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Abstract

Substantial effort is being expended on using micro-structural modeling of the white matter, with the goal of relating
diffusion weighted magnetic resonance imaging (DWMRI) to the underlying structure of the tissue, such as axonal density.
However, one of the important parameters affecting diffusion is the water exchange rate between the intra- and extra-
axonal space, which has not been fully investigated and is a crucial marker of brain injury such as multiple sclerosis (MS),
stroke, and traumatic brain injury (TBI). To our knowledge, there is no diffusion analytical model which includes the Water
eXchange Rate (WXR) without the requirement of short gradient pulse (SGP) approximation. We therefore propose a new
analytical model by deriving the diffusion signal for a permeable cylinder, assuming a clinically feasible pulse gradient spin
echo (PGSE) sequence. Simulations based on Markov Random Walk confirm that the exchange parameter included in our
model has a linear correlation (R2.0.88) with the actual WXR. Moreover, increasing WXR causes the estimated values of
diameter and volume fraction of the cylinders to increase and decrease, respectively, which is consistent with our findings
from histology measurements in tissues near TBI regions. This model was also applied to the diffusion signal acquired from
ex vivo brains of 14 male (10 TBI and 4 normal) rats using hybrid diffusion imaging. The estimated values of axon diameter
and axonal volume fraction are in agreement with their corresponding histological measurements in normal brains, with
0.96 intra-class correlation coefficient value resulting from consistency analysis. Moreover, a significant increase (p = 0.001) in
WXR and diameter and decrease in axonal volume fraction in the TBI boundary were detected in the TBI rats compared with
the normal rats.
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Introduction

Diffusion weighted imaging (DWI) is an interesting non-invasive

tool for measuring micro-structural and physiological parameters

of tissue. However, because of several limitations and restrictions

in both imaging and methodology techniques, the task of relating

specific microstructures to the diffusion signal is not straightfor-

ward and requires many simplifying assumptions. On the other

hand, for measuring and estimating micro-structural and physi-

ological parameters of the tissue, such as cell size and water

exchange rate between intra- and extra-cellular spaces, high b-

value diffusion imaging is generally required [1].

Currently, high b-value diffusion analysis has mainly focused on

free model approaches to resolve intra-voxel fiber crossing, such as

diffusion spectrum imaging (DSI) [2], high angular diffusion

imaging (HARDI) [3], Q-ball imaging [4], and persistent angular

structure MRI (PASMRI) [5].

In contrast, there are also some high b-value diffusion

approaches in which a model is constructed based on the tissue

structure and physical rules such as Fick’s laws to simulate

diffusion and investigate its behavior under different conditions.

Solving Fick’s laws even in a simple tissue model requires extensive

calculations. In these cases, Fick’s law is solved using numerical

techniques such as finite element [6], finite difference [7,8], or

partial differential equations (PDE) [9]. For complicated struc-

tures, probabilistic methods like Markov Random Walks (MRW)

may be used [10]. After simulating the water diffusion in the

structure, it is possible to calculate the diffusion signal using proper

mathematical relations. Thus, these models are good validation

tools in building a physical model by ensuring that each of its

parameters has an obvious effect on the diffusion signal [11,12].

Moreover, they can be used to estimate unknown parameters of

the tissue. For example, the conventional DTI model combined

with a physical simulation model of axons [13] is used to estimate

white matter tissue parameters such as density and myelin sheath

thickness [14].

Other approaches utilize and optimize the parameters of the

MRI pulse sequence in order to make it sensitive to specific
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microstructural parameters [15]. For example, double pulsed-field

gradient (d-PFG) MRI scheme is used to measure pore diameter

[16] and double-wave-vector imaging protocol is used to estimate

the density and size of cells even in irregular distributions [17].

The phase of the diffusion signal also contains useful information

about the tissue such as fiber orientation [18]. On the other hand,

high field diffusion imaging is also an interesting tool to measure

cell size because of the diffraction patterns seen in the diffusion

signal in high field gradients [19]. This approach is employed to

measure the size of microstructures in a porous medium [20,21].

However, it hardly can be applied to white matter fibers due to its

limitations in both imaging and modeling methodologies [21].

Another example of high field imaging application is the work of

Jespersen et al. [22] in which a two-compartment diffusion model

is proposed to measure the density of neurites (axons and

dendrites) for a normal rat.

Presently, most researchers use muli-compartment models for

modeling of diffusion signal acqired by MRI [1,23–25]. Typically,

they consist of at least two compartments: one compartment is

devoted to diffusion in the extra-cellular or extra-axonal space,

known as hindered diffusion or fast diffusion. The other part is

diffusion in the intra-cellular or axonal space, known as restricted

diffusion or slow diffusion. Different approaches define and use

different parameters and different simplifying assumptions. The

CHARMED (Composite Hindered And Restricted ModEl of

Diffusion) introduced by Assaf et al. [1] is a well known model that

has been used in several studies to measure tissue parameters,

especially axon diameter. For example, Assaf et al. [23] estimated

axon diameter distribution of freshly excised porcine optic and

sciatic nerves using this model and high b-value MRI perpendic-

ular to the axons. However, one of the first attempts to measure

axon diameter distribution in vivo was conducted by Barazany et al.

