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Abstract

We developed a statistical model to estimate the abundances of potentially interacting species encountered while
conducting point-count surveys at a set of ecologically relevant locations – as in a metacommunity of species. In the model
we assume that abundances of species with similar traits (e.g., body size) are potentially correlated and that these
correlations, when present, may exist among all species or only among functionally related species (such as members of the
same foraging guild). We also assume that species-specific abundances vary among locations owing to systematic and
stochastic sources of heterogeneity. For example, if abundances differ among locations due to differences in habitat, then
measures of habitat may be included in the model as covariates. Naturally, the quantitative effects of these covariates are
assumed to differ among species. Our model also accounts for the effects of detectability on the observed counts of each
species. This aspect of the model is especially important for rare or uncommon species that may be difficult to detect in
community-level surveys. Estimating the detectability of each species requires sampling locations to be surveyed repeatedly
using different observers or different visits of a single observer. As an illustration, we fitted models to species-specific counts
of birds obtained while sampling an avian community during the breeding season. In the analysis we examined whether
species abundances appeared to be correlated due to similarities in morphological measures (body mass, beak length,
tarsus length, wing length, tail length) and whether these correlations existed among all species or only among species of
the same foraging guild. We also used the model to estimate the effects of forested area on species abundances and the
effects of sound power output (as measured by body size) on species detection probabilities.
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Introduction

Much of ecological research is driven by the desire to

understand observed patterns of variation in the abundance or

occurrence of individual plants or animals. While this variation

may be associated with the environmental requirements, dispersal

ability, and biotic interactions of each species, the relative

importance of these components can be difficult to quantify or

assess. Part of the difficulty is methodological – that is, induced by

limitations or deficiencies in the methods that are used to analyze

data from community-level surveys.

For example, inferences about species interactions or associa-

tions traditionally have focused on examining patterns of co-

occurrence between pairs of species observed at several locations

[1]. Such data have been examined using so-called ‘‘null model’’

analyses aimed primarily at testing hypotheses about the

importance of competitive interactions within a community of

species [2–4]. In these analyses species co-occurrences are often

quantified as a function of a community’s incidence matrix [5,6],

which includes the binary occupancy state (presence or absence) of

each species at each sample location. More recently, parametric

statistical models have been developed to estimate the effects of

one species on another. In some of these models the effects of

imperfect detectability of a species are ignored [7,8]; in others the

errors in detection of individuals are explicitly accounted for in the

model’s underlying assumptions [9–12]. An advantage of using

parametric modeling is that the strengths of interspecific interac-

tions are specified in terms of estimable model parameters,

allowing the null hypothesis (no interactions) to be tested and

specific alternatives to be quantified.

While these recent advances are useful, species occupancy state

provides a relatively coarse summary of a species’ local population

size N – specifically that Nw0 (species is present) or N~0 (species

is absent). Interactions between species are likely to be inferred

more easily by analyzing a matrix of species- and location-specific

abundances. For example, the abundances of strongly interacting

species are likely to be positively or negatively correlated; however,

these correlations may be difficult to detect if analyses are limited

to frequencies of co-occurrence between species. Furthermore,

analyses of incidence matrices may be more sensitive to sampling

errors because a species of low abundance may incorrectly be

regarded as absent even though Nw0 for this species. For these

reasons, models of species counts are expected to be more useful
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than models of species occurrences in estimating the magnitude of

interspecific interactions.

Several approaches have been used to analyze species-specific

counts of individuals (plant or animals) encountered while

surveying a set of ecologically relevant locations. Many of these

approaches assume pairwise independence among species and

focus on examining the effects of environmental or habitat

covariates on species abundance. In this approach the counts of

individuals of different species are aggregated to obtain a total

count of individuals that belong to a community, a guild, or a

functional group [13–19]. Linear models are used to relate these

totals to location-specific measurements of habitat. While statistical

analyses of such aggregated counts obviously suffer from a loss of

information, the results of the analyses also can be misleading. For

example, estimates of covariate effects on abundance may

primarily reflect the effects on the most abundant species. The

counts of rare and potentially strongly interacting species will be

swamped by the counts of the abundant species. Also, significant

effects of covariates on abundance may be difficult to detect if

species of nearly equal abundance have opposite responses to the

same covariates.

