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Abstract

Kisspeptin is a hypothalamic peptide hormone that plays a pivotal role in pubertal onset and reproductive function.
Previous studies have examined hypothalamic kisspeptin mRNA expression, either through in situ hybridisation or real-time
RT-PCR, as a means quantifying kisspeptin gene expression. However, mRNA expression levels are not always reflected in
levels of the translated protein. Kisspeptin-immunoreactivity (IR) has been extensively examined using immunohistochem-
istry, enabling detection and localisation of kisspeptin perikaya in the arcuate nucleus (ARC) and anteroventral
periventricular nucleus (AVPV). However, quantification of kisspeptin-IR remains challenging. We developed a specific
rodent radioimmunoassay assay (RIA) capable of detecting and quantifying kisspeptin-IR in rodent tissues. The RIA uses
kisspeptin-10 as a standard and radioactive tracer, combined with a commercially available antibody raised to the
kisspeptin-10 fragment. Adult female wistar rat brain samples were sectioned at 300 mm and the ARC and AVPV punch
micro-dissected. Brain punches were homogenised in extraction buffer and assayed with rodent kisspeptin-RIA. In accord
with the pattern of kisspeptin mRNA expression, kisspeptin-IR was detected in both the ARC (47.166.2 fmol/punch,
mean6SEM n=15) and AVPV (7.661.3 fmol/punch, mean6SEM n= 15). Kisspeptin-IR was also detectable in rat placenta
(1.2660.15 fmol/mg). Reverse phase high pressure liquid chromatography analysis showed that hypothalamic kisspeptin-IR
had the same elution profile as a synthetic rodent kisspeptin standard. A specific rodent kisspeptin-RIA will allow accurate
quantification of kisspeptin peptide levels within specific tissues in rodent experimental models.
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Introduction

The kisspeptins are a family of peptides essential for the onset of

puberty and the regulation of reproductive function. The absence

of a functional kisspeptin receptor (KiSS1r) or Kiss-1 gene results in

low gonadotrophin levels and failure to undergo pubertal

development in both mice and humans [1–4]. Administration of

exogenous kisspeptin potently stimulates gonadotropin secretion in

rodents and man [4–7]. Kisspeptin is the endogenous ligand of the

G-protein coupled receptor Kiss1r [8–10]. The stimulatory effects

of kisspeptin on the reproductive axis appear to be mediated by a

direct activation of KiSS1r-expressing gonadotrophin releasing

hormone (GnRH) neurons [11–13].

In humans, KISS1 encodes a 145 amino acid precursor peptide

which is cleaved to form a 54-amino-acid peptide, known as

kisspeptin-54 or metastin [10], and shorter fragments 14, 13 and

10 amino acids long [9]. All kisspeptin share a common 10 amino

acid C-terminal section, which is required for kisspeptin receptor

activation. Kisspeptin-54, -14, -13 and -10 all bind to Kiss1 with

equal affinity and efficacy in vitro [9]. The largest proteolytic

product in rodents is a 52 amino-acid peptide. Although this

peptide shares only relatively low overall homology (52%) with

human kisspeptin-54, the C-terminal 10 amino-acid signalling

sequences is highly conserved between mouse and human KiSS1

proteins, varying by only one amino acid [Tyr 10 (Y) in rodents to

Phe 10 (F) in humans] [14].

Expression of Kiss1 mRNA has been observed in tissues

including the placenta, pancreas, small intestine, and brain in

humans [8–10]. Within the human CNS, kisspeptin immunore-

active cell bodies are predominantly located in the infundibular

nucleus of the hypothalamus [15]. In rodents, kisspeptin perikarya

are located in two major populations in the hypothalamus, the

anteroventral periventricular nucleus (AVPV) and the arcuate

nucleus (ARC) [5,16].

Kisspeptin mRNA expression has been quantified using in situ

hybridisation (ISH) and quantitative polymerase chain reaction

(qPCR). This provides valuable information on gene transcription,

but it is widely recognised that changes in mRNA are not always

mirrored by protein levels [17,18]. In humans, circulating

kisspeptin levels have been quantified by radioimmunoassay, and

immunocytochemical (ICC) methods have been used to localise

kisspeptin expression in humans and rodents [7,19]. However, to

date, kisspeptin peptide levels in the rodent have not been

measured. Western blotting can be used to measure protein levels,

but it can be challenging to detect small changes in kisspeptin–IR
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levels using this technique. In the current study we have developed

a sensitive and specific radioimmunoassay (RIA) which enables the

quantification of kisspeptin levels within rodent tissues.

