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Abstract

In the area of omics profiling in toxicology, i.e. toxicogenomics, characteristic molecular profiles have previously been
incorporated into prediction models for early assessment of a carcinogenic potential and mechanism-based classification of
compounds. Traditionally, the biomarker signatures used for model construction were derived from individual high-
throughput techniques, such as microarrays designed for monitoring global mRNA expression. In this study, we built
predictive models by integrating omics data across complementary microarray platforms and introduced new concepts for
modeling of pathway alterations and molecular interactions between multiple biological layers. We trained and evaluated
diverse machine learning-based models, differing in the incorporated features and learning algorithms on a cross-omics
dataset encompassing mRNA, miRNA, and protein expression profiles obtained from rat liver samples treated with a
heterogeneous set of substances. Most of these compounds could be unambiguously classified as genotoxic carcinogens,
non-genotoxic carcinogens, or non-hepatocarcinogens based on evidence from published studies. Since mixed
characteristics were reported for the compounds Cyproterone acetate, Thioacetamide, and Wy-14643, we reclassified
these compounds as either genotoxic or non-genotoxic carcinogens based on their molecular profiles. Evaluating our
toxicogenomics models in a repeated external cross-validation procedure, we demonstrated that the prediction accuracy of
our models could be increased by joining the biomarker signatures across multiple biological layers and by adding complex
features derived from cross-platform integration of the omics data. Furthermore, we found that adding these features
resulted in a better separation of the compound classes and a more confident reclassification of the three undefined
compounds as non-genotoxic carcinogens.
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Introduction

The current gold standard for evaluation of the carcinogenic

potential of newly developed drugs and other chemical com-

pounds is the 2-year chronic rodent bioassay. This assay requires

daily administration of the tested compound to rats or mice of both

sexes and close survey of the animals for signs of toxicity and

neoplastic lesions (see OECD Test Guideline 451). During

preclinical safety assessment, substances showing a carcinogenic

potential at a late stage may lead to substantial losses for the

pharmaceutical and chemical industry. A mechanistic distinction is

made between genotoxic carcinogens (GCs), which form DNA

adducts and cause direct DNA damage, as opposed to non-

genotoxic carcinogens (NGCs), for which a wide variety of

alternative hepatocarcinogenic mechanisms have been described

[1–3]. While GCs can be identified early by means of in vitro

genotoxicity assays (e.g., Ames test), no short-term assay exists for

the detection of NGCs.

Several groups have reported application of toxicogenomics

methods for prediction of the outcome of chronic bioassays based

on gene expression profiles compiled from short-term in vivo

studies. Most studies published in this field focused on mRNA

expression profiling and employed machine learning algorithms or

statistical methods to predict the carcinogenic class of compounds

based on characteristic expression patterns, called signatures [4,5].

The classification outcomes may then be used to prioritize

environmental and/or industrial chemicals for further exploration

in chronic carcinogenicity bioassays [6]. Furthermore, the

toxicogenomics approach can deliver complementary mechanistic

insights, as specific molecular profiles can be associated with

toxicological phenotypes and adverse effects observed in animal

studies [5]. Along these lines, Ellinger-Ziegelbauer et al. revealed

characteristic changes in the expression of mechanistically related
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genes, which allowed for discriminating GCs from NGCs in male

Wistar-Hanover rats [7]. While a strong DNA damage response

was observed upon GC treatment, the NGC- induced genes were

indicative of increased cell cycle progression [7]. In a follow-up

study, the authors constructed prediction models based on Support

Vector Machine (SVM) classifiers trained on a larger set of

compounds and thereby demonstrated the potential of toxicoge-

nomics approaches for the early assessment of the carcinogenic

risk [8]. More recently, Uehara et al. proposed two mRNA

signatures for the detection of certain classes of NGCs based on

Affymetrix gene expression data from Sprague-Dawley rat liver

samples, which are deposited at the large toxicogenomics database

TG-GATEs [9]. While the first signature captured transcriptional

changes present upon single NGC exposure after 24 hours [10],

the second one contains probe sets which are specifically

deregulated after 4 weeks of repeated NGC administration [11].

Furthermore, an approach using environmental chemicals found

that carcinogens in general can be detected with higher specificity

if longer dosing periods are used in animal studies [6,11]. These

findings suggest that the exact compound class to be predicted and

the time point(s) at which expression profiles are generated should

be well defined and considered together.

In addition to global mRNA profiling data, miRNA, and

protein expression data have previously been generated for

toxicogenomics applications [12,13]. While microarrays and

RNA-seq are typically used for transcriptional profiling, shotgun

proteomics is commonly employed for global protein profiling

[14]. A review of the state-of-the-art high-throughput techniques

for holistic molecular profiling including references to published

applications in the field of toxicogenomics was recently provided

by Khan et al.[14].

In general the ability to predict a compound’s carcinogenic

potential based on short-term expression profiles would be a clear

step forward concerning reduction of time, animals, and monetary

requirements in chemical and drug development. Building on

published toxicogenomics studies that mostly focused on mRNA

expression and used individual genes as predictive features, the

approaches presented here introduce two novel concepts: first, the

integration of omics data across platforms that interrogate different

biological layers (mRNA, miRNA, and protein expression) and

second, the abstraction from individual signature genes to higher-

order levels, such as pathway enrichments or molecular interac-

tions. This holistic approach, which integrates multiple global

omics approaches, was currently also proposed by Khan et al.

[14].The classification performance of our novel methodologies

was evaluated on a dataset comprising mRNA, miRNA, and

protein expression profiles from liver samples of male Wistar rats

exposed to GCs, NGCs, or non-hepatocarcinogens (NCs) for up to

14 days. In a cross-validation experiment, we demonstrate that the

predictive power of traditional mRNA signatures can be increased

by adding complementary omics-based features obtained from

profiling other molecular levels. We show that the classification

performance can be further improved by additionally providing

the prediction models with complex features derived from

integrated analyses of multi-level omics data.

Methods

Ethics statement
The experimental protocol was reviewed and approved by the

Institutional Animal Care and Use Committee (IACUC) of the

Institute of Toxicology, Bayer, Stilwell, KS, U.S.A, for compliance

with the Federal Animal Welfare Act (1988): 7 U.S.C.2131 et seq.

as well as the National Research Council’s (NRC) Guide for the

Care and Use of Laboratory Animals (National Academy Press,

1996). General clinical observations, including observations for

moribundity and mortality, were performed at least daily to

monitor the general overall health status of the animals and to

minimize suffering. For necropsy, the animals were anesthetized in

a CO2 chamber and blood was drawn by cardiac puncture.

Finally, animals were exsanguinated by cutting the diaphragm.

Animal study
Male Wistar Hanover rats (Crl:WI[Gl/BRL/Han]IGS BR)

from Charles River Laboratories, Inc. (Raleigh, NC) were

maintained on certified rodent chow (Purina Mills Certified

Rodent Diet 5200) ad libitum in individual suspended stainless

steel wire-mesh cages. The animals were kept under controlled

temperature (18 to 26uC), humidity (30 to 70%), and lighting (12 h

light – dark cycle) and were acclimated for a minimum of 6 days. 8

to 10 week old animals were assigned to dose groups (5 rats/group)

by weight using a weight stratification-based computer program.