Another approach often used in the analysis of species-specific

counts involves multivariate ordination [18,20–22]. In these

analyses the distance-based metric selected for ordination gener-

ally fails to specify the mean-variance relationship in the counts

correctly, leading to conclusions (such as statistical significance of

covariate effects) that confound differences in mean with

differences in variance [23].

In other studies species-specific counts are analyzed to detect

potential associations between species that may suggest the

presence of competitive interactions or habitat associations. Not

surprisingly, some of these analyses are based on null models for

testing pairwise interactions between species [24–27]. These

analyses differ in underlying assumptions and in the indices used

to summarize patterns of species co-occurrence and spatial

aggregation. Importantly, however, rejection of the null hypothesis

(no interactions) is not accompanied by estimation of the

magnitude of interspecific interactions – primarily because null

model analyses usually are conducted nonparametrically (see [28]

for an exception).

Another approach to the analysis of species-specific counts is

based on univariate, linear-regression models wherein counts of

one species are regressed on habitat measurements and on

standardized counts of other species to estimate pairwise species

interaction strengths (‘‘competition coefficients’’) [29–31]. In this

approach counts of individuals are regarded as surrogates of

abundance; however, these regression models do not honor the

discrete nature of the counts (which are assumed to be normally

distributed), and the counts are treated as both stochastic response

variables and fixed predictors, even though both are clearly

outcomes of sampling.

An alternative approach is based on fitting statistical models that

assume the counts of individuals are distributed as mixtures of

Poisson and lognormal distributions. Similar to the regression

models, the counts are regarded as surrogates of abundance;

however, Poisson-lognormal mixtures account for discreteness of

the counts and for the increase in variance with mean that is

induced when individuals are distributed randomly or in spatial

aggregations [32,33]. A univariate Poisson-lognormal mixture for

modeling species-specific counts of individuals observed at a single

location was proposed by [34]. This model was extended by [35]

for pairs of locations but considered only stochastic sources of

variation in abundance among locations (as opposed to specifying

the effects of differences in habitat on species abundances). In both

models species-specific abundances were assumed to vary

exchangeably among species (via the lognormal distribution) and

the abundances of different species were not assumed to be

correlated (say, as a consequence of interactions among species).

The multivariate Poisson-lognormal distribution [36] was devel-

oped to allow abundances of different species to be correlated;

however, heterogeneity in species abundances among locations

was not specified as a function of habitat, which may explain why

the model has not attracted much attention by ecologists. This

model was extended recently to include the effects of location-

specific covariates on species abundances [37].

An implicit assumption of all of the count models described

above is that each observed count is assumed to equal the actual

abundance of individuals. In other words, every individual of every

species is assumed to be detected with the same probability (one) at

every sample location. This assumption is seldom satisfied in

surveys of natural communities because individuals which are

present and available for detection are routinely missed during

sampling [38,39]. Furthermore, the probability of detection

generally varies considerably among species. When an entire

community is sampled, many species may be represented by only

one or a few individuals at each location, so it is crucial that

analyses account for the effects of imperfect detectability if species

abundances are to be estimated accurately [40,41].

N-mixture models [42] allow abundances to be estimated from

samples of repeated point counts while accounting for imperfect

detections of individuals. In these models the number of

individuals detected during a survey (i.e., the observed count) is

assumed to equal the sum of N independent Bernoulli outcomes

each with identical success (detection) probability. However, since

the abundance of animals at each sample location is unknown, N

must be estimated by coupling the Bernoulli model of the

observations with a model that specifies how N varies among

locations. This model of abundance includes a mixing distribution

for N, and hence the name N-mixture models. Although

extensions of these models have been proposed for multiple

species [43–45], to our knowledge [46] provide the only published

study in which N-mixtures have been used to analyze counts from

multiple, interacting species. In this study, though, the effects of

habitat on species abundances were not included in the analysis.

