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Abstract

We apply a known algorithm for computing exactly inequalities between Beta distributions to assess whether a given
position in a genome is differentially methylated across samples. We discuss the advantages brought by the adoption of this
solution with respect to two approximations (Fisher’s test and Z score). The same formalism presented here can be applied
in a similar way to variant calling.
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Introduction

Average DNA methylation at a locus can be measured by

Whole Genome Bisulfite Sequencing (WGBS), which determines

the fraction of DNA strands methylated at any given genomic

position in a population of cells (this definition is likely to sound

obvious to those who already know about WGBS and too terse to

those who don’t: a good introduction to this kind of measurements

is contained in chapter 11 of [1]). In what follows we will call this

fraction h; when we distinguish between different samples we will

write h1 and h2. WGBS experiments estimate this numbers by

measuring the methylation state of a random ( i.e. selected in some

unpredictable way) set of reads sequenced from the sample. Since

one can only analyze a finite number of reads per sample the value

of h will be known only up to some variability.

In this paper we propose an answer to the basic question : how

does one assess whether two cell populations have different

methylation levels at a genomic position? Researchers in the field

have already dealt with this issue in a variety of ways: for example

[2] uses a Fisher’s test. In [3] Sun et al. compute a confidence

interval for h1{h2 starting from some reasonable choice of a

probabilistic model. Bsmooth [4] (which tackles the slightly

different problem of defining differently methylated regions as

opposed to positions) ultimately relies on a t-test. The authors of

[5] use a hierarchical model to estimate the parameters needed for

a Gaussian hypothesis test. Here we would like to bring attention

to another possible approach, based on properties of the Beta

distributions which are explained in [6], [7]. Similarly to e.g. [3] we

do not test an hypothesis and output a p-value; rather we compute

the probability distribution of the parameter of a Bayesian model.

Beta Distribution to Model Methylation Probabilities
The Beta probability distribution (over h) with parameters a,b is

defined by

Betah(a,b)~
ha{1(1{h)b{1

B(a,b)

where B is the Beta function

B(a,b)~
(a{1)!(b{1)!

(azb{1)!

Betah appears very naturally in many studies of genomic data:

typically such analyses also entail the comparison between

different samples, which in turn means that different Betas have

to be combined. Here for concreteness we are describing the case

of measuring DNA methylation differences across samples via

whole genome bisulfite sequencing but the same concepts apply

with almost no change to genotyping.

To appreciate how this variability can be quantified, consider a

set of reads out of a WGBS experiment covering a certain genomic

coordinate x with read depth d . Since not all the strands in the

sample being sequenced will, in general, have the same bases

methylated at the same time, this will be a collection of

heterogeneous reads : some will indicate methylation at position

x (these are the so called non converted reads), others (the converted

reads) will correspond to molecules that are not methylated. Now,

if h were known a priori, the probability of obtaining n non

converted reads would be given by a binomial distribution (which

is closely related to Betah):

P(nDh)~
d

n

� �
hn(1{h)(d{n)~

1

dz1
Beta h(nz1,d{nz1)
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If one assumes a uniform prior on h, (P(h)~1, Vh[½0,1�) the

expression for P(hDn) is very similar (The factor
1

dz1
cancels out

when applying Bayes’ theorem)

P(hDn)~Betah(nz1,d{nz1)

Therefore, to assess whether a position is differentially

methylated across two samples with non converted reads

respectively n1,n2 and read depths d1,d2 one has to compute

P(h1wh2)

where

h1*Beta h(n1z1,d1{n1z1),h2*Betah(n2z1,d2{n2z1)) ð1Þ

The purpose of the software we will discuss in this note is to

estimate P(h1wh2) given the result of a WGBS experiment.

Exact Computation of Beta Differences
A method for computing

P(h1wh2)

which turns out to be efficient enough for our purposes is

presented in full detail in [6], [7]. We will summarize its derivation

here for the sake of completeness, and advise interested readers to

study those papers for a more detailed discussion. We start with

some preliminary definitions: let g(a,b,c,d):P(h1wh2) where h1

and h2 are distributed respectively as Betah(a,b) and Betah(c,d).
Besides, we will use the notation Ih(a,b) for the cumulative

distribution function of the Beta distribution (also known as the

incomplete Beta distribution).

