitive to changes in task characteristics [1,5]. One

possibility is that the initial frequency judgments may make

participants more data driven when a more extreme (i.e., the

bimodal-unimodal and unimodal-bimodal conditions) distribution

precedes the judgment rather than when the judgment is made

successive to a probably less psychologically ‘‘salient’’ uniform

distribution. Although this explanation is clearly speculative, we

have previously found [1] that having people make frequency

judgments of extreme distributions may indeed enhance perfor-

mance in subsequent statistical judgments. Although temporal

sequence effects do not seem to affect the processes, there may well

be other effects such as availability that will distort sampling from

long-term memory. Future studies should investigate such effects.

To sum up, we conclude from the results of the present study that

there is no evidence for a dependency between temporal encoding

time of data in long-term memory and subsequent judgments.

This is in line with a ‘‘random sampling’’ metaphor of retrieval of

exemplars for judgments by the naı̈ve intuitive statistician. Overall,

participants performed quite well and apparently updated their

judgments in a seemingly rational manner.
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33. Oaksford M, Chater N (2009) Précis of Bayesian rationality: The probabilistic

approach to human reasoning. Behav Brain Sci 32: 69–120.
34. Tenenbaum JB, Kemp C, Griffiths TL, Goodman ND (2011) How to grow a

mind: Statistics, structure, and abstraction. Science 331: 1279–1285.

35. Hertwig R, Barron G, Weber EU, Erev I (2004) Decisions from experience and
the effect of rare events in risky choice. Psychol Sci 15: 534–539. doi:10.1111/

j.0956-7976.2004.00715.x
36. Kahneman D, Tversky A (1979) Prospect theory: An analysis of decision under

risk. Econometrica 47: 263–291.

37. Brehmer B (1974) Hypotheses about relations between scaled variables in the
learning of probabilistic inference tasks. Organ Behav Hum Perform 11: 1–27.

38. Kalish ML, Griffiths TL, Lewandowsky S (2007) Iterated learning: Intergen-
erational knowledge transmission reveals inductive biases. Psychon Bull Rev 14:

288–294.
39. Allan LG (1993) Human contingency judgments: Rule based or associative?

Psychol Bull 114: 435–448. doi:10.1037/0033-2909.114.3.435

40. Rescorla RA, Wagner AR (1972) A theory of Pavlovian conditioning: Variations
in the effectiveness of reinforcement and nonreinforcement. In: Black AH,

Prokasy WF, editors. Classical Conditioning II Current Research and Theory.
Appleton-Century-Crofts, Vol. 21. pp. 64–99.

41. Hogarth RM, Einhorn HJ (1992) Order effects in belief updating: The belief-

adjustment model. Cogn Psychol 24: 1–55.
42. Lopez FJ, Shanks DR, Almaraz J, Fernandez P (1998) Effects of Trial Order on

Contingency Judgments: A Comparison of Associative and Probabilistic
Contrast Accounts. 24: 672–694.

43. Dennis MJ (2001) Primacy in causal strength judgments: The effect of initial
evidence for generative versus inhibitory relationships. 29: 152–164.

44. Yates JF, Curley SP (1986) Contingency judgment: Primacy effects and attention

decrement. Acta Psychol 62: 293–302.
45. Glautier S (2008) Recency and primacy in causal judgments: effects of probe

question and context switch on latent inhibition and extinction. Mem Cognit 36:
1087–1093. doi:10.3758/MC.36.6.1087

46. Galesic M, Garcia-Retamero R (2010) Graph literacy: A cross-cultural

comparison. Med Decis Mak 31: 444–457. doi:10.1177/0272989X10373805
47. Flannagan MJ, Fried LS, Holyoak KJ (1986) Distributional expectations and the

induction of category structure. J Exp Psychol Learn Mem Cogn 12: 241–256.

Are All Data Created Equal?

PLOS ONE | www.plosone.org 10 May 2014 | Volume 9 | Issue 5 | e97686