Substances were administered by gastric gavage for up to 14 days

(in a volume of 5 ml/kg body weight/day) based on the group

mean weekly body weight for each dose group. Test substances

were suspended (W/W) in either corn oil, or a 0.5% (W/V)

Carboxymethyl Cellulose (CMC)/DI water preparation (5 g

CMC/1 liter DI water). To maintain a homogenous suspension

during dosing, a magnetic stir-plate was used if needed.

Dimethylnitrosamine (Sigma, St. Louis, MO; CAS 62-75-9; purity

.98%; 4 mg/kg/d), C.I. Direct Black (Chlorazol Black, Sigma,

St. Louis, MO; CAS 1937-37-7; purity 29% carbon, 146 mg/kg/

d), and Cyproterone acetate (Sigma, St. Louis, MO; CAS 427-51-

0, purity 97.3%, 100 mg/kg/d) were prepared using corn oil as

vehicle. Thioacetamide (Sigma, St. Louis, MO; CAS 62-55-5,

purity 99.2%, 19.2 mg/kg/d), Wy-14643 (TCI America, Portland,

OR; CAS 50892-23-4; purity 100%; 60 mg/kg/d), Phenobarbital

(Sigma, St. Louis, MO; CAS 50-06-6, purity .99%, 80 mg/kg/

d), Piperonylbutoxide (Sigma, St. Louis, MO; CAS 51-03-6; purity

88.5%; 1200 mg/kg/d), Dehydroepiandrosterone (Sigma, St.

Louis, MO; CAS 53-43-0, purity 100%, 600 mg/kg/d), Acet-

amide (Sigma, St. Louis, MO; CAS 60-35-5, purity 99%,

3000 mg/kg/d), Methapyrilene hydrochloride (Sigma, St. Louis,

MO; CAS 135-23-9; purity .99%; 60 mg/kg/d), Methylcarba-

mate (Sigma, St. Louis, MO; CAS 598-55-0, purity 99.2%,

400 mg/kg/d), Diethylstilbestrol (Sigma, St. Louis, MO; CAS 56-

53-1; purity 99%; 10 mg/kg/d), Ethionine (Sigma, St. Louis, MO;

CAS 67-21-0; purity .99%; 200 mg/kg/d), Cefuroxime (Sigma,

St. Louis, MO; CAS 55268-75-2; purity not provided%; 250 mg/

kg/d), and Nifedipine (Sigma, St. Louis, MO; 21829-25-4; purity

99%; 3 mg/kg/d) were dosed using Carboxymethyl Cellulose as

vehicle. Diethylstilbestrol and Piperonylbutoxide were adminis-

tered for 1, 3, and 7 days. All other compounds were dosed for 1,

3, 7, and 14 days. Time points selected for evaluation in this report

are listed in Table 1. The rationale for dose selection was based on

those reported to induce liver tumors in the two-year rat bioassay

[8]. From each treatment group three animals that showed at least

some changes in the liver as observed by histopathological

examination were selected for microarray analysis [8]. Time-

matched control groups of equal size treated with the correspond-

ing vehicles methylcellulose (MC) or corn oil (CO), served as a

reference to determine the changes in gene expression upon

treatment.

Messenger-RNA expression profiling
To monitor global changes in mRNA expression, biotin-labeled

cRNA samples were prepared with a starting amount of 5 mg of

total RNA according to the manufacturer’s instructions (Affyme-

Cross-Platform Toxicogenomics for Cancer Risk Assessment in Rat Liver
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trix, USA; GeneChip Expression Analysis 701194 Rev.1) and

hybridized on Affymetrix GeneChip RAE230A arrays. Fluores-

cent images of the GeneChips were captured with the Affymetrix

GeneChip Scanner 3000. Raw data image files (DAT) were

converted into CEL files using Affymetrix Microarray Suite (MAS)

5.0 in which the scan data from the 36 pixels per oligo set are

summarized as one intensity value. The RAE230A array used in

this study contains 15.866 probe sets, corresponding to approx.

5399 annotated rat genes and 10467 expressed-sequence tags

(EST).

For a complete description of the experimental protocol the

reader is referred to a former publication from Ellinger-

Ziegelbauer et al. [8]. The quality of the raw data was assessed

based on diverse plots and statistics implemented in the package

arrayQualityMetrics for R/Bioconductor [15,16]. No experimental

problems were detected and all chips were found to have sufficient

quality. Background correction, normalization between arrays,

and probe summarization were performed based on the Robust

Multi-chip Average (RMA) technique implemented in the affy

package for R/Bioconductor.

Micro-RNA expression profiling
100 ng total RNA was end-labeled using the Agilent miRNA

labeling kit (Agilent p/n 5190–0456). End-labeled miRNA

samples were purified using Qiagen PCR clean up columns.

Labeled miRNA samples were hybridized according to the Agilent

miRNA Microarray System with miRNA Complete Labeling and

Hyb Kit Protocol G4170-90011 V2.2 October 2009 using

reagents contained in the Agilent miRNA labeling kit. Prior to

array hybridization, hybridization mixtures were denatured at

100uC for 5 minutes. Hybridization was carried out at 20 RPM at

a temperature of 55uC for 20 hours before washing in Agilent

Gene Expression Wash Buffer 1 and Agilent Gene Expression

Wash Buffer 2 (Agilent p/n 5188–5327). Hybridization, scanning,

and image analysis were performed using the Agilent DNA

Microarray Scanner equipped with extended dynamic range

(XDR) software according to the Agilent miRNA Microarray

System with miRNA Complete Labeling and Hyb Kit Protocol

G4170–90011 V2.2 October 2009. Agilent Feature Extraction

Software v10.7 was used for data extraction from raw microarray

image files.

As previously done for the mRNA expression data, we ensured

sufficient quality of the raw data by performing quality checks

implemented in the R library arrayQualityMetrics, which supports a

wide variety of microarray platforms [15]. In order to compensate

for experimental artifacts and variation between arrays, the raw

data was preprocessed using a variant of the RMA algorithm that

was specifically implemented for Agilent miRNA microarrays by

Lopez-Romero et al. [17]. The RMA implementation from the

AgiMicroRna library for R/Bioconductor was used without the

initial background correction step, as recommended by Lopez-

Romero et al., who recently demonstrated that this normalization

technique facilitates a more accurate estimation of miRNA

expression levels than the method suggested by the array

manufacturer [18]. Oligos that were not expressed in any of the

profiled samples were not considered in further analysis steps. In

order to link miRNAs to global gene expression, putative

regulatory interactions were inferred between miRNAs and

experimentally confirmed and predicted target mRNAs. For this

purpose, a non-redundant set of validated miRNA/mRNA

interactions was compiled by combining information from the

databases TarBase v5.0c [19], miRTarBase v2.4 [20], and

miRecords v3 [21]. Predicted miRNA targets were collected with

the miRNA target prediction tools ElMMo v5 [22], DIANA-

microT v4.0 [23], and TargetScan v5.2 [24].