Now, by definition one has

P(h1wh2)~g(a,b,c,d)~

ðz?

{?
Betah(a,b)Ih(c,d)dh

But then, using the identity ([8])

Ih(c,d)~
1

cB(c,d)
hc(1{h)dzIh(cz1,d)

one finds that

g(a,b,c,d)~
1

c
hzg(a,b,cz1,d) ð2Þ

where

h~
B(azc,bzd)

B(a,b)B(c,d)

Furthermore, one can prove that g(a,b,c,d) possesses a number

of symmetries. An obvious one is g(a,b,c,d)~1{g(c,d,a,b). Also

true are

g(a,b,c,d)~g(d,c,b,a)

g(a,b,c,d)~g(d,b,c,a)
ð3Þ

Using (2) and (3) one can design a nice recursive scheme

g(az1,b,c,d)~g(a,b,c,d)zh(a,b,c,d)=a

g(a,bz1,c,d)~g(a,b,c,d){h(a,b,c,d)=b

g(a,b,cz1,d)~g(a,b,c,d){h(a,b,c,d)=c

g(a,b,c,dz1)~g(a,b,c,d)zh(a,b,c,d)=d

where the base case is provided by g(a,b,a,b)~
1

2
(this because if

h1 and h2 have exactly the same distribution, P(h1wh2)~
1

2
).

Approximate Computation
Even if methylation data are well modelled by a Betah, the

comparison presented above is never (to our knowledge) used in

the literature. As (hopefully fair) representatives of the methods

which we have found are used instead, we will analyze the

performances of the Fisher’s test and that of a test based on a

Gaussian approximation.

To do a Fisher’s test, one builds a contingency table with the

number of non converted and converted reads in the two samples

(note that this kind of test breaks down when one of the rows (or

columns) of the contingency table is zero). In the Gaussian

approximation, one models P(h) for each sample with a Gaussian

with the same mean and variance of Betah; and then uses the two

Gaussians to test for differences between h1 and h2. In both cases

we will consider one tailed tests.

Results and Discussion

Comparison with Approximate Results
We organized the comparison between the exact and approx-

imate solution in two steps. First, we looked at the behaviour of the

two tests on a pair of real samples (see below for instructions on

how to access the data we used).

The results are shown in figure 1. On the x axis we plotted

P(h1wh2), on the y axis we plotted the corresponding p-value

obtained by approximating the Beta respectively with a Fisher’s

test (on the left) and with a Gaussian (on the right). We did the

comparison over 100000 positions : the plot is in fact a two

dimensional histogram, in which different shades of blue indicate

how many times the two values fall into a certain region of the

plane. There is not much to comment there except to note that, as

expected, there is a broad correspondence between the different

methods. Also, at such a scale the Beta probabilities seem more

similar to the Z score test than to the Fisher’s p-values (the right

hand side plot looks more like a diagonal).

Next, we simulated a pair of samples whose counts are

generated by the same underlying binomial process (i.e.

h1~h2~0:5) at different coverages. These constitute a negative

control, in the sense that none of the methods should report a

significant difference between the samples. Furthermore, we

generated a pair of samples such that their underlying binomial

probabilities are markedly different h1~0:9,h2~0:5; those are the

true positives, i.e. cases for which the tests should detect that

h1wh2. We then compare the receiver operating characteristic
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(ROC) curves of the three methods for different values of the

samples’ coverages, d1,d2. The results are depicted in figure 2.

That plot justifies the usage of the Betah distribution: the number

of false negatives accumulated by the other two methods

considered stops them from reaching an high enough true positive

rate (even when the threshold for computing it is very permissive).

Note, for example, that the blue line is not even visible in the

leftmost panels of figure 2. This effect is also shown in figure 3

where we depict the distribution of the outputs for the three

methods at read depth d1~10,d2~10.