Materials and Methods

Materials
Synthetic kisspeptin-10 was obtained from the Advanced

Biotechnology Centre, Imperial College, London, UK. Kisspep-

tin-52 was purchased from Phoenix Pharmaceuticals (Burlin-

game, CA, USA). The kisspeptin polyclonal antibody was

purchased from Millipore (Watford, UK).

Rat Tissue
Female Wistar rats (220–250 g) obtained from Charles River

(Margate, UK) were housed in single cages (specific pathogen free,

Imperial College London, UK) and maintained in a controlled

environment (temperature 21–23uC, 12-h light–dark cycle, lights

on at 07:00) with ad libitum access to food (RM1 diet; SDS UK,

Witham, Essex, UK) and water. All animal procedures were

approved by the British Home Office Animals (Scientific

Procedures) Act 1986. Estrus cyclicty was monitored daily by

vaginal lavage, slides were examined under a light microscope to

determine the dominant cell type. On the morning of the diestrus

phase of the cycle, animals were killed by decapitation, and either

whole brain or hypothalamus dissected and snap frozen then

stored at 280uC. Pregnant female rats were obtained from

Charles River. At pregnancy day 20 rats were killed and the

placenta removed, snap frozen and stored at 220uC. An

additional cohort of female Wistar rats were bilaterally ovarecto-

mized (OVX) and implanted with an estradiol (E2) filled (150 ug

E2/ml) silicone capsule. This model has previously been shown to

mediate changes in kisspeptin expression [20]. Two weeks later

animals were killed by decapitation and whole brain dissected,

snap frozen and stored at 280uC.

Radioimmunoassay
An RIA directed against rodent kisspeptin was developed. The

rabbit kisspeptin-10 polyclonal antibody used has been demon-

strated to detect markedly diminished immunoreactivity in

Kiss12/2 mice compared to wild type mice when used for

immunocytochemistry [21], and to have minimal cross-reactivity

with other RF-amide peptides [22]. 125I-kisspeptin-10 label was

prepared using the chloramine-T method and purified by

reverse-phase high-performance liquid chromatography (RP-

HPLC) on a C18 column (Waters, Milford, MA) over a 32–

38% 90-min gradient of acetonitrile (AcN)/water/0.1% trifluor-

oacetic acid (TFA). The specific activity of kisspeptin label was

56 Bq/fmol. The assay was set up as previously described [23].

The final antibody dilution used was 1:87 000. Kisspeptin-10

label was used at 20 Bq/tube. The assay was performed in 0?06

M phosphate buffer (pH 7?2) containing 0?3% (v/v) bovine

serum albumin (BSA) and 0?02% (v/v) Tween 20. After 3 days

of incubation at 4uC, antibody-bound and free fractions were

separated by charcoal (2.4 g charcoal, 0.24 dextran in 100 ml

phosphate buffer) adsorption of the free fraction. Unless stated,

all tissues were homogenised using a Kimble Kontes pellet pestle

(Sigma-Aldrich, Dorset, UK) in 450 ml of acid ethanol extraction

buffer (0.15% hydrochloric acid in 25% ethanol) [24]. To assess

parallelism of the assay, standard curves of 1, 2, 3, 5, 10, 15, 20,

30, 50 and 100 fmol/tube of kisspeptin-10 and kisspeptin-52

were set up in duplicate in conjunction with dilution curves of

hypothalamus tissue extracts (5, 10, 20 and 30 ml of extract, also

in duplicate) (n = 5). To assess the recovery efficiency of the assay

concentrations from 50 to 200 fmol/tube kisspeptin-10 were

added to 450 ml rat cerebellum tissue extract and assayed. For

the quantification of kisspeptin-IR in tissues, a standard curve

consisting of 1, 2, 3, 5, 10, 15, 20, 30, 50 and 100 fmol/tube

kisspeptin-10 in duplicate was used.