Protein expression profiling
Protein expression profiling was performed using reverse-phase

protein microarrays (RPPAs) on the ZeptoMARK assay platform

(Bayer Technology Services, Leverkusen, Germany). Frozen liver

tissue (50–80 mg tissue) was weighted into a cryovial and grinded

to a fine powder under liquid nitrogen. 8 volumes of lysis buffer

were added to the pulverized tissue and lysis was carried out in a

rotating mixer for 30 min. Protein concentration of the lysate was

determined by a Bradford assay and protein concentration of the

lysates was adjusted to 0.3 mg/ml protein. The prepared lysates

were used to print RPPAs as described in detail by Pirnia et al.

[25]; samples and reference material (BSA labeled with Alexa-647)

were spotted (300 pl/spot) on Zeptosens hydrophobic protein

microarray chips (Bayer Technology Services, Leverkusen,

Germany). Detection of proteins and protein modifications was

performed using a direct two-step immunoassay using specific

primary antibodies (see supplement). Fluorescence signal was

generated using Alexa647-labeled anti-species secondary antibod-

ies (Invitrogen, Darmstadt, Germany), images of the microarrays

were taken using the ZeptoREADER microarray imager (Bayer

Technology Services, Leverkusen, Germany), and image analysis

was performed using the ZeptoVIEW Pro 3.0 software package.

Signal intensity for each spot was determined as background-

corrected mean intensity with the local background subtracted

from the spot intensity and the determined values were normalized

over the whole RPA. The weighted mean of replicate sample spots

was used for statistical analysis; standard deviation was calculated

according to standard error propagation rules from the standard

deviations of raw and blank signals.

For the sake of improved interpretability, the blank-corrected

normalized signal levels were divided by the median of the

corresponding control group samples incubated with the same

specific antibody and subsequently log2-transformed. If the

background signal level, which was determined by exclusive use

of the secondary antibody, exceeded the combined signal level of

both the primary specific and secondary antibodies when used in

combination, the corresponding measurement was considered as a

missing value. Missing values, which accounted for approx. 1% of

the data, were estimated using k-Nearest-Neighbor imputation.

Inference of predictive molecular signatures
Predictive signatures were inferred based on the fold changes

obtained from multiple omics platforms using recursive feature

selection with SVMs (SVM-RFE). SVM-RFE repeatedly trains an

SVM on the provided features and assigns a weight for each

feature depending on the relevance for the classification [26]. After

each training cycle, the least informative features are removed and

the training is repeated with the reduced set of features. This

process is repeated until the desired signature size is reached.

To find the optimal signature size, we evaluated the predictive

power of signatures of different size for each supervised machine

learning method used for classification. Signatures containing 5,

10, 15, 20, and 25 features were extracted and evaluated for their

predictive power. Based on the accuracies estimated for each of

the differently sized signatures, we used spline interpolation to

numerically approximate the optimal signature size.

As multiple signatures were extracted for each cross-validation

fold and repetition, the individual signatures were merged into a

consensus signature. For this purpose, the features were ranked by

their average rank in all cross-validation folds and repetitions. The

consensus signature was then constructed by selecting the best

Cross-Platform Toxicogenomics for Cancer Risk Assessment in Rat Liver
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features until the approximated optimal signature size was

reached.

Calculation of molecular interaction features
As the regulation of gene expression is orchestrated by the

interplay of multiple biological layers, an approach that assesses

the relevance of each genomic and proteomic feature individually

may be insufficient. In order to account for the highly

interconnected nature of gene regulatory mechanisms, we

conceived a novel feature representation for multi-level omics

datasets, which captures characteristic molecular interactions

present upon treatment with a specific class of compounds

(Figure 1A).

As the dynamic range of differential expression varies between

platforms interrogating different biological layers, we propose to

transform the log-ratios, i.e., log2(fold changes), to a common

scale. Furthermore, the scaling of the data also ensures that each

platform contributes equally to the score computed for a certain

molecular interaction. All log-ratios x were mapped to the same

interval using the linear function s : R? {1,1½ � with s(x)~
x

max { min (F ), max (F )ð Þ , where xEF and FE FmRNA,FmiRNA,f

Fproteing is the set of all log-ratios observed for a certain platform.

Next, we computed a score for each putative interaction between

two molecules (e.g., miRNA and target mRNA), which equals the

product of the scaled log-ratios: m xi,xj

� �
~s xið Þ:s xj

� �
, where

xiEFi and xjEFj with i=j. This molecular interaction (MI) score is

expected to be close to 1 if correlated expression is observed, e.g.,

for an mRNA and the corresponding protein product. If the MI

score is close to 21 this indicates a strong anticorrelation, which

may be observed between a miRNA and one of its target mRNAs.

We considered negative correlations between miRNAs and their

targeted mRNAs, positive correlations between mRNAs and

translated proteins, and negative correlations between miRNAs

and proteins that are translated from the targeted mRNAs. Both

validated mRNA targets from curated databases (TarBase v5.0c

[19], miRTarBase v2.4 [20], miRecords v3 [21]) and predicted

mRNA targets inferred by prediction tools (ElMMo v5 [22],

DIANA-microT v4.0 [23], TargetScan v5.2 [24]) were used for

feature construction.

Calculation of pathway enrichment features
The basic idea of this feature type is to generate a more robust

representation of the molecular signature of a compound by

abstraction from genes to pathways (Figure 1B). To this end, we

propose to first detect the differentially expressed transcripts/

proteins by defining appropriate filter criteria. In this study, we

considered genes with an absolute fold change above 2.5 as

significantly differentially expressed. Next, we combined the lists of

Figure 1. Feature representations used for cross-toxicogenomics prediction models. (A) Molecular interaction features. The
processed data from the different platforms, given in the form of log2-transformed fold changes, were mapped to the same interval (here: [21, 1])
using a linear function in order to account for the different dynamic ranges of the platforms. Next, putative interactions between molecules
represented on different platforms were inferred based on negatively or positively correlated expression profiles. For miRNAs, all possible interactions
to experimentally validated and predicted mRNA targets were considered. Associations between mRNAs and proteins were made based on common
gene loci. The connections between miRNAs and proteins can be transitively inferred from the corresponding mRNA interactions. In order to obtain a
numeric feature representation, a score was computed for each interaction, which equals the product of the scaled log-ratios calculated for the two
interacting molecules. (B) Pathway enrichment features. First, differentially expressed features were detected for each platform separately based
on appropriate fold change and/or p-value cutoffs. All transcripts and proteins were mapped to the corresponding genes in order to facilitate their
association with metabolic and signaling pathways. As miRNAs are typically not contained in canonical pathways, deregulated miRNAs were
represented by the genes corresponding to their experimentally confirmed target mRNAs in order to model their impact on pathways. The union of
deregulated genes was computed across platforms. Then a hypergeometric test was applied to determine enriched pathways represented by these
genes. Finally, a feature vector was constructed, representing the log10-transformed p-values obtained for each pathway from the overrepresentation
test.
doi:10.1371/journal.pone.0097640.g001
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deregulated genes by computing the union across platforms. For

this purpose, all profiled mRNAs and proteins were mapped to

their corresponding genes, which can in turn be attributed to

pathways. Since miRNAs are a priori not contained in canonical

pathways (e.g., from KEGG, Ingenuity, etc.), their regulatory

influence on pathways was modeled based on experimentally

validated interactions to known target mRNAs corresponding to

pathway nodes. Overrepresented pathways for this combined gene

list, derived from deregulated mRNAs, miRNA targets, and

proteins, were detected with a hypergeometric test. Given a

universe where the union of all pathways contains N genes of

which M are in the pathway of interest, and the combined list

containing n genes of which m are contained in the pathway, the

p-values were computed according to the following formula:

P X§mð Þ~
XM
i~m

M

m

� �
N{M

n{m

� �

N

n

� �

The p-values were then transformed into enrichment scores,

which correspond to the -log10(p-value). Finally, a vector

composed of the enrichment scores of each pathway was employed

as a numeric feature representation of pathway alterations induced

by compound treatment. The higher the enrichment score

computed for a certain pathway, the more significant is the

overrepresentation of genes from the combined list in this

pathway. The feature vectors were constructed based on different

sets of canonical pathways extracted from the databases KEGG

[27], Reactome [28], and BioCarta [29]. Associations from genes

to pathways were derived with the corresponding metadata

packages available for R/Bioconductor [16].