Our study was motivated by a desire to determine whether the

effects of environmental (habitat) covariates or interactions

between species were more influential in determining the

abundances of individual species. Specifically, we sought to

develop a statistical model of counts from community-level surveys

that overcomes many of the limitations of existing models. In the

paper we propose a model to estimate the abundances of

potentially interacting species using repeated point counts of each

species observed while sampling a set of ecologically relevant

locations. This model includes two extensions of the multivariate

Poisson-lognormal mixture: it allows abundances of species with

similar traits to be correlated and it allows the effects of habitat on

abundance to be estimated. Applying the N-mixture idea, we

combine this model of species abundances with a binomial model

of the observed counts that allows the probability of detection to be

estimated for each species in conjunction with its abundance. To

illustrate the potential benefits of this approach, we analyzed point

counts obtained while sampling a community of forest birds during

the breeding season. These data are far from ideal for our analysis,

but they are typical of the kind of information obtained in avian

community-level surveys. Our objective here is to provide a proof-

of-concept of our statistical approach, not an exhaustive analysis of

the avian point count data.

Estimating Abundances of Interacting Species
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Statistical Analysis

In this section we describe a statistical model for estimating the

abundances of potentially interacting species encountered while

surveying a set of distinct locations. The sample locations are

assumed to be representative of some collection of locations that is

considered to be ecologically relevant – as in a metacommunity of

species. In the model we assume that abundances of species with

similar traits are potentially correlated and that these correlations,

when present, may exist among all species or only among

functionally related species (such as members of the same foraging

guild). We also assume that abundances vary among locations

owing to systematic and stochastic sources of heterogeneity. For

example, if abundances differ among locations due to differences

in habitat, then measures of habitat can be included in the model

as covariates. Naturally, the quantitative effects of these covariates

are assumed to differ among species.

Our model also accounts for the effects of detectability on the

observed counts of each species. This aspect of the model is

especially important for rare or uncommon species that may be

difficult to detect in community-level surveys. Estimating each

species’ detectability requires some sampling locations to be

surveyed repeatedly using different observers or different visits of a

single observer. These within-location replicates provide the

information needed to estimate both abundance and detectability

of each species.

Modeling species abundances
We begin by describing a model of species- and location-specific

abundances, which are not directly observable but are the

quantities of primary scientific interest. Let Nik denote a random

variable for the number of individuals of species i that are present

and available to be observed at sample location k (i~1, . . . ,I ;

k~1, . . . ,K ). I is the number of distinct species observed among

all K sample locations. We assume that the expected abundance of

individuals of species i at location k, say lik, is constant during the

surveys of each location and that Nik*Poisson(lik).

We specify location-specific differences in the abundance of

individuals using a log-linear regression model of lik:

log(lik)~b
0

i xk. (A prime symbol indicates the transpose of a

vector or matrix.) In this model the vector xk~(1,x1k, . . . ,xqk)
0

includes the observed values of q covariates thought to be

informative of abundance at location k. For example, xk may

include measures of habitat at location k. The parameter vector

bi~(b0i,b1i, . . . ,bqi)
0

includes an intercept and the effects of the q

covariates. If the values of each covariate are centered at zero, the

intercept parameter b0i denotes the log-scale, expected abundance

of species i at the average value of the covariates.

To allow for potential correlations in abundance among species,

we specify dependence among the I intercepts using the

multivariate normal distribution:

(b01,b02, . . . ,b0I )
0
*Normal(b0 1,s2

b0
R) ð1Þ

where 1 is an I -vector of ones, b0 and s2
b0

parameterize the mean

and variance among intercepts, and R is their I|I correlation

matrix. This specification follows the approach taken by [36] but

without an unstructured correlation matrix. To ensure that R is

positive definite, we borrow an idea from geostatistical modeling

[47,48] and use an exponential function, Rij~exp({dij=w), to

specify the correlation between abundances of species i and j as a

function of a positive, scalar-valued parameter w and a measure of

dissimilarity dij in traits of species i and j. For simplicity, we

propose the Euclidean distance DDvi{vj DD between trait vectors vi

and vj as a measure of dij , but alternative measures of dissimilarity

are possible (provided dijw0,Vi=j). Thus, if traits of species i and j

are similar (low dij ), their abundances are positively correlated

under this model.