[25] for the corpus callosum fiber tracts of rats by combining DW

imaging and a new analytical method called AxCaliber proposed

by Assaf et al. [24]. This work is an extension of the CHARMED

model which has an additional compartment for isotropic

diffusion, accounting for cerebrospinal fluid (CSF). In this

approach, the diffusion gradients also need to be perpendicular

to the fiber orientation. To reduce the dependence on the fiber

orientation, Alexander et al. [26] proposed a four compartment

model consisting of intra-axonal space, extra-axonal space, CSF,

and glial cells combined with a multi-shell HARDI data

acquisition. The scalars defined in this method for estimating the

axon diameter and density are invariant to the orientation of the

axons. Another limitation of this kind of modeling is that a single

orientation for the axons is assumed which limits the analysis to the

voxels belonging to single fibers. Therefore, Zhang et al. [27],

using a simplified version of the CHARMED model, brought in

the effect of orientation dispersion of the axons to the modeling by

assuming Watson distribution for the axon’s orientation. Further-

more, by modifying their model they [28] proposed a three

comportment model combined with a clinically feasible two-shell

HARDI protocol to estimate the neurite orientation dispersion

and density (NODDI). Hence, this approach can be applied to a

wide range of voxels within the brain. As a final point here,

Panagiotaki et al. [29] did an experimental study to investigate the

performance of 47 multi-compartment models of the white matter

with no exchange. They concluded that by combining a diffusion

tensor (DT), a cylindrical, and a spherical component, the

constructed model describes the data more accurately. Moreover,

considering a distribution rather than a single value for the axon’s

radius decreases the stability of the fitting process.

It should be mentioned here that Ball and stick [30] is another

kind of modeling which consists of two terms: one for modeling the

isotropic diffusion, ball, and the other is accounting for the fibers,

zero-radius stick(s). Although this kind of modeling looks similar to

two compartment models like CHARMED, it is mainly useful for

resolving the fiber orientation in crossing regions.

An interesting parameter of the white matter is the water

exchange rate between the intra- and extra-axonal spaces, which

also has an effect on the diffusion signal [31]. Karger et al. [32]

added the exchange effect into the NMR magnetization differen-

tial equations to derive proper relations to measure exchange

times. One of the first analytical models including exchange rate

was introduced by [33] for the bovine optic nerve using Karger

relations. There are also other studies which investigated the effect

of the exchange rate based on the Karger framework

[12,31,34,35]. Injuries or abnormalities of the cerebral tissues

can change the exchange rate [35]. Moreover, it is shown using

Monte Carlo simulation that in a two-compartment diffusion

model, the exchange rate through a permeable membrane should

be included so that the estimated parameters are close to their

actual values [36]. Usually, these models are valid when the

diffusion gradient is applied perpendicular to the tract. The short

gradient pulse (SGP) condition also needs to be valid when

applying the NMR imaging protocol. On the other hand, some

techniques modify and optimize the acquisition pulse sequence to

make it sensitive to the exchange rate, such as double-PGSE

diffusion exchange spectroscopy [37], filter exchange spectroscopy

(FEXSY) [38], and apparent exchange rate (AXR) imaging [39].

Another way to import the exchange effect into the modeling of

the diffusion signal is to solve Fick’s Laws for a typical structure

with proper boundary conditions, which considers permeable

membranes [40]. However, even for an impermeable boundary,

solving Fick’s equations is difficult and needs simplifying assump-

tions such as SGP or identical diffusion time, D, and diffusion pulse

width, d, [41] which limit the applicability of the methodology for

a typical human MRI scanner.

Therefore, the aim of this work is to present a new analytical

model for the diffusion signal which includes axon diameter and

axonal volume fraction as well as water exchange rate. The

diffusion signal is calculated mathematically for a pack of parallel

cylinders with permeable membranes, assuming a practical PGSE

sequence. The model has been validated and confirmed using

artificial data with Markov Random Walk simulation, DWMRI,

and histological data from the ex vivo rat brain. The model is also

used to compare TBI rats with normal ones with respect to the

estimated parameters, especially in the corpus callosum.

Materials and Methods

In this section, we derive the diffusion signal assuming a PGSE

sequence perpendicular to a typical cylinder having permeable

membrane. Then the other parts of the model, accounting for the

diffusion signal of parallel and extra axonal spaces, are combined

accordingly. After that, the methodology for evaluating the

proposed model using artificial data simulated by Markov

Random Walk is described. Finally, the DWI protocol and the

staining process employed in our experiments are explained.

a) Background and Motivation
The general equation for relating the diffusion signal to the

movement of the spins during diffusion time, D, is

E(q,D)~E ei(w2{w1)
� �

ð1Þ

in which (w22w1) is the phase change due to the spin displacement

along the direction of the diffusion gradient. To solve equation (1),
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the probability function of the phase change has to be known. The

simplest way is to assume a Gaussian distribution for this function;

therefore we will have

E(q,D)~e
{1

2
S(Dw)2T ð2Þ

This assumption is valid when diffusion is un-bounded or free in

the underlying medium like inside the extra-cellular space.

However, usually the researchers use the above equation also for

bounded media like the axons in order to simplify the problem

[41]. Under this assumption, the problem is reduced to calculate

the ‘‘mean square phase change due to the spin displacement’’,

i.e.,

S(Dw)2T~4p2c2G2S
ðd

0

x(t)dt{

ðDzd

D

x(t)dt

� �2T ð3Þ

in which c is the gyromagnetic ratio, d and D are the pulse width

and diffusion time, respectively. Moreover, G is the amplitude of

the diffusion gradient, which we assumed along the x-axis here.

This also requires the probability function (propagator) of spin

displacement, P(r|r’), which comes from solving Fick’s second law

under proper initial and boundary conditions consistent with the

underlying structure.

Another way to solve equation (1) is to assume d,,D (short

gradient pulse, SGP, approximation) and then use the Fourier

representation of the problem [42]. Therefore, the Gaussian

assumption for phase change does not have to be imposed.

However, the propagator function P(r|r’) is still required.