Validation of prediction models
We ensured unbiased parameter tuning and evaluation on

independent test compounds by employing a 262-fold nested,

stratified cross-validation procedure. In order to obtain a more

robust estimate of the classification performance, 10 repetitions

were performed with different random splits of the data. The

prediction accuracy that can be achieved with different feature

representations derived from the expression profiles of the

compounds was assessed based on the average area under the

ROC curve observed for a representative selection of machine

learning methods that are prevalent in toxicogenomics applica-

tions. We employed linear Support Vector Machines (SVM),

Random Forests (RF), Neural Networks (NN), Bayesian General-

ized Linear Models (BGLM), and Principal Component Regres-

sion (PCR). We included PCR because a good separation of classes

was observed in a principal component analysis (PCA) of the data,

and because the method achieved comparable accuracy than the

other methods on the here evaluated classification problems. We

have also analyzed the optimal number of principal components

used for classification with PCR (Figure S1). RF, NN, BGLM, and

PCR are implemented in the caret library available for R [30]. The

SVM was used via the R interface provided by the SHOGUN

machine learning toolbox [31].

Results

Classification performance of omics signatures
With the goal to identify molecular signatures that may allow

early prediction of a carcinogenic risk associated with a

compound, we inferred mRNAs, miRNAs, and protein expression

signatures correlated with the toxicological classes of the

compounds which induced these signatures in the liver of rats

treated for up to 14 days. In addition, a combined signature was

obtained by merging the signatures extracted from each individual

platform. Furthermore, we compiled signatures based on putative

molecular interactions (MI features) observed between two

molecular layers, as well as based on pathways enriched with

genes/proteins that were detected as deregulated (PE features).

These two types of cross-platform features (Figure 1) were joined in

different arrangements with the combined single-platform signa-

tures in order to create different types of hybrid signatures.

Signature inference and evaluation were performed in a 262

cross-validation setting for three different class contrasts (C:NGC+
GC vs. NC, NGC vs. GC, NGC vs. NC) using five established

supervised classification methods (Figure 2). The evaluation

process was repeated ten times with different random cross-

validation splits and then ROC curves were generated based on

the prediction scores obtained in each run (Figure S2). In order to

assess the prediction accuracy, we calculated the average area

under the curve (AUCs) for each contrast, classifier, and signature

type.

Since in most cases an increased average AUC was observed

for the combined signatures, we can conclude that composite

signatures derived from multiple platforms, may allow for a more

accurate compound classification than the traditionally used

single-platform signatures (Figure 3). The only exception was the

protein signature for the NGC vs. GC contrast, which outper-

formed the corresponding combined signature for this special

setting (Figure 3B). In comparison to the mRNA signature (the

current standard approach in toxicogenomics) and the miRNA

signature, the combined signature provided a consistent improve-

ment of AUCs. Interestingly, the integration of our novel MI and

PE features led to a further increase in terms of the average AUC.

For C vs. NC and NGC vs. GC discrimination, the use of hybrid

signatures including the new features consistently resulted in

higher classification accuracy than using all single-platform

signatures even if combined (Figure 3A, C). For the NGC vs.

NC contrast the effect was very small, but still the signatures

containing the MI features achieved a slightly better AUC than the

combined signature. The combination of all signatures (i.e., the

combined signature plus the MI and PE features) achieved the best

AUCs in two of the three contrasts and the second best in the C vs.

NC contrast. Furthermore, the prediction accuracy of the single-

platform signatures was found to heavily depend on the contrast

under evaluation. In the NGC vs. GC contrast, both the mRNA

and the miRNA signatures performed significantly worse than in

the other two contrasts, whereas the protein signature was inferior

in terms of accuracy in the C vs. NC contrast. On the contrary, we

observed that the combined signature and the hybrid signatures

complemented by the MI and PE features achieved high (AUC.

0.95) and robust AUCs independent of the evaluated class

contrast.

Predictive features for toxicogenomics models
For each classifier, consensus signatures were generated by

combining the feature rankings inferred from random data splits,

which correspond to different repetitions of the cross-validation

procedure. The extracted signatures are shown in Table S1 for C

vs NC discrimination, Table S2 for NGC vs GC discrimination

and Table S3 for NGC vs NC discrimination. The most

informative genes and proteins for distinguishing C from NC are

illustrated in the heatmaps in Figure 4. A correlation between gene

expression and carcinogenicity could be observed for the mRNA
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signature (Spearman’s r.0.5). However, both the informative

miRNAs and proteins do not show clear, carcinogen-specific

expression patterns. In particular, some of the top miRNA and

protein features (e.g., rno_miR_34a and CYP2C8) show unchar-

acteristic expression changes in the PB and PBO samples (see

Figure 4B,C). These findings are consistent with the fact that a

Figure 2. Workflow used for signature extraction and evaluation of classification performance. For the multi-level omics data available
in this study, which include mRNA, miRNA, and protein expression profiles of diverse compounds, fold changes were calculated for each gene and
sample that could be confidently assigned to a certain compound class (C: carcinogens, GC: genotoxic carcinogens, NGC: non-genotoxic carcinogens,
NC: non-carcinogens). While traditionally used single-platform features simply correspond to fold changes observed on each specific biological level,
cross-platform features capture molecular interactions and pathway alterations, which can be inferred by integrating omics data across multiple
levels. For each class contrast (e.g., C vs. NC) of interest, the dataset was split into a training set and a validation set. Using the SVM-RFE feature
selection technique, a predictive signature for class discrimination was extracted, which was then used to predict the carcinogenic class of the
samples in the validation set. By embedding this process into a 2-fold cross-validation with 10 repetitions that use different random splits of the data,
the classification performance can be robustly estimated based on the mean area under the ROC curve.
doi:10.1371/journal.pone.0097640.g002

Figure 3. Classification performance for different class contrasts depending on signature types. The bar plots correspond to the average
area under the ROC curve obtained from five widely used supervised classification methods (SVM, RF, NN, PCR, and BGLM). Before averaging across
classifiers, the prediction scores were integrated across repetitions and cross-validation folds. Each column corresponds to a certain signature type,
which may be composed of different modules. The combined signature contains all predictive features from the mRNA, miRNA, and protein
signatures. +MI and +PE indicate the additional use of molecular interaction and pathway enrichment features, respectively. Bar plots were generated
for (A) C vs. NC classification, (B) NGC vs. GC classification, and (C) NGC vs. NC classification.
doi:10.1371/journal.pone.0097640.g003
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lower classification performance was observed for these two

signature types (Figure 3). The heatmaps showing the top features

of the single platform signatures for the NGC vs. GC and NGC vs.

