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Abstract

We present a simple and effective method for combining distance matrices from multiple genes on identical taxon sets to
obtain a single representative distance matrix from which to derive a combined-gene phylogenetic tree. The method
applies singular value decomposition (SVD) to extract the greatest common signal present in the distances obtained from
each gene. The first right eigenvector of the SVD, which corresponds to a weighted average of the distance matrices of all
genes, can thus be used to derive a representative tree from multiple genes. We apply our method to three well known data
sets and estimate the uncertainty using bootstrap methods. Our results show that this method works well for these three
data sets and that the uncertainty in these estimates is small. A simulation study is conducted to compare the performance
of our method with several other distance based approaches (namely SDM, SDM* and ACS97), and we find the
performances of all these approaches are comparable in the consensus setting. The computational complexity of our
method is similar to that of SDM. Besides constructing a representative tree from multiple genes, we also demonstrate how
the subsequent eigenvalues and eigenvectors may be used to identify if there are conflicting signals in the data and which
genes might be influential or outliers for the estimated combined-gene tree.
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Introduction

Phylogenetic analyses with individual genes will often result in

conflicting topologies for the same set of taxa in the estimated

evolutionary trees [1]. The goal of multi-gene analysis is to

combine information across several genes in such a way that a

single tree representation of the relationship for the same set of

taxa is obtained from multiple genes. There are two popular

methods for combining information across multiple genes:

concatenation (supermatrix method) and consensus (supertree

method). In the former the aligned sequences from multiple genes

are concatenated and a phylogenetic analysis is performed on the

concatenated sequences [1–7]. This approach assumes all genes

share a common evolutionary history which is not necessarily valid

and may result in an incorrect estimate of the species tree [1,8,9].

In the latter a separate tree is inferred for each gene and a single

tree is estimated by consensus [10–12]. Except several more recent

computationally intensive methods which are based on either

bootstrap gene trees or posterior distributions of gene trees [13–

15], most algorithms for this method ignore the uncertainties in

the estimated gene trees and thus underestimate the variation for

inferred species phylogeny. More recently several new maximum

likelihood species tree inference methods that explicitly model

both the mutational and coalescent effects were proposed and

achieved better accuracy [16–19], however these methods can

only deal with trees with small number of taxa due to the

computational complexity.

When a large number of taxa are examined, distance-based

methods are useful tools for building a starting tree to be further

refined by maximum likelihood methods. Distance-based methods

typically combine the distances inferred from multiple genes to

obtain a summary measure of distances for a common set of taxa.

A few methods to do this have been proposed. The average

consensus supertree (ACS) [20] computes an average distance

matrix using all the scaled input path-length matrices. ACS

provides a least-squares estimate of the input path-length matrices.

Note that the aim of ACS was to compute a consensus tree from a

set of input trees and thus the path-length matrices in ACS were

derived from input trees which could be first estimated from

different genes. Bevan, Lang and Bryant [21] use a weighted least

squares approach to estimate the evolutionary rates of individual

proteins and thereby estimate a representative distance for each

taxa pair from multiple genes. In their method, estimated distances

are weighted according to their level of uncertainty. The weights

are based on a given substitution model [22]. The super distance

matrix (SDM) [23] computes a single scale coefficient for each

distance matrix, as well as external branch length correction

coefficient for each taxon inside each considered gene so that the

linearly transformed pairwise distances across genes are close in a

weighted least squares sense. A combined-gene distance matrix is

then given by the weighted average of the transformed distance

matrices with the weights given as the number of characters of

each multiple sequence alignment. A version of SDM, named

SDM*, that estimates only the distance matrix scale coefficients

(i.e. every external branch length correction coefficient set to zero)

is also described in [23]. Criscuolo and Michel [24] further studied

the impact of other weights when using SDM* to combine the
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three distance matrices directly estimated from each codon

position, especially weights based on the arboricity coefficient

[25]. Recently, Abeysunderra, Field and Gu [26] introduced the

minimum coefficient of variation squared (MinCV) criterion for

selecting a single scale coefficient to weight each distance matrix.