SGP approximation can hardly be achieved in existing clinical

and even research MRI scanners. On the other hand, the first

method imposes the Gaussian distribution on the model, which

restricts the number of unknown parameters. For example,

Neuman [41] calculated the perpendicular part of intra-axonal

diffusion signal as

log (E\
in (q,D))~{

R4q2

Dind

7

96
2D{

99

112

R2

Din

� �

:{q2f (R,Din;D)

ð4Þ

where q = cGd. Here, just one unknown parameter can be

estimated if the images are acquired using a fixed value of D.

For instance, in the CHARMED model [1], only the radius, R, is

estimated using this part, while Din is estimated using the parallel

part of the signal. To add another parameter to the model, such as

exchange rate, there are two options; either we can define and use

a new imaging protocol with different diffusion times, like [37], or

we can build our model in a way that does not require Gaussian

assumption for phase change and also does not require SGP

approximation. Although the second approach is more realistic, to

our knowledge, there is no calculation trying to use it because it

necessitates non-solvable integrals. Here, we built an analytical

model including a parameter accounting for the exchange rate

using proper mathematical relations without assuming Gaussian

distribution for the phase change or the SGP approximation.

b) Proposed Model
The phase change can be approximated by the summation

instead of the integral:

Dw~cG

ðDzd

D

x(t)dt{

ðd
0

x(t)dt

8<
:

9=
;

~cG
d

N

XN

k~1

x(Dz(k{0:5)
d

N
){
XN

k~1

x((k{0:5)
d

N
)

( ) ð5Þ

where N..1. Assuming diffusion gradient is along the x-axis, the

more general form will be

Dw~
2p~qq

N
:
XN

k~1

~rr(Dz(k{0:5)
d

N
){
XN

k~1

~rr((k{0:5)
d

N
)

( )

:~vv:
XN

k~1

r̂rD(k){
XN

k~1

r̂r(k)

( ) ð6Þ

where, ~vv~ 2p~qq
N

, r̂rD(k)~~rr(Dz(k{0:5) d
N

), and

r̂r(k)~~rr((k{0:5) d
N

).

Then, using equation (1), the diffusion signal is calculated by the

following integral:

E(q,D)~E eiDw
� �

~

ð
:::

ð
r1dr1dQ1:::rNdrNdQN :rD1drD1dQD1:::

rDNdrDNdQDNe
i~vv:

PN
k~1

r̂rD(k){
PN

k~1

r̂r(k)

� 	

|P(̂rr1,:::,̂rrN ,̂rrD1,:::̂rrDN )

ð7Þ

in which dr̂r~rdrdQ. Since the diffusion is a Markov random

process, each movement of a spin depends only on its starting

position. Therefore, after replacing dr1dQ1:::drNdQN by dRdW
and expandingP(̂rr1,:::,̂rrN ,̂rrD1,:::̂rrDN ), equation (7) is simplified to:

E(q,D)~ð
:::

ð
dRdRDdWdWD P

N

k~1
rk cos (vrk cos Qk) P

N

k~1
rDk cos (vrDk cos QDk)

Pr̂r1
|P(̂rr1 D̂rr2):::P(̂rrN{1 D̂rrN )|P(̂rrN D̂rrD1):::P(̂rrDN{1 D̂rrDN )

ð8Þ

Note that the imaginary part of equation (7) is equal to zero.

Now we need the probability function (propagator) of spin

displacement, P(r0|r). This function has been calculated for planar,

spherical, and cylindrical boundary conditions [41,42] and used in

several calculations. However, few of them consider the effect of

permeable membrane in the boundary condition [40]. For a

cylinder of radius R, the 1-D propagator function perpendicular to

the axon is [42]:

P(r0h0jrh; t{t0)~

1

pR2

X
m

1

B0m

J0(a0mr)J0(a0mr0):e
{Dina2

0m
(t{t0)

z

1

pR2

X
nw0

X
m

2

Bnm

Jn(anmr)Jn(anmr0): cos½n(h{h0)�:e{Dina2
nm(t{t0)

ð9Þ

which is the solution of the Fick’s Law,
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LP

Lt
~Din+2P ð10Þ

subject to the following initial and partially permeable membrane

boundary conditions:

P(r0h0Drh,0)~d(r{r0,h{h0) ð11Þ

Din

LP

Lr
D

r~R
zM:P~0 ð12Þ

where Din is the diffusion coefficient of the intra-axonal space and

M(m/s) is the permeability coefficient. Jn(.) is the nth order Bessel

function and anm is the mth positive root of the following equation

which comes from combining equations (10) and (12).

anmR Jn
0(anmR)

Jn(anmR)
~{

R:M

Din

: ð13Þ

The right hand side of the above equation is a dimensionless

quantity which we call absorbing coefficient, h = R.M/Din. This

quantity is directly related to the exchange rate (1/s), defined as

the fraction of spins exchanged between intra- and extra- axonal

space through the membrane per second, because each spin

absorbed by the membrane moves to the extra- axonal space and

there will be also a corresponding spin which is transported into

the intra- axonal space in order to preserve the equilibrium. The

coefficients Bnm can be derived using the orthogonality property of

the Bessel Functions and the above boundary condition:

Bnm~
J2

n (anmR)(h2za2
nmR2{n2)

a2
nmR2

ð14Þ

By solving equations (8), (9), (13) and (14), the intra-axonal

compartment of the diffusion signal perpendicular to the axon is

achieved. Starting from equation (8), by taking the integrals over

angels, Q, using the following equation

ð2p

0

cos (r cos h)dh~2pJ0(r) ð15Þ

the equation (8) is reduced to:

E(q,D)~

ð
:::

ð
dRdRD P

N

k~1
2prkJ0(rk) P

N

k~1
2prDkJ0(rDk)