NC contrast are shown in Figure S3 and S4, respectively.

The most informative mRNA markers for C vs. NC discrim-

ination include various genes known to be involved in cellular

responses to carcinogenic exposure, e.g., Gsta5, Aldh1a1 [32,33],

Ephx1 [34], and Akr7a3 [35], which are detoxifying enzymes, for

instance, in the context of oxidative stress. Some miRNAs

Figure 4. Heatmap plots of single-platform signatures for C vs. NC classification. The heatmaps depict characteristic expression patterns
observed in livers of rats after exposure to diverse rodent liver carcinogens and non-carcinogens. A selection of signature molecules is shown for each
profiled molecular level: (A) mRNA expression, (B) miRNA expression, and (C) protein expression. In each heatmap, rows correspond to signature
molecules and columns correspond to liver samples from differentially treated rats. The bold vertical lines separate the carcinogens from the Non-
carcinogens. Plotted are the log2(fold changes), where red indicates up-regulation and green indicates down-regulation (see color keys). The color
bar on top refers to the compound class (see legend).
doi:10.1371/journal.pone.0097640.g004
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identified in our experiments as early markers for prediction of a

carcinogenic potential are also mentioned in connection with

cancer in the literature, e.g., rno-miR-34a and rno-miR-200b

[36,37]. Furthermore, the protein signature for C vs. NC

discrimination also contains proteins that have been linked to

carcinogenesis, e.g., JUN [38], GLUL [39], and CDKN1B [40].

As has been done for the single-platform signatures, consensus

signatures were generated based on the MI and PE signatures

extracted for each run. The most informative pathways for the C

vs. NC and NGC vs. GC contrasts are depicted in the heatmap in

Figure 5.

The top PE features for the discrimination of carcinogens from

non-carcinogens were highly specific for carcinogens and showed

no enrichment at all in the non-carcinogens (Figure 5A). For the

discrimination of genotoxic and non-genotoxic carcinogens,

specific pathways could be inferred for both genotoxic and non-

genotoxic carcinogens (Figure 5B). Only one of the three DMN

samples shows an uncharacteristic enrichment pattern. Except for

this outlier, the pathways altered in GC-exposed rats are highly

specific, showing strong enrichment in the genes deregulated upon

GC, but not upon NGC treatment. Consistent with our

expectations, various pathways related to p53, which is a key

gene in the cellular DNA damage response, were selected as

GC-specific pathway features [41]. The NGC-specific pathways

include cytokine and interferon signaling pathways, which have

been associated with non-genotoxic carcinogenesis before [42].

These pathways are also specific for the discrimination of NGCs

and NCs (Figure S5).

The MI consensus signature for the discrimination of carcino-

genic and non-carcinogenic compounds is depicted in Figure 6.

We highlighted interactions where both interacting molecules

were at least 1.5-fold (50%) up- or downregulated. While a

negative correlation in the expression pattern was expected for

putative miRNA-mRNA interactions (i.e., upregulated miRNA

and downregulated mRNA and vice-versa), a positive correlation

was expected for mRNAs and proteins corresponding to the same

gene. Using SVM-based recursive feature elimination (SVM-

RFE), we identified diverse putative interactions specific for

carcinogens. These interactions also involved several genes that

have previously been associated with carcinogenesis in the rat,

such as Glul [39], Dusp1[43], Jun [38], Sgk1[44], and Mgat4b [45].

Correlated changes at the transcription and translation level that

were exclusively observed after treatment with rat hepatocarcin-

ogens were found for the genes Glul and Jun (Figure 6 and S6).

Putative interactions that were specifically found for NGCs include

the anti-correlation between the miRNA rno-miR-29b and its

potential target mRNAs, Sgk1, and Mgat4. For the non-carcino-

gens, we did not observe any putative interactions affecting

multiple molecular layers.

In summary, the extracted cross-platform signatures showed

that specific pathways and informative molecular interactions

could be identified which were characteristically affected after

Figure 5. Heatmap plots of pathway enrichment signatures. The heatmaps depict overrepresentation of genes involved in relevant pathways
among the genes deregulated in liver upon treatment of rats with a certain compound. Pathways relevant for compound classification were selected
by SVM-RFE for different class contrasts: (A) C vs. NC and (B) NGC vs. GC. The rows correspond to canonical pathways from the databases Reactome
(R), KEGG (K), or BioCarta (B) and the columns correspond to samples. The bold vertical lines separate sample classes. The color of each cell refers to
the -log10(p-value) obtained from a hypergeometric overrepresentation test and indicates the significance of a certain pathway enrichment (see color
key). The color bar on top of each heatmap denotes the carcinogenic class (see legend).
doi:10.1371/journal.pone.0097640.g005
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short-term treatment of rats with hepatocarcinogens in general, as

well as with non-genotoxic and genotoxic carcinogenesis. Fur-

thermore, we demonstrated that using these complex markers as

supplementary features for the prediction of the compound class

resulted in improved cross-validation performance when com-

pared to traditional single-platform-based signatures.

Toxicogenomics-based classification of undefined
compounds

The three compounds CPA, TAA, and WY are generally

described as non-genotoxic rodent hepatocarcinogens, yet due to

inconclusive results from genotoxicity assays, one could also

consider a genotoxic carcinogenic mode of action concerning

rodent hepatocarcinogenesis. For instance, although a negative

Ames test indicating a non-genotoxic mode of action with respect

to carcinogenicity was reported for CPA [46], Martelli et al.

reported a positive micronucleus test in female rats [47]. For TAA,

the Ames test was also negative, while mixed results were observed

in a micronucleus test for genotoxicity [48,49]. WY is classified as

an NGC belonging to the subclass of peroxisome proliferators with

respect to rodent hepatocarcinogens [50]. However, Deutsch et al.

reported a positive result in a Comet assay for WY [51], and

clastogenicity was observed in two cell types, albeit at near

cytotoxic doses [52]. Therefore, these compounds were not

considered as sufficiently and reliably labeled substances suited

for training and validation of our prediction models. Instead, we

used the signatures inferred from the compounds that could be

clearly assigned to a carcinogenic mode of action class to classify

these three compounds, employing the same set of classifiers used

to assess the prediction accuracy of the inferred signatures. In

addition, a principal components analysis (PCA) was performed by

transforming the vector of signature features for each compound

into a two-dimensional space spanned by the two principal

components explaining most of the variance in the data. This

should facilitate comparison of the complex, high-dimensional

expression patterns observed for the different compounds.