Like SDM*, the MinCV attempts to bring the distance matrices as

close together as possible by minimizing the coefficient of variation

squared between the distance matrices.

In this paper we consider an alternative method for deriving

multiple gene tree estimates based on singular value decomposi-

tion (SVD). Stuart, Moffett and Leader [27] applied SVD to

tetrapeptide frequency matrices to select the most informative

biomolecular sequence characteristics from which to estimate

evolutionary distances. Here we are interested in extracting the

consistent signal present in the dissimilarity or distance matrices

for each gene and using this information to obtain a combined-

gene tree. The method should work best when the gene trees are

the same and the branch lengths are proportional between genes,

but should be robust to slight deviations from these assumptions.

This method can be applied using any taxonomic distance

measure. The method is illustrated using both the common

scaling spectral covariance (SpCov) based dissimilarities [28] and

Jones-Taylor-Thornton (JTT) [29] based distances. A simulation

study is carried out to compare the performance of SVD with that

of SDM, SDM* and ACS97. Combined-gene trees for primate,

nematode and chloroplast data sets are estimated and the

variability about the estimated trees is determined using bootstrap

samples.

Methodology

We begin by transforming the dissimilarities or distances for all

pairs of taxa into p-vectors where p~
n

2

� �
for n taxa. The p-

vectors for a set of k genes are combined into a single matrix X .

The rows of X correspond to genes and the columns to taxa pairs.

That is, xi,j is the pairwise dissimilarity or distance of the ith gene

and the jth taxa pair, where i~1,:::,k and j~1,:::,p.

Let m~ min (k,p). The matrix X can be decomposed as

follows.

X~ULV 0 ð1Þ

where U~(u1, � � � ,um) is an orthogonal k|m matrix containing

the non-zero eigenvectors of the matrix XX 0, where X 0 is the

transpose of X , and V~(v1, � � � ,vm) is an orthogonal p|m matrix

containing the non-zero eigenvectors of X 0X and

L~diag(l1, � � � ,lm) is the diagonal m|m matrix of singular

values. The column vectors in V give the directions of the

principal components UL [30].

The distances between pairs of taxa in a phylogenetic tree can

be expressed as a linear combination of the estimated branch

lengths between those taxa for a given tree topology [31]. For a set

of n taxa, any particular set of p~
n

2

� �
pairwise distances

representing a tree topology can be expressed as a set of p

equations involving 2n{3 variables or branches, which in turn

can be expressed as a topology matrix T multiplied by a branch

length vector b. That is, for a vector of estimated distances for gene

j, say xj:, we get the following matrix equation.

xj:~Tbjz j , ð2Þ

where xj: denotes a column vector formed from the jth row of the

X matrix, bj is a (2n{3)|1 vector of branch lengths for gene j

and T is a p|(2n{3) topology matrix. If the distances xj: are true

distances for tree T , then ~0 in equation (2). For one gene, we

can think of this as regressing the pairwise distances estimated

from the gene on the variables corresponding to the branches in

topology T . Finding the tree topology is equivalent to finding the

p|(2n{3) topology matrix T which corresponds to the smallest

errors. The popular methods are based on least squares (LS) [32]

or weighted least squares (WLS) criteria [33]. A natural

generalization of the LS criterion for k genes is then to find the

tree topology T such that the total squared error for k genes are

minimized, that is:

minT

Xk

j~1

(xj:{Tbj)
0(xj:{Tbj)

Assuming topology T is the true topology, if there is a consistent

signal among genes about the underlying tree and noise in the data

is small (the noise here mainly comes from imperfect estimation of

the pairwise distances, and can include both bias from model

misspecification, and stochastic variance) the rows of matrix X

should belong to or be close to a subspace spanned by the columns

of T . Furthermore, in practice, the estimated branch lengths bj
0 s

from different rows of X are often proportional to each other.

Under this proportionality assumption, denote the unit length

direction given by the proportional vectors Tbj as z, then Tbj~ajz

with a scale vector a~(a1, � � � ,ak)0. The above criterion can be re-

written as

minT

Xk

j~1

(xj:{ajz)0(xj:{ajz)~minTEX{az0E2

Note that all vectors without 0 are defined as column vectors, and E
E2 denotes the sum of squares of all elements in the matrix.