Pr̂r1
|P(̂rr1 ĵrr2):::P(̂rrN{1 ĵrrN )|P(̂rrN ĵrrD1):::P(̂rrDN{1 ĵrrDN )

ð16Þ

in which Pr̂r1
~ 1

pR2 and the other probability functions are derived

from equation (9). The most dominant term in that equation is the

one having a01 [40,43], therefore,

P(̂rrk D̂rrkz1)

~P(̂rrD k D̂rrD kz1)~P(rDr0)

~
1

pR2

J0(a01r)J0(a01r0)

B01
e
{Dina2

01
d=N

, for k~1:::N{1

ð17Þ

P(̂rrN D̂rrD1)

~
1

pR2

J0(a01 r̂rN )J0(a01r̂rD1)

B01

e
{Dina2

01
(D{d) (18)

where

B01~
J2

0 (a01R)(h2za2
01R2)

a2
01R2

ð19Þ

and the simplified boundary condition will be

a01RJ1(a01R)

J0(a01R)
~h ð20Þ

After inserting (17) and (18) into (16), we have

E(q,D)~e
{Dina2

01
(Dzd) 2

R2B01

ðR
0

rJ0(vr)J2
0 (a01r)dr

8<
:

9=
;

2N{2

|
1

B01

2

R2

ðR
0

rJ0(vr)J0(a01r)dr

8<
:

9=
;

2
ð21Þ

Unfortunately, only the second integral has a closed form which

is

1

R2

ðR
0

rJ0(vr)J0(a01r)dr

~
vRJ1(vR)J0(a01R){a01RJ0(vR)J1(a01R)

(vR)2{(a01R)2
)

ð22Þ

To get a closed form for the first integral, we assume

thatJ0(vr)%1{ v2r2

4
which is valid because N is considered large

enough in our analysis. Using this approximation and also the

following integral equation,

1

R2

ðR
0

rJ0(a01r)dr~
J1(a01R)

a01R
ð23Þ

the closed form of the first integral appeared in equation (21)

will be
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2

R2

ðR
0

rJ0(vr)J2
0 (a01r)dr~

J2
0 (a01R)zJ2

1 (a01R){
v2R2

12

a2
01R2{2

a2
01R2

J2
1 (a01R)zJ2

0 (a01R)z
2J0(a01R)J1(a01R)

a01R

� �
ð24Þ

Finally, by simplifying equation (21) using equations (20), (22),

and (24) we have

E(q,D)~e
{Dina2

01
(Dzd)

1{
v2R2

12(h2za2
01R2)

(a2
01R2{2)h2

a2
01R2

za2
01R2z2h

� �� 	2N{2

|
4 a2

01R2

h2za2
01R2

vRJ1(vR){hJ0(vR)

(vR)2{(a01R)2
)

� 	2

ð25Þ

Therefore, the final form of the signal which we use in our

model is:

E(q,D)~e
{Dina2

01
(Dzd)

4 a2
01R2

h2za2
01R2

vRJ1(vR){hJ0(vR)

(vR)2{(a01R)2
)

� 	2

|

1{
(N{1)v2R2

6(h2za2
01R2)

(a2
01R2{2)h2

a2
01R2

za2
01R2z2h

� �� 	 ð26Þ

where a01 and h are related by equation (23).

Here we should note again that in equation (9) we omit the

terms with n.0 and m.1 from the summation as also assumed by

[40,43]. From equation (13) it can be shown that anmR$3.83 for all

values of n and m except (n,m) = (0,1). Therefore, to ensure that this

approximation is valid, we should have:

exp½{ 14:7Dind

R2N
�vv1 ?

exp½{ 14:7Dind

R2N
�v0:01 ?

Dind

R2N
w0:31

Thus, there is an upper limit for N, which is Nv3:2
Dind

R2
.

Combining this limit with the lower limit introduced in equation

(5), we have:

1 vvNv3:2
Dind

R2
ð27Þ

For example, since in our experiments, the typical values of Din,

R, and d are 0.25 mm2/ms, 0.5 mm, and 10 ms, respectively, a

reasonable value of N is 30 which is chosen in our analysis.

For special cases when the SGP approximation is valid, i.e.,

d,,1, we can set N equal to 1. Then, equation (26) is reduced to

the following form of the diffusion signal, which is similar to the

form used by [40]:

E\
in (q,D)~

e
{Dina2

01
(Dzd) 4 a2

01R2

h2za2
01R2

2pqRJ1(2pqR){hJ0(2pqR)

(2pqR)2{(a01R)2

� 	2 ð28Þ

Moreover, if the absorbing effect, h, (or the exchange

phenomenon) is neglected from the equation, we have:

E\
in (q,D)~

J1(2pqR)

2pqR

� 	2

ð29Þ

which is consistent with the form of the signal introduced by [43],

for long D.

Similar to [1], if the diffusion gradient, G, is decomposed into

parallel and transverse directions of the axon, i.e., G|| and GH,

and since q = cdG, the attenuated signals due to diffusion in and out

of the axons are as follows

Ein(q,D)

~E
DD
in(q,D):E\

in (q,D)

~e
{4p2 DqDD D

2(D{d=3)Din,DD :E\
in (q,D; h,R,Din,\)

ð30Þ

Eout(q,D)

~E DD
out(q,D):E\

out(q,D)

~e
{4p2 DqDD D

2(D{d=3)Dout,DD :e{4p2 Dq\ D2(D{d=3)Dout,\

ð31Þ

assuming Gaussian profile for Ein
||, Eout

||, and EoutH. The overall

diffusion signal is a weighted summation of both compartments

based on their volume ratios:

E(q)~v:Ein(q)z(1{v):Eout(q) ð32Þ

in which v is the intra-axonal volume fraction ratio. Also, if the

Johnson noise model is considered for the measurements [1], the

final model for the measured diffusion signal is.