Our decision to specify correlations in abundance as a function

of similarity of morphological traits was motivated by the need to

ensure that R is positive definite; however, the idea that species of

similar morphology may have positively correlated abundances

also has ecological support. For example, two partially opposing

views exist about how species interactions might affect correlations

in abundance between species. One view is based on the concept

of limiting similarity in which species of similar morphology

compete for the same resources [49], and coexistence of these

species requires them to ‘‘partition’’ the environment to minimize

overlap in resource use [50]. Under this view one might expect

that species of similar morphology – and therefore similar resource

use – might not co-occur, or if they do co-occur, their abundances

might be negatively correlated. However, the spatial scale at which

resource partitioning occurs is not known. The shared-niche

model suggests that at larger spatial scales the occurrences and

abundances of competing species may be positively correlated

even though resources are partitioned at a smaller scale [51]. In

addition, most species of birds do not maintain interspecific

territories. Finally, [52]’s classic study of warblers suggests that

resource partitioning among avian species – if it occurs – might be

at a very fine scale (e.g., different parts of the forest canopy).

Therefore, estimated abundances of individuals vulnerable to

detection in a point-count survey may not reflect competitively

mediated resource partitioning because the region of detection

may – and often does – include a wide variety of microhabitats

and individual species territories.

Another view is based on the idea that species which are

morphologically similar and consume the same resources are likely

to aggregate at the same sites where shared resources or habitat is

abundant. There is evidence that closely related species, which

tend to be morphologically similar, tend to co-occur more than

expected [53,54] or to have their occurrences or abundances

positively correlated [8,55], at least at larger spatial scales. Species

co-occurrence and positive correlations in abundance probably

reflect associations caused by shared habitat preferences or shared

resource requirements. In light of these two views, we suggest that

at the scale of our point-count surveys the decision to specify

correlations in abundance between species as a positive function of

their morphological similarity is not unreasonable.

To complete the model of species abundances, we assume that

species-specific effects of the mth covariate of mean abundance

(m~1, . . . ,q) vary exchangeably among species as follows:

(bm1,bm2, . . . ,bmI )
0
*Normal(bm 1,s2

bm
I)

where bm and s2
bm

are mean and variance parameters, respec-

tively, and I is a I|I identity matrix. Thus, while the effects of

any particular habitat covariate may differ among species, these

effects are assumed to vary independently among species. In

addition, we assume mutual independence between the vector of

intercept parameters and the vectors of covariate effects.

Submodels of species abundances. Two special cases of

our abundance model are noteworthy. First, we may consider a

model wherein correlations in abundance are assumed only

among related species. For example, we may assume that

abundances are positively correlated among species of the same

Estimating Abundances of Interacting Species
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foraging guild but not correlated with species in different guilds. If

the species are ordered by guild, this model is essentially the same

as that specified in Eq. 1 except that the correlation matrix R is

block-diagonal:

R~

R1 0 � � � 0

0 R2
..
.

..

.
P

0 0 � � � RG

0
BBBBB@

1
CCCCCA

where each block corresponds to the correlation matrix of a

distinct foraging guild Rg (g~1, . . . ,G). Elements of each

submatrix Rg depend on the traits of species in guild g and on

the parameter w as described earlier.

Another special case of our abundance model corresponds to

absence of correlations in abundance wherein R~I . In this model

we assume that all species are ecologically similar so that their

intercepts (i.e., log-scale mean abundances) are exchangeable. In

this case differences in species traits are assumed to be

uninformative of differences in species abundances, and the

abundance of one species is assumed to be independent of the

abundance of another species.