The PCA plots resulting from two different signatures for NGC

vs. GC discrimination are shown in Figure 7A–B. The PCA plot in

Figure 7A is generated from the mRNA expression signature, since

mRNA signatures have generally been used before for such

classification problems. Although the three classes – GC, NGC,

and NC are separated based on mRNA expression only, the GC

and NGC class are relatively close together, and the WY samples

are placed outside of these three classes. On the contrary, the PCA

Figure 6. Volcano plots of molecular interaction signatures. Shown are volcano plots for two representative compound profiles of each of the
three compound classes (i.e., NGC, GC, and NC). The plots represent putative molecular interactions between different molecular layers, which were
found to be predictive for C vs. NC classification. For each interacting molecule (i.e., mRNA, miRNA, or protein) the strength of its differential
expression was assessed in terms of the log2(fold change) and plotted against its significance, which is given by the FDR-corrected log10(p-value)
obtained from a moderated t-test. Different shapes and colors denote different types of molecules (see legend). Colored edges were used to
highlight molecular interactions for which a positive or negative correlation was observed between two molecule types. We considered correlations
in the expression profiles of miRNAs and their experimentally confirmed or predicted mRNA targets, as well as between mRNAs and proteins sharing
the same genomic locus. As a formal criterion for a putative molecular interaction, we required that for both interaction partners a 50% increase or
decrease in expression could be observed relative to the controls.
doi:10.1371/journal.pone.0097640.g006
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based on the signature incorporating all single-platform (mRNA,

miRNA, and protein) and cross-platform features (PE and MI)

showed a clear separation of the compound classes (see Figure 7B).

Furthermore, all undefined compounds were enclosed in the NGC

cluster, and thus could be clearly classified with our toxicoge-

nomics-derived signature. From Figure 7C–D and Figure S8 it

becomes obvious that the PCA-based classification of WY, CPA,

and TAA as NGCs is in accordance with the classification

achieved with the supervised learning algorithms. The classifica-

tion solely based on the protein and miRNA signature, respec-

tively, is inconsistent for some of the CPA and TAA samples and

on average only possible at a lower confidence level (Figure S8).

However, after training of the prediction models on all combined

features, high confidence scores and a robust classification across

all employed learning algorithms were achieved. In conclusion, all

undefined compounds were classified as non-genotoxic carcino-

gens based on their molecular profiles. These results are also

consistent with the outcomes of diverse carcinogenicity assays

which were performed for WY, TAA, and CPA [46,48,50].

Discussion

In this study, we propose a new approach for prediction of

potential chronic toxicity of chemicals based on expression data

obtained from multiple omics platforms after short-term treat-

ment. Prediction of the compound class after short-term treatment

may facilitate hazard assessment during preclinical testing and

may allow prioritization of chemicals with respect to their

cancerogenic potential in chronic bioassays. The current standard

approach in toxicogenomics is to use microarrays to screen for

differential expression of mRNAs and infer signatures based on

fold changes between treated and non-treated animals. Here, we

argue that the inclusion of other omics data, e.g., miRNA

expression or protein abundance, may increase the predictive

power of the inferred signatures. Further, we introduce two new

feature representations developed specifically for multi-platform

omics data, the molecular interaction (MI) features and the

pathway enrichment (PE) features.

With extensive cross-validation, we evaluated the predictive

power of single-platform signatures as well as hybrid signatures

Figure 7. Classification of undefined compounds. (A) Samples are represented based on the protein signature for NGC vs. GC discrimination.
The corresponding fold changes were PCA-transformed and plotted in a lower-dimensional space spanned by the first two principal components.
The color of the spheres corresponds to the class of the administered compounds with respect to their hepatocarcinogenic properties in rats. Clusters
of rat liver samples after treatment of rats with compounds of the same class are highlighted by means of transparent polygons. (B) Similar plot as in
(A), but instead of using the protein signature for sample representation, all single-platform (mRNA, miRNA, protein) and cross-platform signatures
(PE, MI) were combined. (C) The heatmap displays the confidence scores obtained from five different machine learning methods that were used to
classify the undefined compounds CPA, TAA, and WY as either NGC or GC. The confidence scores are [0, 1]-scaled and correspond to the probability
that a certain sample was treated with an NGC (see color key). (D) Similar illustration as in (C) obtained from an SVM classifier trained on all signatures
combined.
doi:10.1371/journal.pone.0097640.g007
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complemented with cross-platform features on a dataset contain-

ing mRNA, miRNA, and protein expression data for 8 NGCs, 2

GCs, and 2 NCs concerning rodent hepatocarcinogenicity. In

addition, all signatures were used to classify three rodent

hepatocarcinogens with insufficiently defined mode of actions.

The dataset used for the evaluation is publically available from the

NCBI Gene Expression Omnibus (GEO) repository under the

accession number GSE53085 [53,54].

In comparison to the signatures inferred solely from the mRNA

data, we observed an increase in predictive power when

combining signatures across multiple platforms for all evaluated

class contrasts (C vs. NC, NGC vs. GC, and NGC vs. NC). In

addition, we found that the inclusion of complex cross-platform

features capturing molecular interactions or pathway alterations

led to a further improvement of the classification performance. In

general, the combined single-platform signatures with MI and PE

features were superior to the single-platform signatures in terms of

prediction accuracy, except for the NGC vs. GC contrast, where

the protein signature performed slightly better. However, visual

inspection of the informative features by PCA revealed a much

better separation of classes for the cross-platform signatures

(Figure S7). Furthermore, a potential bias may arise from the fact

that not the complete proteome, but only a selection of 158

proteins proposed by domain experts were profiled in our

experiments. Thus, we hold the opinion that in following studies

the predictive power of protein signatures should be assessed on a

richer set of compounds based on global protein expression data.

Altogether, while a high variability was observed for the

classification performance achieved with individual single-platform

signatures, a consistently high prediction confidence (AUCs.0.9)

was found for models provided with features from multiple

molecular layers. Considering all evaluated class contrasts, the

combined signature with pathway enrichment and molecular

interaction features on average achieved the best classification with

the highest prediction accuracies (AUCs.0.95).

In related toxicogenomics studies the accuracy of classifiers

trained solely on omics-based features has been compared to

models exclusively or additionally provided with features derived

from a Quantitative Structure-Activity Relationship (QSAR)

approach [55,56]. Liu et al. and Low et al. consistently reported

that the integration of QSAR-based features did not contribute to

an increased classification performance [55,56]. Since there is a

strong heterogeneity concerning the structures and mechanisms of

hepatocarcinogenic compounds, the inference of relations between

chemical structures and the complex phenotype of cancer is a

challenging problem. In this study, we did not pursue this

approach since a richer set of compounds would have been

required for the construction of generalizable models [57].

Furthermore, a QSAR approach may not be ideally suited for

predicting chronic toxicity, as it only considers structural

properties of the compounds and does not account for important

experimental factors, such as dose level and duration of treatment.

As an alternative to our complex supervised approach for

compound class discrimination, we applied clustering to determine

if the expression profile based grouping of the compounds agrees

with their annotated carcinogenic class (Figure S9). For this

purpose, we selected the top 100 mRNAs, miRNAs, and proteins

based on their average differential expression, measured in terms

of the absolute fold-change averaged across samples. Complete

linkage hierarchical clustering with Euclidean distance was applied

and the optimal number of clusters between 2 and 8 was

determined based on the silhouette score. While animals treated

with the same compound mostly clustered together, the cluster

result did not reflect the initial grouping of the compounds

according to their carcinogenic class (i.e., GC, NGC, or NC). This

finding indicated that due to the high mechanistic diversity of the

compounds, whereas a classification is possible by using supervised

methods.

The single- and cross-platform signatures inferred with our

supervised approach have been used to reclassify the compounds

with undefined class, i.e., CPA, TAA, and WY. All three

compounds are known to be carcinogenic, but some of the

genotoxicity test results were inconclusive [46–51]. Here, all three

compounds were classified as non-genotoxic carcinogens by the

majority of classifiers trained on the inferred molecular signatures.