The first eigenvectors u1 and v1 in the SVD of X solves the

problem minu1,v1
EX{l1u1v1

0 E2 subject to Eu1E~Ev1E~1. Thus a

natural LS estimate for z is z~v1 and a~l1u1. A single tree

representation for multiple genes can be obtained using the first

right eigenvector of the SVD of the pairwise distance matrix X . A

new k|p distance matrix, X1~l1u1v1
0 is the distance matrix with

reduced noise. Note that the pairwise distances for each gene in X1

are all scaled versions of v1 and thus describe the same tree

topology. Hence, this equates to using de-noised distances to

estimate a single representative topology for multiple genes for a

given set of taxa. Since u10X~l1v1
0 , the elements in u1 gives the

weights such that v1 can be interpreted as a weighted sum of

pairwise distance vectors of different genes provided by the rows of

X .

If the underlying trees of different genes are not consistent or

there is large noise in the data, the direction v1 will reflect the

signal of the majority of the genes with its direction disturbed by

the outliers. Note that our proportionality assumptions on branch

lengths correspond to there being no lineage-specific rate

heterogeneity beyond gene-specific rates. If this assumption does

not hold, but the underlying trees for all genes are the same, the

topology estimated by SVD is still consistent. Since if all the gene

distances lie on some hyperplane, associated with a particular

topology, then the first eigenvector of SVD which is a linear

combination of the gene distances will also lie on that hyperplane.

Combining Distance Matrices Using SVD
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Geometrically, each row of X is a vector in p dimensional space.

Because the elements in X are pairwise distances and are all non-

negative, these vectors all start from the origin and point in the

positive quadrant. The first right eigenvector v1 is a vector from

the origin pointing towards the center of all these vectors. This

property assures that all elements in vectors u1 and v1 are positive

and this positivity property is unique for these two eigenvectors

because matrices U and V are both orthogonal. Furthermore, if

the row vectors in X all satisfy the distance properties, then v1 also

satisfies the distance properties.

The major source of variability from the origin for rows of X lies

on the direction v1. The percentage of information captured by v1

is l2
1=
P

i l2
i . If this number is close to 1, then there is a consistent

signal among genes and noise in the data is small. If this number is

much less than 1, then it is an indication that the underlying trees

of different genes are not consistent or there is large noise in the

data, in which case, further investigation on the subsequent

eigenvalues and eigenvectors is informative in presenting the

additional information beyond noise. More specifically, the row

vectors in X{X1~l2u2v2
0 z � � �zlmumvm

0 are all in the

orthogonal space of vector v1. The dominant information in

X{X1 can be easily graphically displayed in the coordinate

system spanned by the vectors v2 and v3, i.e. we can plot l2u2

versus l3u3 as a diagnostic plot to find if there is any important

pattern in the data that is beyond only noise. The origin of this

diagnostic plot is the position v1 is pointing at, and each point on

this plot corresponds to a gene, with its relative position to the

origin showing the error of this gene relative to the principal

phylogenetic signal in v1. If the data show clustered patterns, we

will know which genes are grouped together and with which group

the principal signal is mainly associated. Re-analyses of different

groups might be informative in this situation. If the data show

several outliers, then re-analysis without the outliers should be

performed and the results can be compared to the full data

analysis.

Many methods for calculating pairwise distances for a gene will

result in larger distances for the fast evolving genes. For example

JTT based distances [29] belong to this type. Typically the

variances of the pairwise distance estimates for these fast evolving

genes are much larger. In order to avoid the undue influences of

these fast evolving genes on the computed direction v1, it is

recommended that the rows in matrix X be normalized before

performing SVD in such situations. That is, we divide the entries

Xij by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

j X 2
ij

q
, so that each row of the X matrix has Euclidean

norm 1. Geometrically, the normalization corresponds to project-

ing all p vectors in the rows of X to a p dimensional unit sphere.