Modeling species counts
Species- and location-specific abundances usually cannot be

observed directly in multi-species surveys. Instead, counts of

individuals are typically observed, but the counts are subject to

errors in detection of individuals. An observed count generally

underrepresents the number of individuals of each species present,

and this bias is particularly true for uncommon species that are

easily missed. Therefore, a model is needed to relate the observed

counts of each species to the actual abundance of that species.

We assume that Jk independent surveys are conducted at the

kth sample location such that each species’ abundance remains

constant during the period of sampling. These surveys may be

conducted by independent observers or by repeated visits of a

single observer. As proposed by [42], the idea is to treat the

individuals at each site as a closed population of size nik (a

realization of the random variable Nik) and to use the replicate

counts of these individuals to estimate the probability of detection

per individual.

Given these assumptions, we describe a model of the observed

counts that allows detection probabilities to be estimated for each

species. Let Yikj denote a random variable for the number of

individuals of species i detected during the jth survey of sample

location k (j~1, . . . ,Jk). We assume that

Yikj Dnik*Binomial(nik,pikj), where pikj denotes the conditional

probability of detecting an individual of species i during the jth

survey of site k. In addition, because surveys are conducted

independently at each site, we assume that each site’s observations

are conditionally independent, that is,

Pr(Yik1~yik1, . . . ,YikJk
~yikJk

Dnik,pikj)~ P
Jk

j~1
Pr(Yikj~yikj Dnik,pikj)

Various models of pikj may be constructed depending on the

availability of species- or site-specific covariates thought to be

informative of detectability. For example, suppose a vector of r

covariate measurements wi~(w1i, . . . ,wri)
0

is thought to be

informative of the detectability of species i. The effects of these

covariates on pikj can be specified using a logit-linear regression

model with random intercepts as follows:

logit(pikj)~a0iza
0
wi

Table 1. Posterior means and 95% credible intervals for the parameters of three models.

Model 1 Model 2 Model 3

Parameter Mean 2.5% 97.5% Mean 2.5% 97.5% Mean 2.5% 97.5%

b0 20.741 21.165 20.302 20.786 21.270 20.300 20.774 21.186 20.381

(0.008) (0.008) (0.008) (0.009) (0.012) (0.009) (0.007) (0.008) (0.007)

sb0
1.472 1.202 1.798 1.641 1.308 2.060 1.475 1.193 1.806

(0.004) (0.004) (0.006) (0.007) (0.006) (0.010) (0.005) (0.005) (0.007)

w – – – 0.069 0.003 0.240 0.016 0.001 0.050

(0.002) (0.0005) (0.006) (0.0003) (0.0001) (0.001)

b1 20.112 20.291 0.066 20.112 20.292 0.070 20.108 20.286 0.072

(0.001) (0.002) (0.001) (0.001) (0.002) (0.002) (0.001) (0.002) (0.002)

sb1
0.696 0.559 0.860 0.698 0.564 0.862 0.693 0.558 0.854

(0.002) (0.002) (0.003) (0.002) (0.002) (0.003) (0.002) (0.002) (0.003)

a0 21.696 22.105 21.399 21.649 22.019 21.331 21.637 21.955 21.347

(0.009) (0.012) (0.009) (0.009) (0.011) (0.009) (0.007) (0.010) (0.007)

sa0
0.883 0.620 1.242 0.849 0.612 1.161 0.835 0.595 1.133

(0.008) (0.007) (0.010) (0.007) (0.006) (0.009) (0.007) (0.006) (0.008)

a1 20.669 21.031 20.288 20.631 21.036 20.170 20.631 21.002 20.283

(0.011) (0.011) (0.011) (0.013) (0.013) (0.013) (0.010) (0.011) (0.011)

Model 1 assumes uncorrelated abundances. Model 2 assumes correlated abundances among species of the same foraging guild. Model 3 assumes correlated
abundances among all species. Monte Carlo standard errors are given in parentheses.
doi:10.1371/journal.pone.0094323.t001
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a0i *
iid

Normal(a0,s2
a0

)