S(q)=S(0)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(v:Ein(q)z(1{v):Eout(q))2zg2

q
ð33Þ

Assuming Din,|| = Din,H = Din, there are totally 10 parameters in

our model: Diffusion coefficients (Din,||, Dout,||, Dout,H), axon

radius (R), absorbing coefficient (h), axon direction (n), volume

fraction of axons (v), and also noise level (g).

In summary, our two compartment model consists of four parts

to model the diffusion signal. Among these parts, the effect of

membrane permeability is modeled explicitly only by EinH which

takes into account the spins inside of the axon absorbed by the

membrane. This means that those exchanging spins which leave or

enter the intra- axonal space are modeled by the other parts which

assumed to have Gaussian distribution. As a result, this assumption
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may affect the estimation of the other parameters of the model

especially the apparent diffusion coefficients as in current non-

exchanging two compartment models. However, as stated before,

the absorbing coefficient, h, included in the proposed model is a

quantity which can be used to estimate the exchange rate.

c) Model Fitting
Having measurements and the proposed model, the remaining

task is to fit the model to the data. In this work, we use a non-linear

least square fitting procedure to estimate unknown parameters

(Din, Dout,||, Dout,H, R, h, v, and g). For the fiber direction, we use

the principal eigen-vector estimated from the DTI model. Note

that since the proposed model is built for a specific configuration of

fibers (parallel axons with nearly identical diameters), it is valid just

for a special group of voxels. Therefore, we apply the model to the

voxels having high FA values which are more likely to belong to a

single fiber tract. We also assume that in a single fiber, the axons

are parallel and nearly the same size. The fitting procedure is

implemented in MATLAB (MathWorks, Natick, Massachusetts,

USA) by employing its optimization toolbox. A block diagram of

the proposed model for driving the diffusion signal is shown in

Figure 1.

d) Markov Random Walk Simulation
Validation of a model can be conducted using simulation data.

In this work, we use Markov Random Walk (MRW) to simulate

the diffusion process and create an artificial diffusion signal in a

voxel. An advantage of MRW is that it can be applied even to

complex configurations of the fibers. Nevertheless, a disadvantage

of MRW is its huge computational complexity. The aim of this

simulation is to solve the diffusion equation for a fiber.

Consider a pack of parallel cylinders of equal radius, R, (rolling

as axons) distributed in a regular manner (see Figure 2(a)). Thus,

the medium is partitioned into two components: intra- and extra-

axonal spaces having the diffusion coefficients of Din and Dout,

respectively. To simulate diffusion, first we construct a 3D grid of

cells to discretize the space. In this work, we assume a voxel with

dimension of 24624648 mm discretized (separated) into

806806160 cells (Dx =Dy =Dz = 0.3 mm). Axons are considered

as parallel cylinders in the z-direction with a radius of 1.5 mm.

Axonal volume fraction, v, is defined as the ratio of the intra-

axonal space to the total volume. In this work, we assume two

configurations with v = 0.27 and v = 0.46.

To simulate the random walk, each spin starts from its initial

position and moves with a step size, dr = !(D.dt/6), in one of the 6

directions along the Cartesian axes, i.e., 2x, x, 2y, y, 2z, z,

randomly. Note that the step size, dr, is different from the cell size,

Dx, Dy, or Dz. So, based on its position and the diffusion gradient’s

direction and magnitude, the phase of that spin is updated by.

w(tzdt)~w(t)zc~gg(t):~rr(tzdt) ð34Þ

with the initial value of Q(t = 0) = 0 and time step, dt, equal to 2 ms.

Then, the attenuated signal due to diffusion at echo time, t = TE, is

calculated using the following relation:

S(t~TE)

S(0)
~exp (i:½w(TE){w(0)�)

%
1

N

X
n [ spins

exp (i:½wn(TE){wn(0)�)
ð35Þ

At t = 0, 106 spins are distributed uniformly on a disk which is

placed in the center of the voxel (see Figure 2(b)). The radius of the

disk is selected such that the ratio of the initial spins inside the

cylinder to the outside ones is equal to the intra- to extra-axonal

volume ratio. We should emphasis that it is not necessary to

initialize the spins across the whole substrate because in our

simulation the configuration is symmetric. Moreover, in this way,

the likelihood that a spin reaches to the boundary of the voxel is

significantly decreased which is desirable in the numerical

calculations. To calculate the diffusion signal, we consider a

typical gradient spin echo sequence as depicted in Figure 3. The

sequence parameters are chosen similar to our ex-vivo animal

experiment with d= 10 ms, D= 18 ms, and q = 0.025, 0.05, 0.075,

0.1, 0.125 1/mm, corresponding to 357, 1437, 3240, 5767, 9016 s/

mm2 b-values, respectively. However, the number of diffusion

gradients is set to 6 for all five shells to reduce computation time.

To include the exchange process into the simulation, the spins

reaching the boundary may pass it, based on a jump probability, s,

which is calculated from the following equation,

s~
Pm:dt

k:Dm
ð36Þ

in which Pm is the membrane permeability, Dm is the membrane

thickness, and k represents the relative concentration of the inside/

outside of the axon to the free water which we set it to 1 in this

Figure 1. The overall look of the proposed model for deriving the diffusion signal. The unknown parameters are Din, Dout,||, Dout,H, R, v, and
h. The direction of axons is estimated using the conventional DTI model.
doi:10.1371/journal.pone.0095921.g001
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work. As suggested by Hwang et al., 2003, we set the membrane

thickness equal to 0.01 mm. Also, we choose different values of

0,1,2,3,4,5,6,9,12 mm/s for the permeability to investigate the

effect of exchange on the signal. At the end of each experiment,

Water Exchange Rate (WXR), 1/sec, is calculated as the ratio of the

spins passed the boundary to the total number of initial spins per

second. Moreover, to study the performance of the proposed

model more realistically, white Gaussian noise is added to the

signals (SNR = 40) and each investigation is repeated 50 times. In

Figure 4, the final distribution of the particles is shown in a cross

section of the structure. In this simulation, the permeability is

equal to zero; therefore, the particles did not pass the boundaries.