Much higher prediction confidence was observed when using the

cross-platform signatures, whereas single-platform-based classifi-

cation remained ambiguous. Again, these findings were consistent

with a PCA showing a considerably clearer separation of the

classes for the cross-platform signatures (Figures 7 and S7).

In contrast to the standard toxicogenomics approach of

inferring signatures from mRNA expression, the combination of

single-platform signatures from multiple omics platforms led to

improved prediction accuracy. The inclusion of the MI and PE

features into these combined signatures offered a true cross-

platform integration of the multi-level omics data. These

integrated features may yield additional information for supervised

learning methods and provide new insights for mechanistic

analyses of cross-platform omics data. In addition, the PE features

introduce an abstraction from the level of individual genes to

Table 2. Comparison with published signatures.

Signature Contrast Dosing time [d] Common genes

Nakayama et al. (2006) [59] C vs. NC 28 Aldh1a1, Akr7a3, Ephx1, Apoa4, Abcb1a

Auerbach et al. (2010) [6] C vs. NC 90 Abcb1a

Ellinger-Ziegelbauer et al. (2008) [8] C vs. NC up to 14 Aldh1a1, Akr7a3, Abcc3, Myc, Ces2c, Abcb1a

Ellinger-Ziegelbauer et al. (2008) [8] NGC vs. GC up to 14 Aldh1a1, Cdkn1a1 (2 probes), Phlda3, Myc, Hsp90ab1, Abcc3

Nie et al. (2006) [61] NGC vs. NC 1 -

Fielden et al. (2007) [60] NGC vs. NC 5 -

Uehara et al. (2008) [10] NGC vs. NC 1 Akr7a3

Uehara et al. (2011) [11] NGC vs. NC 28 -

The table lists the common genes between our inferred signatures and previously published signatures for the discrimination of carcinogenic and non-carcinogenic
chemicals. We compared each published signature with our inferred signature for the same contrast and identified the informative genes common between the
signatures.
doi:10.1371/journal.pone.0097640.t002
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higher-order levels, such as complex signaling or metabolic

networks. Possibly, this abstraction led to a more robust

representation of the complex mechanisms underlying early events

during hepatocarcinogenesis in rat. Other relevant mechanistic

aspects, which cannot be detected by analyzing each platform

individually, may be captured by the here introduced MI features.

In consideration of the fact that uncertainty was introduced in the

signature extraction process by permitting predicted miRNA-

mRNA interactions as potential features, the implication of

individual, predictive molecular interactions during hepatocarcin-

ogenesis has to be critically assessed. However, since the focus of

this study was the proof of principle that considering multiple

molecular layers and interactions between them may increase the

reliability of toxicogenomics-based prediction models, the exper-

imental validation and confirmation of the biological relevance of

the selected features is beyond the scope of this article.

Due to the broad availability of mRNA expression data for

toxicogenomics applications (e.g., from the databases TG-GATEs

[9] and DrugMatrix [58]) and the proof-of-principle provided for

mRNA signatures, several lists of informative mRNA probe sets

have been published for both rat and mouse models concerning

prediction of a hepatocarcinogenic potential in short-term studies.

Most of these studies focused on the discrimination of non-

genotoxic carcinogens from non-carcinogens (NGC vs. NC

contrast) or on distinguishing carcinogens from non-carcinogens

(C vs. NC contrast). We compared our mRNA signature with

previously published signatures from Auerbach et al. [6] and

Nakayama et al. [59] (C vs. NC signatures); Fielden et al. [60], Nie

et al. [61], and Uehara et al. [10,11] (NGC vs. NC signatures); and

Ellinger-Ziegelbauer et al. [8] (NGC vs. GC vs. NC signature). An

overview of the informative genes shared between the published

and our signatures is given in Table 2. Our NGC vs. NC signature

based on mRNA data contained no common genes with the

signatures by Fielden et al., Nie et al., and Uehara et al. (2011), and

only one common gene with Uehara et al. (2008): Akr7a3.

However, these studies used other microarray platforms, different

compounds, and different treatment durations: Nie et al. and

Uehara et al. (2008) used a single dosage 24 h setting, Fielden et al.

used a 5 day repeated dosage setting, and Uehara et al. (2011) used

a longer 28-day exposure. For the C vs. NC signature published by

Nakayama et al., we found five genes that are also present in our C

vs. NC mRNA signature (see Figure S10), while only one common

gene is shared between our signature and the 90-day signature

published by Auerbach et al. The signature published previously by

Ellinger-Ziegelbauer et al. was in part inferred from the same set of

samples analyzed in this study. Hence, we found that 6 probe sets

(27%) were in common with our 22-probe-set C vs. NC mRNA

signature (see Figure S10) and 7 probe sets (28%) with our 25-

probe-set NGC vs. GC signature.

In summary, we demonstrated that the classification perfor-

mance of toxicogenomics models benefits from integrating

heterogeneous omics data across multiple biological levels. Along

these lines, we believe that future toxicogenomics studies may

benefit from the additional consideration of other levels, such as

metabolomics, relevant DNA mutations, and genome-wide

promoter methylation. Furthermore, our work may encourage

the maintainers of currently available databases specializing in

toxicogenomics (e.g., TG-GATEs [9], DrugMatrix, etc.) to amend

the existing repertoire of mRNA expression datasets by the

addition of complementary omics data derived from the same

biological samples.

Supporting Information

Figure S1 Number of selected principle components for
PCR. The histograms show the distribution of the optimal

number of principal components selected during the parameter

optimization for PCR. Parameter optimization is performed

unbiased and independent of the estimation of classification

performance for all relevant parameters of the individual

classification algorithms. In our experiments, we performed 10

repetitions with different cross-validation splits for each repetition.

In each repetition, a 262 cross-validation was used, leading to a

total of 20 sets of optimized parameters. For PCR, the number of

principal components is the only relevant parameter. The

distribution of the 20 optimal numbers of principal components

for each combination of features is shown in the histograms.

(PDF)

Figure S2 Cross-validation performance of signatures
for compound classification. (A) The receiver operating

characteristic (ROC) curves illustrate the predictive power of the

signatures inferred for discrimination of carcinogens (C) and non-

carcinogens (NC). The left plot illustrates the predictive power of

the signature inferred using only mRNA features. The right plot

illustrates the predictive power of the signature combining the

single-platform signatures for mRNA, miRNA, and protein

features as well as the cross-platform molecular interaction (MI)

and pathway enrichment (PE) features. For each supervised

learning method trained on the extracted signature, one ROC

curve has been plotted. The dotted line indicates the chance level,

which corresponds to an area under the ROC curve (AUC) of 0.5.

The bar plot inside the ROC curve plot indicates the AUC

achieved by each classifier. Predictive power was assessed using a

10 times repeated, nested 262-fold cross-validation. Prediction

scores were scaled linearly to [0,1] and subsequently merged

across all folds and repetitions to obtain a single ROC curve. (B)

Predictive power of signatures for discrimination of non-genotoxic

carcinogens (NGC) and genotoxic carcinogens (GC) illustrated as

in (A). (C) Predictive power of signatures for discrimination of

NGCs and NCs illustrated as in (A).