In this formulation latent (unobserved) sources of heterogeneity in

detection among species are specified exchangeably using the

normal distribution, whereas systematic (observed) sources of

heterogeneity in detection are specified by the regression

parameters a~(a1 , . . . ,aq )
0
. We used this example because it

corresponds to the model used in our analysis of point counts of

avian species. More generally, however, the observation model –

that is, the model of the observed counts – depends on the

availability of auxiliary data, which could include species-,

location- or even survey-specific covariates. Therefore, this

approach to modeling building is extremely versatile. Adopting a

hierarchical approach to model building [41], wherein separate

models are used to describe the ecological and sampling processes,

allows us to specify an explicit relationship between the observed

counts and the latent abundances of each species.

Estimating model parameters
The hierarchical model described in the previous sections would

be difficult to fit using classical methods owing to the high-

dimensional and analytically intractable integrations involved in

evaluating a marginal (integrated) likelihood function of upper-

level parameters (b,a,w and variance parameters). We therefore

adopted a Bayesian approach to inference and used Markov chain

Monte Carlo methods [56] to fit the model and to estimate its

parameters. In Appendix S1 we describe the algorithm used to

calculate summaries of the posterior distribution and other

ecologically relevant functionals of the Markov chain.

We used a posterior-predictive loss criterion [57] to compare

the three models of species-specific abundances. Specifically, we

used the following criterion:

D~
X

i

X
j

X
k

Var(~yyikj Ddata)zfE(~yyikj Ddata){yikjg2

which minimizes the expected squared-error loss between the

observed counts (yikj ) and the counts predicted under a model

(~yyikj ). Models with lower values of this criterion are preferred

because they have lower predictive variance (first term in D) and

lower lack of fit (second term in D).

Description of Data Sets

We analyzed species- and location-specific counts of 73 avian

species observed while sampling 46 tracts of forest in southeastern

Connecticut [58]. Tracts were defined as areas of forest not

interrupted by powerlines, highways, or unforested areas wider

than 10 m. [58] provide a detailed description of the species,

sampling methods, and environmental covariates. Briefly, birds

were detected aurally (and sometimes visually) within each of 89

sample locations during three 20-min, point-count surveys (100 m

radius). During each survey the locations of birds detected were

mapped, and birds that were spatially separated and singing were

treated as distinct individuals. Repeated surveys of the same

location were conducted during early morning hours (530 h to

1000 h) on three separate days during the breeding season (21

May to 11 July). The sample locations were sufficiently far apart

that birds were unlikely to have been observed at more than one

location. The movements of birds were limited during the

sampling period owing to mating and nesting behaviors.

Of the various environmental covariates measured by [58],

tract-level measures of forested area appeared to be the best

predictors of counts of avian species. We therefore used one of

these measures – forested area (ha) within 2 km of a tract’s center

– to describe differences in avian habitat among sample locations

and to predict the abundance of individuals of each species at these

locations. Appendix S2 contains the species-specific point counts

and measurements of forested area at each sample location.

[58] also used habitat to classify each species into one of three

categories: (1) interior species, whose territories are normally

restricted to the interior of a forest, (2) edge species, whose

territories are primarily concentrated on a forest’s edge, and (3)

interior-edge species, whose territories may include both forest

interior and edge. We did not use these categories to model species

abundances; however, we did examine whether our model-based

estimates of species-specific abundances appeared to agree with

[58]’s classification of species.

We used several kinds of information about individual species to

inform different components of our model. For example, we used

body mass data [59] to estimate the sound power output (mW) of

singing males according to an allometric relationship reported by

[60]. We reasoned that birds with greater sound power output (i.e.,

higher body mass) would, on average, be more detectable than

birds with lower sound power output.

We also used species-specific morphological information to

model correlations in abundance between species. We obtained

measures of morphological traits (body mass, beak length, tarsus

length, wing length, and tail length) for each species (primarily

from [61]). We then reduced the dimensionality of the trait

measurements by performing a principal components analysis on

their correlation matrix and by computing principal-component

scores from the two eigenvectors associated with the highest two

eigenvalues.