In Figure 5, the mean and STD values for the estimated

parameters h/D, r9, v9, and the diffusion coefficients are shown

versus WXR. Note that h/D is the absorbing coefficient

normalized to the diffusion time. It can be seen that in Figure 5

(a) h/D has a significant (p = 0.0001) linear correlation to the

WXR, with R2-values of 0.91 and 0.88 for v = 0.46 and v = 0.27,

respectively. Also, the intra-class correlation analysis within 95%

confidence interval shows 0.968 and 0.967 agreement (1:1 match)

(p = 0.0001) between h/D and WXR for these two configurations,

respectively. On the other hand, the diffusion coefficients have also

been well estimated using the model. However, for radius, r, and

volume fraction, v, the estimated values change as the WXR

increases. Note that v9 actually corresponds to the ratio of spins

trapped inside axons, which decreases by increasing WXR. On the

other hand, by decreasing v9, one may expect that the radius

should decrease too. However, it should be noted that in our

model, the number and geometrical configuration of the axons is

not considered. Therefore, increasing the radius does not

necessitate increasing the intra-axonal space. Moreover, one

reason the estimated radius, r9, is increased by increasing WXR

is that when more spins pass the axon’s boundary, the effective

apparent radius increases. It should be stated that compensating

for these two effects is almost impossible using two-compartment

models. However, it may be solved if the number and geometrical

configuration of the axons are known and imposed into the model

using proper relations.

e) Experimental Design
To estimate unknown parameters using the proposed model,

there should be appropriate diffusion MRI data. First, data should

be acquired using more than one b-value (multi-shell diffusion

Figure 2. Cross sectional view of the distribution of (a) the axons and (b) the spins at t = 0. The axons are realized as parallel same size
cylinders with permeable boundaries. Initial spins are distributed in the center of the voxel such that the ratio of spins inside the central axon is equal
to the axonal volume fraction.
doi:10.1371/journal.pone.0095921.g002

Figure 3. A typical PGSE sequence. d is the gradient pulse
width and D is the diffusion time.
doi:10.1371/journal.pone.0095921.g003

Figure 4. A typical result of final distribution of the particles
shown in a cross section of the structure. In this experiment, the
particles did not pass the boundaries because permeability was set to 0.
doi:10.1371/journal.pone.0095921.g004
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imaging) so that the profile of diffusion in the radial directions can

be revealed. Secondly, the diffusion time, D, should be large

enough so that the spins have enough time to reach the

boundaries.

1) Animal preparation

All Experimental Procedures Were Approved by the
Institutional Animal Care and Use Committee (IACUC) of
Henry Ford Health System

Fourteen male Wistar rats (weight: 270–300 g) were divided

into two groups, traumatic brain injury (TBI) (n = 10) and a

normal group without neurological injuries (normal group, n = 4).

All TBI rats were subjected to controlled cortical impact (CCI)

[44] and sacrificed six weeks after TBI. The brain was perfused

with heparinized saline [44]. Ex vivo MRI scans were performed

seven weeks after TBI. Normal rats were sacrificed and followed

the same procedures and measurements as TBI rats.

2) Ex-vivo imaging. We use a multi-shell imaging protocol

using a Varian 7 Tesla MRI Scanner (Palo Alto, CA) with

maximum applied gradient amplitude of 290 mT/m. HYbrid

Diffusion Imaging (HYDI) [45] with 125 diffusion gradient

directions in 5 shells is performed using a PGSE sequence with

TR/TE/D/d= 1500/40/18/10 ms and 5 averages. The number

of directions in each shell is 6, 21, 24, 24, 50 with b-values of 360,

1440, 3240, 5760, 9000s/mm2, respectively, along with a

reference T2 weighted B0 image. The FOV is 24 mm and slice

thickness is1-mm, resulting in a 1286128 imaging matrix with 13

slices.

3) Histological staining. The procedures to prepare brain

sections were the same as previously reported [44]. Bielshowski

and Luxol fast blue staining were used to identify reticular fibers

(i.e. neurofibrils and neurofibrillary tangles) and myelin, respec-

tively. For immunohistochemical staining, slides were placed in

20% silver nitrate in the dark, and ammonium hydroxide was

added until the tissues turned brown with a gold background, and

then sodium thiosulfate was added. The slides were stained for

Luxol fast blue, washed in 95% alcohol and placed in lithium

carbonate. Nuclei are colorless; myelin is blue and axons are black.

4) Histological analysis. Two sections of each brain were

selected for taking light microscopy images with different

magnification lenses (2x and 100x). The images were taken from

seven parts of the corpus callosum (CC) as shown in Figure 6. If

the tissue related to any of these ROIs is corrupted due to TBI or

cutting process, the nearest region belonging to CC is considered

Figure 5. Error bar plots of the mean and STD values for the estimated parameters (a) h/D, (b) r’, (c) v’, and (d) diffusion coefficients.
h/D has a significant (p = 000.1) linear correlation to WXR, with R2-values of 0.91 and 0.88 for v = 0.46 and v = 0.27, respectively. Also,
the intra-class correlation analysis within the 95% confidence interval shows 0.968 and 0.967 agreement (1:1 match) (p = 0001) between h/D and WXR
for these two configurations, respectively. It is also seen that the diameter increases while the axonal fraction decreases as the WXR increases.
doi:10.1371/journal.pone.0095921.g005
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for the photography. in Figure 7, typical images of ROI #5 for

one of the TBI samples are shown.