(PDF)

Figure S3 Heatmap plots of single-platform signatures
for NGC vs. GC classification. The heatmaps depict

characteristic expression patterns that were observed in livers of

rats after exposure to non-genotoxic or genotoxic rodent

hepatocarcinogens. A selection of signature molecules is shown

for each profiled molecular level: (A) mRNA expression, (B)

miRNA expression, and (C) protein expression. In each heatmap,

the rows correspond to signature molecules and the columns

correspond to differentially liver samples from differentially treated

rats. The bold vertical lines separate the NGCs from the GCs.

Plotted are the log2(fold changes), where red indicates up-

regulation and green indicates down-regulation (see color keys).

The color bar on top refers to the carcinogenic compound class

(see legend).

(PDF)

Figure S4 Heatmap plots of single-platform signatures
for NGC vs. NC classification. The heatmaps depict

characteristic expression patterns, which were observed in livers

of rats after exposure to non-genotoxic hepatocarcinogens and

non-carcinogens. A selection of signature molecules is shown for

each profiled molecular level: (A) mRNA expression, (B) miRNA

expression, and (C) protein expression. In each heatmap, the rows

correspond to signature molecules and the columns correspond to

differentially treated rat liver samples. The bold vertical lines
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separate the NGCs from the NCs. Plotted are the log2(fold

changes), where red indicates up-regulation and green indicates

down-regulation (see color keys). The color bar on top refers to the

carcinogenic compound class (see legend).

(PDF)

Figure S5 Heatmap plot for pathway enrichment. The

heatmap depicts overrepresentation of genes involved in relevant

pathways among the genes deregulated upon treatment with a

certain compound. Pathways relevant for compound classification

were selected by SVM-RFE for NGC vs. NC discrimination. The

rows correspond to canonical pathways from the databases

Reactome (R), KEGG (K), or BioCarta (B) and the columns

correspond to samples. The color of each cell refers to the -log10(p-

value) obtained from a hypergeometric overrepresentation test and

indicates the significance of a certain pathway enrichment (see

color key). The color bar on top of each heatmap denotes the

carcinogenic class (see legend).

(PDF)

Figure S6 Volcano plots of molecular interaction signa-
tures. Shown are volcano plots for expression profiles of the six

non-genotoxic carcinogens not shown in Figure 6. The plots

represent putative molecular interactions between different

molecular layers, which were found to be predictive for C vs.

NC classification. For each interacting molecule (i.e., mRNA,

miRNA, or protein), the strength of its differential expression was

assessed in terms of the log2(fold change) and plotted against its

significance which is given by the FDR-corrected log10(p-value)

obtained from a moderated t-test. Different shapes and colors

denote different types of molecules (see legend). Colored edges

were used to highlight molecular interactions for which a positive

or negative correlation was observed between two platforms. We

considered correlations in the expression profiles of miRNAs and

their experimentally confirmed or predicted mRNA targets as well

as between mRNAs and proteins sharing the same genomic locus.

As a formal criterion for a putative molecular interaction, we

required that for both interaction partners a 50% increase or

decrease in expression was observed relative to the controls.

(PDF)

Figure S7 Principal component analysis of signatures
for classification of undefined compounds. (A) Samples are

represented based on the mRNA signature for NGC vs. GC

discrimination. The corresponding fold changes were PCA-

transformed and plotted in a lower-dimensional space spanned

by the first two principal components. The color of the spheres

corresponds to the class of the administered compounds with

respect to their hepatocarcinogenic properties in rats. Clusters of

rat liver samples after treatment of rats with compounds of the

same class are highlighted by means of transparent polygons. (B)

Similar plot as in (A), but based on the miRNA signature for NGC

vs. GC discrimination. (C) Similar plot as in (A), but instead of

using a single-platform signature for sample representation, all

single-platform (mRNA, miRNA, protein) signatures were com-

bined. (D) Similar plot as in (A), but instead of using a single-

platform signature for sample representation, all single-platform

(mRNA, miRNA, protein) signatures and the cross-platform

pathway enrichment (PE) signature were combined. (E) Similar

plot as in (A), but instead of using a single-platform signature for

sample representation, all single-platform (mRNA, miRNA,

protein) signatures and the cross-platform molecular interaction

(MI) signature were combined.

(PDF)

Figure S8 Reclassification of undefined compounds. (A)
The heatmap displays the confidence scores obtained from five

different machine learning methods that were used to classify the

undefined compounds CPA, TAA, and WY as either NGC or GC

based on the mRNA signature for NGC vs. GC discrimination.

The confidence scores are [0, 1]-scaled and correspond to the

probability that a certain sample was derived from rats treated

with an NGC (see color key). (B) Similar illustration as in (A)

obtained from an SVM classifier trained on the miRNA signature.

(C) Similar illustration as in (A) obtained from an SVM classifier

trained on all single-platform (mRNA, miRNA, protein) signatures

combined. (D) Similar illustration as in (A) obtained from an SVM

classifier trained on all single-platform (mRNA, miRNA, protein)

signatures and the cross-platform pathway-enrichment (PE)

signature combined. (E) Similar illustration as in (A) obtained

from an SVM classifier trained on all single-platform (mRNA,

miRNA, protein) signatures and the cross-platform molecular

interaction (MI) signature combined.

(PDF)

Figure S9 Cluster analysis of mRNA, miRNA, and
protein expression data. The heatmaps depict the results of

a cluster analysis limited to the top 100 differentially expressed (A)

mRNAs, (B) miRNAs, and (C) proteins in livers of rats treated

with diverse carcinogenic or non-carcinogenic compounds. In

each heatmap, the rows correspond to the animals and the

columns correspond to the profiled molecules. The colors refer to

the log2(fold changes), where red indicates up-regulation and green

indicates down-regulation (see color key). The dendrograms that

were obtained from hierarchical cluster analysis of both samples

and molecules are shown adjacent to the heatmap. The color bar

on the right indicates the cluster membership of the samples.

(PDF)

Figure S10 Common genes between our inferred and
published signatures for C vs. NC discrimination. The

Venn diagram illustrates the common genes between our signature

inferred from mRNA data for the discrimination of carcinogens

and non-carcinogens and signatures for the same class contrast

previously published by Ellinger-Ziegelbauer et al. and Nakayama

et al.

(PDF)

Table S1 Signatures for C vs. NC discrimination. The

tables list the signatures inferred for the discrimination of

carcinogenic and non-carcinogenic chemicals for each signature

type (single-platform features: mRNA, miRNA, and protein

expression as well as cross-platform features: molecular interaction

(MI) and pathway enrichment (PE) features).

(XLS)

Table S2 Signatures for NGC vs. GC discrimination.
The tables list the signatures inferred for the discrimination of non-

genotoxic and genotoxic carcinogens for each signature type

(single-platform features: mRNA, miRNA, and protein expression

as well as cross-platform features: molecular interaction (MI) and

pathway enrichment (PE) features).

(XLS)

Table S3 Signatures for NGC vs. NC discrimination.
The tables list the signatures inferred for the discrimination of non-

genotoxic carcinogens and non-carcinogens for each signature

type (single-platform features: mRNA, miRNA, and protein

expression as well as cross-platform features: molecular interaction

(MI) and pathway enrichment (PE) features).

(XLS)
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