Since the sum of squared eigenvalues is equal to the trace of the

matrix X 0X , the total sum of squared eigenvalues is k after the

rows in matrix X are normalized. If the variances of the pairwise

distance estimates are not associated with the lengths of the rows in

matrix X , or the pairwise distance estimates have been normalized

in the process of its calculation, such as the SpCov-based

dissimilarities [28], then performing SVD directly on the X
matrix is preferable. In either case, it should be noted that the first

eigenvector v1 is normalised, so provides the relative scales of the

pairwise distances, but does not give an overall distance for the

tree. The scale is not important for reconstructing the tree

topology.

Typically the computational complexity of SVD for a k|p

matrix is O(kp2) if kwp and O(k2p) if kvp. Thus the algorithmic

complexity of our method for distance matrices built from n taxa

and k genes is O(kn4) or O(k2n2), whichever is smaller. This is

comparable to the practical computational complexity of SDM

which is slightly less than O(k2n2) in the consensus setting here

[23] (and much better than the theoretical complexity of SDM,

which is O(k3n3)).

Simulations

We will quantify the ability of the SVD approach for inferring

accurate trees by comparing its performance with several other

distance-based approaches in the consensus setting where distance

matrices combined have identical taxa. Criscuolo, et al. [23] have

implemented two methods that combine rescaled distance

matrices into a unique one: SDM*, and ACS97 [20], and showed

that distance-based trees inferred from these two methods are less

accurate than expected during simulations. Based on their

simulation results, Criscuolo, et al. [23] have implemented a

more parameter-rich method (i.e. SDM) that leads to better

results. We will compare the performances of SVDnorm which is

SVD on the normalized pairwise distance matrices, SVD which is

SVD on the original pairwise distance matrices, SDM, SDM* and

ACS97.

Data are simulated using the same simulation protocol used by

[23] with some modification for our case. We will base our

simulation design on the Chloroplast data set as described in the

results section. There are 22 taxa and 25 genes with the sequence

lengths of genes the same as those in the Chloroplast data set. We

first generate 100 random 22-taxon trees using the standard Yule-

Harding process via the R8S program [34] as was done by [35],

and [23]. To generate deviations from the clock-like trees, every

branch length is multiplied by (1zX ), where X follows an

exponential distribution with expectation m. The m value

represents the extent of deviation and was identical within each

tree but different from tree to tree and equal to 0:2=(0:001zU),
with U being uniformly drawn from ½0,1�. The smaller the U , the

larger the m and the larger the deviation from the molecular clock.

This gives us 100 simulated ‘‘true’’ trees.

Next, to simulate the evolution of different genes corresponding

to each of these simulated ‘‘true’’ trees, 25 ‘‘gene’’ trees were

generated from each of these 100 trees. Note that instead of

simulating DNA sequences as in [23], we need to simulate amino

acid sequences. Thus our tree lengths need to be re-scaled so that

the branch lengths can be interpreted as the expected number of

amino acid changes per site. To do this, for each randomly

generated topology, we randomly draw 25 numbers from the

distribution of the total tree lengths of 56 chloroplast genes

published by [36] and assign these tree lengths to the 25 ‘‘gene’’

trees. These tree lengths range from 0.130 to 6.557, so the

simulated data includes genes with very different evolutionary

rates. Thus each branch in each ‘‘gene’’ tree is multiplied by its

assigned tree length and divided by the length of the original tree.

This was repeated for the 100 simulated trees to obtain 2500

‘‘gene’’ trees. For each of these 2500 trees, 100 sequences were

simulated in SEQ-GEN [37] using the cpRev substitution matrix

for proteins encoded by chloroplast DNA [38].

Since the sites of the simulated sequences are independent, it is

more sensible to use the JTT-based distances instead of SpCov-

based dissimilarities. Thus we only calculate the JTT-based

distance matrices. This means that there is some misspecification

in the model, since the trees were simulated using the cpRev

model. For each of the 100 ‘‘true’’ trees, we have 100 replicates.

For each replicate, we constructed a combined distance matrix

using each of the methods SVD, SVDnorm, SDM, SDM* and

ACS97, and estimated a tree from this combined distance using

BioNJ. For each method we therefore had 10000 estimated trees.