The 100x magnified images were used for measurement of axon

diameter and intra-axonal volume fraction. To measure the axon

diameter, in each image at least 10 axons were selected visually

and the number of pixels across the axons were counted. Since

each pixel represents a 0.196 mm by 0.196 mm region in the actual

tissue, axons thinner than this value may not be included in our

calculations. To estimate the volume fraction, the images were

converted to gray scale images. Then, after color inversion (to

make the axons bright instead of dark) and histogram enhance-

ment, the axons were extracted by thresholding the images using

Otsu’s method [46]. The soma and nuclei were also eliminated

from the final binary image using morphological operations.

f) Validation of the Proposed Model Using Histological
and DWMRI Data

As we described in Section (b), the brains were scanned before

staining using the aforementioned protocol. The resulting images

were smoothed using a 363 Gaussian filter to reduce the noise.

For each brain, the corpus callosum (CC) fiber tract was

segmented manually and divided into 3 parts: left, center, and

right for comparison (see Figure 8). The remaining task for model

validation is to find the corresponding regions between the MRI

and histological images. This can be done by registration of each

histological section to its corresponding T2-weighted image.

However, even using a nonlinear registration algorithm, these

two images will not be matched perfectly due to the significant

intrinsic differences between these two modalities. For example,

the MR imaging slice thickness is 1 mm while the histological

section thickness is 6 mm. Moreover, there are some distortions and

ruptures in the sections caused by the staining process. Therefore,

a reliable way to find the corresponding regions is to do it visually.

In our validation step, the center part of the corpus callosum of the

normal cases is considered because this part is thick enough to

assume that it is almost the same in the range of 1 mm. Also,

correspondence of this region between MRI and histology can be

established more reliably than the other regions. Needless to say,

we can only validate the model with respect to the estimated

structural parameters, i.e., the diameter and axonal volume

fraction.

Results and Discussion

A) Histological Measures
The measured values for diameter and axonal volume fraction

of each ROI in the histological section for each case are shown in

Tables 1 and 2, respectively. The corresponding plots of the

diameter and axonal volume fraction versus ROI with error-bar

are also shown in Figure 9. As seen, there is a significant difference

between the normal and TBI rats in ROI#5 close to the TBI

Figure 6. Illustration of the 7 ROIs considered in this study for
taking microscopy images. All ROIs belong to the corpus callosum.
doi:10.1371/journal.pone.0095921.g006

Figure 7. Typical microscopic images with 2x (left) and 100x (right) magnifications taken from ROI#5 of one of our cases. Nuclei are
colorless; myelin is blue and axons are black in the stained sections.
doi:10.1371/journal.pone.0095921.g007

Figure 8. Illustration of the segmented regions of the corpus
callosum fiber tract overlaid on the FA map. For each subject, the
CC is segmented into three regions manually: left, right, and center. Our
proposed model is applied to these regions and only the center part is
used for validating the model using histological data.
doi:10.1371/journal.pone.0095921.g008
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boundary, both for diameter (p = 5.7610213) and axonal volume

fraction (p = 0.0033). In other words, the injury in ROI#5 after

TBI has increased axonal diameters and reduced axonal volume

fraction compared to the uninjured animals. As discussed in

Section (d) of ‘Material and Methods’, these findings are consistent

with the simulation results of our proposed model, where we found

that by increasing WXR, the axonal volume fraction decreases

while the axon diameter increases. Therefore, by considering the

simulation results and histology findings, it can be claimed that the

WXR increases in the injured brain.

B) Validation of the Proposed Model Using MRI and
Histology Data

Table 3 shows the estimated values of the diameter, 2R, and

axonal volume fraction, v, for the center part of the CC of normal

cases using our proposed model. By comparing this table to the

histological values shown in Tables 1 and 2, especially ROI#4, it

can be seen that v is underestimated (about 30%) while R is

overestimated (about 20%). However, the results are consistent

because the consistency analysis between the results of histology

and the proposed model reveals that the intra-class correlation

coefficients within 95% of confidence interval are 0.970 (p = 0.008)

Figure 9. Error bar plots of the overall mean and standard error (SE) values of histologically measured parameters: (a) axonal
volume fraction and (b) axon diameter for all cases. There is a distinct difference between normal and TBI rats in ROI#5 both for the diameter
(with p-value of 5.7610213) and the axonal volume fraction (with p-value of 0.0033).
doi:10.1371/journal.pone.0095921.g009
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and 0.933 (p = 0.026) for the diameter and volume fraction of the

axons, respectively.

The observed differences between the results of the model and

the histological measurements can be caused by several factors.

These factors generally originated from the limitations in modeling

(simplifying assumptions like parallel, same size axons), imaging

(like noise), and also histology staining process. The latter factor

includes the inevitable unwanted incidences which may occur

during cutting and staining such as corruption, contraction, or

expansion of the tissue. On the other hand, measurement of the

radius and axonal volume fraction has its own limitations. For

instance, the pixel size on the 100x-magnified images is 0.196 mm

which imposes an uncertainty of about 0.2 mm to the values of

measured axon diameter. Moreover, the thickness of the sliced

sections (which is 6 mm) has not been accounted for measuring the

volume fraction.