We examined whether abundances of all species or only

functionally related species were correlated by using foraging

guilds to define inter-relatedness among species. We used foraging

guilds assigned by [62] for the breeding season if a species used

different foraging strategies seasonally; if not, we used the year-

round guild assignment of a species. Appendix S3 contains a

species list with guild assignments, morphological traits, and sound

power estimates.

We fitted three models to the avian point counts. Each model

included the effects of forested area on species-specific abundances

Figure 1. Dissimilarity in morphological traits between species
of same foraging guild (upper panel) and between species of
different foraging guilds (lower panel).
doi:10.1371/journal.pone.0094323.g001
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and the effects of sound power output on species-specific detection

probabilities. The three models differed in the assumed pattern of

correlation between abundances of different species – that is, we

assumed no correlation, correlation among species of the same

foraging guild, or correlation among all species.

Results

Based on our model-selection criterion, the model in which

abundances were assumed to be correlated among all species was

favored over the other, less-complex models, but the differences

between models were not that great (D~7129 (correlated

abundances among all species), D~7133 (uncorrelated abun-

dances), D~7143 (correlated abundances among species of the

same foraging guild)). The similarity in these model fits was evident

also in estimates of their parameters (Table 1). For example,

estimates of w, which determine the magnitude of correlations in

abundance, were close to zero even though the dissimilarities in

morphological traits ranged from 0 to 10 (Figure 1). This result

was evident also in the estimates of correlation between

abundances of different species. Abundances of species of very

similar morphology were positively correlated; however, the

abundances of most species were not strongly correlated (Figure 2).

In contrast to morphological traits, habitat – as measured by

forested area – appeared to have a strong influence on avian

abundances. The effects of forested area were significantly positive

for 15 species and significantly negative for 23 species (Appendix

S4). As an illustration Figure 3 shows that estimates of ovenbird

abundance were generally higher at locations with greater forested

area. This trend was evident also in the maximum counts of

ovenbirds detected at sample locations. Estimates of catbird

abundance provide an example of the opposite trend, i.e., lower

abundances and lower counts at sample locations with greater

forested area (Figure 4).

Our estimates of abundances appear to agree with the

classification of species proposed by [58]. The estimated abun-

dances of forest interior species increased with the forested area of

sample locations (Figure 5), whereas edge species were more

abundant at sample locations with less forested area. The

estimated abundances of interior-edge species were highest at

sample locations with either low or high forested area, suggesting

that this category may contain a mixture of species that prefer

interior or edge habitats.

Contrary to our prior beliefs about detectability of birds,

species-specific estimates of detection probability descreased with

increases in sound power output (Figure 6); however, most of the

decrease was associated with larger species. The estimated

detection probabilities of smaller species were highly variable

(ŝsa0
~0:835). Although larger birds have higher sound power

outputs, they also vocalize less frequently than smaller birds, and

calls of larger birds tend to be lower in frequency and more easily

masked by background noises [63]. A more complete model of

heterogeneity in species-specific detection probabilities might

include measures of average acoustic frequency and how often

each species calls.

Discussion

Our model extends the multivariate Poisson-lognormal mixture

proposed by [36] to include effects of habitat covariates on

Figure 2. Estimated correlations in abundance between species
(posterior medians and 95% credible intervals) as a function of
dissimilarity in their morphological traits. Black indicates species
of same foraging guild; red indicates species of different foraging
guilds. Upper panel corresponds to estimates obtained by assuming
correlated abundances among all species; lower panel correponds to
estimates obtained by assuming correlated abundances among species
of same foraging guild. Estimated correlations are equal to zero for
species with trait dissimilarities greater than 0.5.
doi:10.1371/journal.pone.0094323.g002