Combining Distance Matrices Using SVD

PLOS ONE | www.plosone.org 3 April 2014 | Volume 9 | Issue 4 | e94279



The Robinson-Fould distances [39] between the ‘‘true’’ trees and

the estimated trees are summarized in Table 1.

From Table 1, we can see for JTT distances, the SVD method

on the normalized distance matrices greatly outperforms the SVD

method on the original distance matrices. We also see that

SVDnorm has comparable performance to the SDM, SDM* and

ACS97, with ACS97 slightly better, but not statistically signifi-

cantly so, than the other methods.

Results

Three different data sets are used in this paper to illustrate our

method. We begin with an exploratory analysis on a non-

controversial primate data set. We then apply our methods to the

nematode data set published in [40] and a chloroplast data set

considered by [41], [42] and [43]. These data sets have also been

analysed by [26]. The Genbank accession numbers for all the data

can be found in the Supplementary material. Sequences were

aligned using ClustalW [44] in Bioedit [45] and the characters

containing gaps were discarded, so that the sequences for each

gene have the same number of characters. Short genes were

removed from the data sets, because the SpCov method (see

below) does not perform well for genes with fewer than about 30

amino acids.

The method is illustrated using both the common scaling

spectral covariance (SpCov) based dissimilarities [26,28] and

Jones-Taylor-Thornton (JTT) [29] based distances. The SpCov

based dissimilarity is a measure converted from the similarity

measure for a pair of sequences with its value scaled between 0 and

1. The SpCov based similarity is a summary measure of the

common periodicities between two categorical sequences. The

method relies on the smoothed Fourier transform of the cross-

spectra between two sequences. A high covariance at a given

frequency signifies a common periodicity between two sequences

at that frequency. In the calculation, a common scaling for both

sequences is chosen for each frequency so that the squared spectral

covariance at each frequency attains the maximum possible value.

The SpCov method of sequence comparison does not assume any

particular evolutionary model, but instead is a distance method

based on spectral analysis which takes into account correlations

among sequence sites. To assess the variabilities of the estimated

trees, in the case of the SpCov-based dissimilarities the bootstrap

method uses block permutation samples, which generates boot-

strap samples of the data by random permutations of the blocks of

the original sequences. This ensures the dependence structure

between the sites of protein sequences is partially preserved in the

bootstrap samples [26]. Since the JTT model of evolution assumes

independence of sites, variability in the trees based on these

distances is estimated from bootstrap samples obtained by

sampling the individual sites within sequences with replacement.

JTT-based distances are estimated using the protdist program

from the PHYLIP package [46]. Bootstrap samples used with the

JTT model are obtained using the seqboot program from the

PHYLIP package [46]. The rows of the JTT-based distance

matrices are all normalized before performing SVD, while SVD is

directly applied on the SpCov-based dissimilarity matrices since

each dissimilarity measure has already been scaled. The tree

building methods BIONJ [47] and FITCH [33] are used to

estimate trees from the combined-gene distances obtained with the

SVD method.

Primate Data Set
The method is first applied to the simple primate data. The

primate data set has five taxa: Hylobates agilis (gibbon), Pongo

pygmaeus (orangutan), Gorilla gorilla (gorilla), Pan trogodytes (chimp)

and Homo sapiens (human). It consists of thirteen mitochondrial

protein-coding genes. The phylogeny for the primate data set is

well established with the species tree shown as in Figure 1 (a).

However based on a phylogenetic analysis of 23,210 DNA

sequence alignments from human, chimpanzee, gorilla, orangu-

tan, and gibbon, for about 23% of the nuclear genes in the

genome, human and chimpanzee are not placed together as sister

taxa (with clades of human-gorilla and chimpanzee-gorilla

occurring with about the same frequency). The explanation for

this is incomplete lineage sorting [48]. Since the data set we are

analysing consists of mitochondrial genes, we would expect the

genes to follow the established species tree.

The four combined-gene trees from BIONJ and FITCH

methods, using the first right eigenvectors of the SVD of the

13|10 matrices of JTT distances and SpCov-based dissimilarities,

all correspond to the reference tree topology shown in Figure 1 (a).