C) Application of the Proposed Model to Discriminate TBI
Tissues

To show the capability of the model to discriminate between the

injured and normal tissues, three parts of the CC were segmented

manually as depicted in Figure 8 and investigated using the

proposed model. In Figure 10, the error-bar diagrams (mean with

STD values) of the estimated parameters, h/D, 2R, and v in

different ROIs are plotted for all cases including normal and TBI

rats. There is a clear contrast with p-value of 0.001 between the

injured (right) and normal (left) parts of the CC, especially for the

map of h/D parameter (related to the water exchange rate, WXR)

which significantly increases in the TBI boundary compared with

that in the controls. Also, as expected, the diameter increases and

the axonal volume fraction decreases in the injured fibers, which is

consistent with our simulation results.

The proposed model can also be employed to investigate other

diseases affecting the white matter fiber tracts such as multiple

sclerosis (MS). Especially, the estimated values of h in the fiber

tracts close to or within the damaged area may be used as a

quantitative measure to show the progress of the disease. For

example, this parameter may demonstrate the level of demyelin-

ation since there is a meaningful relation between the myelin

sheath and the exchange rate. Therefore, as the proposed model

can be applied to the data acquired using clinical scanners, our

model provides a new insight that may be relevant to clinical

diagnosis and treatment of neurological diseases.

Although the methods presented in this work are based on high

b-value DWMRI, it is worthy to discuss the effect of changing

micro-structural parameters on the DTI parameters such as

fractional anisotropy (FA) and mean diffusivity (MD). Generally,

increasing WXR may decrease FA while increase MD. On the

other hand, if the intra-axonal space increases, the diffusion inside

the axons becomes less ‘restricted’, however, the diffusion outside

of the axons becomes more ‘hindered’. Therefore, if the hindered

part is the dominant part of the diffusion signal (which is true in

common DTI protocols), by increasing the intra-axonal space the

FA is increased while the MD is decreased, and vice versa. It

should be implied that the true effect of variation of the axonal

space on the FA and MD values is dependent on several factors

such as imaging parameters and tissue specifications.

Brain injury, such as TBI, remains a leading cause of mortality

and disability among children and young adults. Current research

in brain injury has been restricted to acute neuroprotection

Table 3. Estimated values of the diameter, 2R, and axonal
volume fraction, v, for the center part of the corpus callosum in
normal cases, estimated by fitting our proposed model to the
DWI data.

2R (mm) V

TR01 0.6060.13 0.3860.07

TR02 0.5460.11 0.3660.08

TR03 0.5260.10 0.4160.09

TR04 0.4960.09 0.3860.06

The results are consistent with the measured values shown in Tables 1 and 2.
The intra-class correlation coefficients within 95% of the confidence interval are
0.970 (p = 0.008) and 0.933 (p = 0.026) for the diameter and volume fraction of
the axons, respectively.
doi:10.1371/journal.pone.0095921.t003

Figure 10. The error bar plots of mean and STD values of the
estimated parameters: (a) h, (b) 2R, and (c) v for all normal
(blue) and TBI (red) cases using the proposed model. As seen,
there is a clear contrast, with p-value of 0.001, between the injured
(right) and normal (left) parts of the CC, especially for the map of the
parameter h, which is related to the water exchange rate (WXR).
doi:10.1371/journal.pone.0095921.g010
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treatment with a short treatment window [47–49]. In these

investigations, functional recovery after TBI may be driven by

neuronal remodeling. Currently, investigation of neuronal remod-

eling after brain injury has been dominated by traditional DTI

such as FA and fiber tracking [50–55]. However, conventional

DTI produces an anomalous result, showing an overall lowering of

FA despite the presence of highly-oriented tissue [3,44,56–60].

Currently, there are few published studies to target the issue

related to low FA in areas with highly-oriented tissue

[44,57,58,60,61] and no investigation has been published in white

matter remodeling after brain injury, such as TBI, using MRI

axonal permeability and diameter. Our data demonstrated that

physiological measurable parameters, MRI axonal permeability,

diameter, and density are sensitive in detecting axonal changes

after TBI and could be very useful in the evaluation of axonal

damage and remodeling after neurological diseases, such as TBI,

stroke, and MS.

Conclusion

In this work, a new analytical diffusion model was proposed for

estimating micro-structural (axon diameter and volume fraction)

and diffusivity (diffusion coefficients as well as water exchange rate)

parameters of white matter fiber tracts using DWMRI. Therefore,

one of the specifications of the proposed model is that it includes

the absorbing coefficient of the intra- axonal space. This

coefficient is linearly related to the water exchange rate (WXR),

which has not been fully investigated in previous calculations.

Moreover, the proposed model does not require short gradient

pulse (SGP) approximation and thus can be applied to the data

acquired using common PGSE sequences in a clinical scanner.

The simulation results using Markov Random Walk showed that

the included parameter, h, in the model has a significant,

proportional relation to the actual water exchange rate, WXR.

Moreover, the simulations revealed that by increasing WXR the

axon volume fraction decreases while the diameter increases.

Consistent with our model, histological analysis of TBI brain rats

revealed that in the injured tissues, the volume fraction reduced

and the axon diameter increased. Therefore, according to these

findings, it can be concluded that the WXR increases in injured

tissues, which is reasonable, because the cell membrane, especially

the myelin sheath, is damaged. The estimated values by applying

our proposed model to the MRI data of normal rats were relatively

comparable to their corresponding histological measurements.

Nevertheless, the observed differences can be caused by several

factors originating from the limitations in modeling, imaging, and

also the histology experiment. As shown in this work, the proposed

model can be used to discriminate TBI and normal tissues with

respect to the estimated parameters, especially WXR. One of the

limitations of the proposed model, as usually exists in other similar

models, is that it can only be applied to specific regions of the

white matter where the axons are parallel and the same size. This

issue can be addressed in the future by adding more compartments

to the model as well as improving the MRI data acquisition.
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