Figure 1. Comparing beta distribution with Fisher’s test and Z score test. Each plot contains an enlarged version around p-value *0:05.
Notice that the in these magnified plots the x axis is 1{Betah , for exact powers of 10 take less space in the labels then string of 9 s.
doi:10.1371/journal.pone.0097349.g001

Figure 2. ROC curves for the three methods under comparison. Each point in the ROC curve is obtained by choosing a different threshold for
calling differential methylation. For the Z score test and the Fisher’s test the p-values are: 10{1,5|10{2,2|10{2,10{2,5|10{3,2|10{3,10{3 . For
the Beta distributions the threshold probabilities are: 0:5,0:6,0:7,0:8,0:9,0:95,0:99. TPR means true positive rate; FPR means false positive rate.
doi:10.1371/journal.pone.0097349.g002
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Differentially Methylated Regions and Effects of
Coverage

Using the above concepts, we can compute differentially

methylated regions (DMR) along the genome : these are

uninterrupted blocks of nucleotides where the two samples have

different methylation. One possible technique to find such blocks is

to conjoin a number of adjacent nucleotides in a DMR,

disregarding their exact methylation probabilities, and to assign

hard boundaries. This usually implies that a number of ad hoc rules

must be established to control the minimum distance between 2

neighbouring DMRs, the minimum length of a DMR, how to

exactly count the intersection of DMRs with annotated regions,

and so on and so forth. Using our method, though, one can simply

assign to each nucleotide the probability computed by the

algorithm presented here; any further analysis can be conducted

without imposing arbitrary threshold or boundaries. For instance

one can ask what is the average value of this probability over some

specific regions (introns, enhancers) with respect to randomly

chosen regions of the genome. Often it is not clear a priori what is

the correct scale to use when looking at methylation : if this is the

case, one can smooth the probability per nucleotide by computing

a kernel density estimation at various bandwidths, or simply clump

together the values of a number of nearby bases in a single

(average) value. Note that smoothing is justified by the fact that

methylation levels are correlated in space (the strength and

persistence of the correlation is different from sample to sample,

reflecting technical and biological variability); in fact as hinted at

in [4], analyzing together nearby positions could provide a way of

correcting measurement errors.

We would also like to comment on the fact that the different

coverage of the samples does have an effect on the estimation of

differential methylation. The main idea to understand here is that

low coverage means uncertainty: and uncertainty can give rise to

results which, while correct, are slightly counterintuitive. For

example in figure 4 we show that a sample with low methylation

and low coverage can be (maybe, one cannot say for sure) more

methylated than a sample with high, certain methylation. The

right panel of the same figure suggests that a good way of filtering

for certainty is to select positions with low estimated variability

(rather than to select based on read counts): this is because the

same read depth can correspond to different variances depending

on how many reads are non converted or converted.

Finally, once one has the estimates for h1 and h2 (as obtained via

the ratio of unconverted reads over the coverage) and

P(h1{h2w0) ( i.e. the output of the algorithm expalined in this

paper) one can take an informed decision on a locus, keeping into

account both the size of the difference in methylation and its

variability.

Implementation and Data Availability
The algorithm described above is implemented in a C program,

called methyl_diff, available from the Github page of one of the

authors : http://emanueleraineri.github.io/. The program takes

as input (from stdin) four integers, i.e. the number of non converted

and converted reads for the first and the second sample

respectively, and prints P(h1wh2) on the stdout. It takes 3:3s to

process 105 lines on off-the-shelf hardware (MacBookPro with

Intel i7@2.66 GHz). Note that the data used to produce figure 1

are publicly available (they were generated for BLUEPRINT, a

consortium, studying epigenetic marks in immune system cells.) in

at least two ways (also corresponding to two different formats):

1. First of all, they can be downloaded from the same web page

where the source code of our implementation is stored. The file

G199.G202 contains the methylation levels of 100000 random

positions from the chromosome 1 of samples G199 and G202

Figure 3. Distribution of p-values (for the hypothesis tests discussed) and of P(h1wh2) computed with the Betah model. The first row
depicts the truly different samples (h1~0:9,h2~0:5). The bottom row refers to the control samples. For all the plots d1~10,d2~10.
doi:10.1371/journal.pone.0097349.g003
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(first we determined which positions had been sequenced in

both samples; then we extracted a random subset of those).

One can feed columns 6,7,10,11 directly to the methyl_diff

executable (those columns are the unconverted, converted

reads from the two samples).

2. Secondly, they can be downloaded from the BLUEPRINT

project ftp site ftp.ebi.ac.uk/pub/databases/blueprint/data/

homo_sapiens/.
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