Chromatography
Synthetic kisspeptin-52 (2 nmol in 150 ul water) was fraction-

ated using RP-HPLC Phenomenex Jupiter 4 mm Proteo 90 Å

column and eluted with a 30–35% gradient of ACN plus 0?05%

(v/v) water/0?1% (v/v) 50 min at a flow rate of 1 ml/min per

fraction. Fractions were collected every min. An additional set of

hypothalamic tissue samples (n= 4) was extracted using the

protocol described above, centrifuged at 15 000 g for 3 min,

and the supernatants filtered through 0?2 mm hydrophilic mem-

branes (Sartorius, Göttingen, Germany). Samples of 150 ul from

each extract were then loaded separately onto the HPLC column

and eluted under the same conditions described above. Fractions

from all runs were freeze-dried, reconstituted in assay buffer and

the kisspeptin content determined by RIA.

Quantification of AVPV, ARC and Placenta Kisspeptin
Several groups have confirmed kisspeptin expression in the

placenta and the hypothalamic AVPV and ARC [25,26]. Brain

sections (300 mm) were cut on a cryostat, and bilateral punches

Figure 1. HPLC profile of kisspeptin-immunoreactivity from
hypothalamic extracts. Solid lines- Kisspeptin concentration; broken
lines-% acetonitrile (ACN). QKP-52 represents the elution position of
Kisspeptin-52 standard. The recovery of Kisspeptin-IR in the tissue
extract from each column run was above 80% (means S.E.M.; n = 4).
doi:10.1371/journal.pone.0097611.g001

Figure 2. Parallelism of standard and tissue extract for novel
rodent Kisspeptin RIA. Kisspeptin 210 (KP-10) and hypothalamus
(Hypo) (n=5).
doi:10.1371/journal.pone.0097611.g002

Rodent Kisspeptin RIA
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(1 mm diameter) of the AVPV were taken from Bregma +0.2 to 2

0.4 mm, single midline punch (1 mm diameter) that included both

ARC was taken from bregma 21.7 to 23.9 according to the rat

brain atlas [27], following the micropunch method of Palkovits [28].

Hypothalamic punches, cerebellum and placental tissue (350 mg)

were homogenised and extracted in acid ethanol buffer as described

above, and kisspeptin content measured by radioimmunoassay. A

separate set of tissues were also extracted by boiling for 15 min in 0?5

M acetic acid [24].

Statistical Analysis
All data are presented as mean 6 standard error of the mean

(SEM). Levels of kisspeptin expression were analysed using an

unpaired t-test (GraphPad Prism version 5 for Windows;

GraphPad Software, San Diego, CA).

Results

Radioimmunoassay
The assay demonstrated 100% cross-reactivity to both rodent

kisspeptin-10 and rodent kisspeptin-52. The assay had a sensitivity

of 0.8160?12 fmol/tube (mean 6 SEM), n= 3 with 95%

confidence. The least detectable tissue concentration was ,

1.21 fmol/tube, and the midrange was 18.14 fmol/tube. Inter-

and intra-assay variation were established to be 8?2%60?7 and

6?8%61?7 respectively, n= 5. Recovery of kisspeptin from tissue

homogenate was between 78% and 96%. The dilution curve for

hypothalamic extract was almost parallel to that of kisspeptin-10

and kisspeptin-52 standard, n= 5 (Figure 1).

Chromatography
HPLC of hypothalamic extracts resulted in a distinct kisspeptin-

IR peak at the same point at which synthetic kisspeptin-52 peptide

eluted (Figure 2). The recovery of kisspeptin-IR for each column

run of the tissue extracts was .80%.

Quantification of AVPV and ARC Punches and Placenta
Kisspeptin-IR in the acid ethanol extracted AVPV and ARC of

female rat was determined. Significantly more kisspeptin-IR was

detected in the ARC than in the AVPV (47.166.0 vs. 7.661.3

fmol/punch, P,0.001, n = 15, Figure 3). As anticipated, a

significant increase in AVPV kisspeptin-IR was observed in

OVX+E2 compared with the OVX rats (1660.9 vs. 12.561

fmol/punch, mean 6 SEM P,0.05, n = 6–8, Figure 4A), and a

significant decrease observed in ARC kisspeptin-IR in OVX+E2

compared with OVX rats (43.362.9 vs. 66.262.1 fmol/punch,

mean 6 SEM, P,0.001, n = 6–8, Figure 4B). We detected

1.2660.15 fmol/mg (n = 5) kisspeptin-IR in acid ethanol extracted

placental tissue. No kisspeptin-IR was detected in the cerebellum

tissue. No measurable kisspeptin-IR levels were detected in tissues

extracted by boiling for 15 min in 0?5 M acetic acid (data not

shown).