Figure 3. Maximum observed count of ovenbirds and esti-
mates of their abundance (posterior means and 95% credible
intervals) at sample locations. Dashed line indicates the estimated
relationship between mean abundance of ovenbirds and forested area.
doi:10.1371/journal.pone.0094323.g003
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abundance, to specify pairwise correlations in abundance between

species in terms of morhological similarity, and to account for

errors in detection of individuals. The model is a multispecies, N-

mixture model because the observed counts of each species are

modeled conditional on a set of latent abundance parameters and

a separate component of the model is used to specify heterogeneity

Figure 4. Maximum observed count of catbirds and estimates
of their abundance (posterior means and 95% credible
intervals) at sample locations. Dashed line indicates the estimated
relationship between mean abundance of catbirds and forested area.
doi:10.1371/journal.pone.0094323.g004

Figure 6. Estimated probability of detection (on logit scale with
95% credible interval) vs. sound power output (mW) of each
species.
doi:10.1371/journal.pone.0094323.g006

Figure 5. Maximum observed count of forest edge species, forest interior species, and forest edge and interior species and
estimates of their abundance (posterior means and 95% credible intervals) at sample locations. Dashed line indicates the estimated
relationship between mean abundance of birds and forested area.
doi:10.1371/journal.pone.0094323.g005
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in abundance of individuals among species and locations. In our

model information from replicated surveys within locations is used

to inform species detection probabilities. In this regard our

approach is similar to that of [43], [44] and [45]; however, in those

models the abundances of different species are not assumed to be

correlated. Our approach also differs from that of [37], who

extended the multivariate Poisson-lognormal mixture for the

effects of habitat but did not formally address the impact of

detection errors on estimates of abundance.

In our analysis of avian point counts, habitat exerted strong

effects on the abundances of most species. These effects were

evident in estimates of abundance of individual species (Figures 3

and 4) and in the estimated abundances of groups of species

classified by [58] (Figure 5). An important benefit of our modeling

approach is that we can estimate the residual correlations in

abundance between species having accounted for the effects of

habitat on abundances. In our analysis the abundances of different

species did not appear to be strongly correlated unless these species

were very similar morphologically (Figure 2).

However, an important limitation of our model is that species

abundances can only be positively correlated owing to the assumed

structure of the correlation matrix R. Ideally, we also would like to

be able to estimate negative correlations (e.g., those induced by

competitive interactions between species). For example, [36]’s

multivariate Poisson-log normal mixture assumes

(b01,b02, . . . ,b0I )
0
*Normal(b0,S)

where b0~(b01,b02, . . . ,b0I)
0

and S denotes an unstructured I|I
matrix of variances and covariances. Estimates of S may include

positive and negative covariances. Unfortunately, our attempts to

fit this model to the avian counts were unsuccessful. We suspect

that limited information in the data is responsible for some of the

estimation problems. For example, in our model the species- and

location-specific abundances Nik are latent parameters, not data.

In the model of [36], Nik corresponds to an observed count, and the

replicate observations among locations provide direct information

about the parameters b0 and S. Also, the number of parameters to

be estimated in S (I(Iz1)=2~2701) is relatively large compared

to the number of sample locations (K~89); thus problems of

parameter identifiability may have limited our ability to fit models

with unstructured S.

This topic is obviously important and requires additional

research. Being able to estimate correlations in abundance

between species and the effects of environmental covariates on

those species allows us to compare their relative magnitudes.

However, a word of caution is in order here. While it may be

tempting to interpret the correlations in abundance as evidence of

interspecific interactions, the correlations also may be produced if

the abundances of supposedly ‘‘interacting’’ species are influenced

(positively or negatively) by unobserved – and therefore unmo-

deled – environmental covariates [64]. Care is therefore recom-

mended during interpretation of results.

Despite the potential for misinterpretation, we believe that

multispecies N-mixture models provide a useful conceptual

framework for the analysis of community-level survey data. We

anticipate that new data sets with greater numbers of sample

locations and with alternative sampling protocols (e.g., double

observers at the same location) will provide the information

needed to estimate both positive and negative correlations in

abundance between species. We also anticipate that these new

data sets may allow species which are present but unobserved to be

included in the model, as in multispecies occupancy models [65].

This extension would be useful for estimating species richness and

other community-level measures of biodiversity [66].
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