Figure 3. Quantification of kisspeptin-IR in the rat brain (A) Diagram of a rat brain coronal section showing the position of the
punch microdissections for the Hypothalamic anteroventral periventricular nucleus (AVPV) and the arcuate nucleus (ARC). AVPV at
bregma 20.26 mm and the ARC at bregma 23.30 mm according to the rat brain atlas of Paxinos and Watson. Black circles denote punch positions.
Ac, anterior commissure; 3v, third cerebral ventricle. (B) Quantification of kisspeptin-IR in the AVPV and ARC of female rats by RIA. Significantly more
kisspeptin-IR was detected in the ARC than in the AVPV. (Mean S.E.M, n = 15–16, ***P,0.001, Student’s t-test).
doi:10.1371/journal.pone.0097611.g003

Rodent Kisspeptin RIA
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Discussion

In the present study, we have characterised the development of

a novel kisspeptin RIA and demonstrated its utility in quantifying

kisspeptin-IR within the AVPV and ARC of female rats. We have

demonstrated that this assay can detect changes in kisspeptin

expression in response to E2 feedback. In accord with studies using

other methods, we observed suppression of kisspeptin-IR in the

ARC and increased kisspeptin-IR in the AVPV in response to E2

in ovariectomised female rats [29]. Numerous studies have

demonstrated a wide distribution of kisspeptin expression

throughout the rodent brain [30,31]. Initial studies examining

the distribution of kisspeptin-IR rodents were hampered by the

limited specificity of available antibodies [30]. However, the

development of reliable antibodies which recognise rodent, sheep

[19] and human [7] kisspeptin has enabled the distribution of

kisspeptin-IR to be fully mapped. Furthermore, we observe a

single IR peak following HPLC of hypothalamic extracts, at the

point we would expect kisspeptin-52 to elute, thus supporting

previous findings regarding antibody specificity [19].

In addition to mapping kisspeptin distribution, ICC methodol-

ogies have been utilised to quantify changes in expression under

different experimental and physiological conditions [31,32].

Kisspeptin-IR has been successfully quantified in the AVPV,

and also in the ARC, though the ARC has presented difficulties

due to the dense plexus of kisspeptin fibres present [31,33,34]. The

limitations of ICC preclude the quantification of the absolute

number of kisspeptin molecules or its concentration in a sample.

Further, though semi-quantitative methodologies provide infor-

mation about relative quantities of kisspeptin-IR within each

study, it is difficult to compare the levels observed between

different studies and models. Kisspeptin expression can be

quantified using ISH [5] or qPCR [35]. However, it is becoming

increasingly evident that examination of mRNA levels may be an

unreliable proxy for protein concentrations [36,37], with only

,40% protein levels being explained by mRNA abundances in

mammalian cell lines [17,18]. Differences in the distribution of

kisspeptin mRNA and immunoreactivity have previously been

reported. For example, kisspeptin-IR cell bodies and fibres were

described in the dorsomedial nucleus of mice [31], though ISH

failed to identify kisspeptin mRNA within this region [26]. A

subsequent study suggested that the IR detected within the

dorsomedial nucleus may be the result of cross-reactivity of the

antibody used with neuropeptide FF [38], though it is interesting

to note that a recent study detected kisspeptin-immunoreactivity in

some DMN cells in the mouse using a different antibody

(Franceschini et al 2013). In the current investigation, the higher

level of kisspeptin-IR in the ARC than the AVPV is in accord with

the relative levels predicted by assessment of mRNA levels.

Kisspeptin-IR was also present in the placenta, albeit at relatively

low levels. Previous studies have suggested that the expression of

kisspeptin mRNA in the placenta varies during pregnancy, and it

may be that higher levels would have been detected at another

time point [25]. Our data also suggest that the majority of

hypothalamic kisspeptin-IR is in the form of kisspeptin-52, though

it is possible that our extraction methods favour this particular

form, and that other kisspeptin forms are present at lower levels.

Further studies are thus necessary to conclusively demonstrate the

relative quantities of the different kisspeptins in the hypothalamus.

In summary, we have developed a novel radioimmunoassay for

the measurement of kisspeptin-IR within rat tissue. When

combined with the Palkovits punch micro-dissection methodology,

this assay enables quantification of kisspeptin-IR within specific

brain nuclei.
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