The top panels of Figure 2 show the cumulative proportion of

the squared singular values in the SVD of the JTT-based distances

and the SpCov-based dissimilarities. One can see that the first

squared singular values make up about 97% and 96% of the sum

of the squared singular values for the JTT-based distances and the

SpCov-based dissimilarities, respectively. These high percentages

mean that there is a consistent signal among genes and noise in the

data is small. The sum of the first three squared singular values

account for more than 99% of the sum of the squared singular

values for both the JTT-based and SpCov-based dissimilarities.

The bottom panels of Figure 2 show the diagnostic plots of l3u3

versus l2u2 from SVD of the JTT-based distances and SpCov-

based dissimilarities. The solid squares in the bottom panels label

the positions of the directions of v1 in these two cases. The slight

outlier genes are ND4L and COX2 for JTT-based distances. Re-

analysis without these outlier genes result the same tree topology as

Table 1. Robinson-Fould distances between the estimated trees based on methods SVD, SVDnorm, SDM, SDM* and ACS97 and the
‘‘true’’ trees for 10000 cases.

RF SVD SVDnorm SDM SDM* ACS97

0 5505 6669 6653 6660 6755

2 3374 2845 2855 2852 2786

4 931 444 448 447 419

6 168 41 43 40 40

8 21 1 1 1

10 1

doi:10.1371/journal.pone.0094279.t001
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the reference tree topology. Thus these outliers are not influential

to the estimated combined-gene tree topology.

For the trees estimated from the JTT-based distances the

bootstrap support was evaluated from 1000 bootstrap samples

obtained by sampling individual characters from sequences with

replacement. A majority-rule consensus tree is computed using the

CONSENSE programme in PHYLIP [46]. The majority-rule

consensus trees derived from the JTT-based distances obtained

with the BIONJ and FITCH tree building methods are shown in

Figure 1 (b)–(c). To evaluate the bootstrap support of the estimated

trees from SVD of the SpCov-based dissimilarities, 1000 bootstrap

samples are generated using the block permutation method with

block size 14. The SVD method is applied to each of them and the

majority-rule consensus trees derived from the SpCov-based

dissimilarities and obtained with the BIONJ and FITCH tree

building methods are shown in Figure 1 (d)–(e). It can be seen that

the combined-gene trees estimated from the first right eigenvectors

of the SVD for both JTT-based distances and SpCov-based

dissimilarities strongly support the reference tree. For the JTT-

based distances, 99.9% of the bootstrap trees recover the reference

tree. For the SpCov-based dissimilarities approximately 93% of

the bootstrap permutation trees recover the reference tree with

both BIONJ and FITCH. Gorilla and human branch as sister taxa

with chimp as an outgroup for this clade in a small proportion (i.e.

*4%) of the bootstrap trees. A few bootstrap trees also

erroneously place human as outgroup to a chimp and gorilla

clade (i.e. *3%). The estimated uncertainties of the SVD based

combined-gene trees obtained with both distance methods appear

to be very small for this data set. These results are consistent with

the results shown in Figure 2, that the signals across genes are

consistent and thus the uncertainty of the estimates is small.

Nematode Data Set
The method is next applied to the more difficult nematode data

set which is known to have problems with both long-branch

attraction and compositional bias [40]. The data set consists of

twelve mitochondrial protein-coding genes common to eight

animals. There has been some debate regarding the placement

of the nematodes in relation to other animals and two rival

theories, i.e. the ecdysozoa hypothesis and the coelomata

hypothesis, have formed. Figure 3(a) shows the reference trees

under both these hypotheses. Based on a phylogenetic analysis of

Figure 1. Primate data: reference tree from http://tolweb.org/Catarrhini (a) and the majority-rule consensus trees by the SVD method estimated

doi:10.1371/journal.pone.0094279.g001
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16S ribosomal DNA sequences, Aguinaldo, et al. [49] first

proposed a clade of nematodes and arthropods as that in the

ecdysozoa hypothesis. Later a phylogenetic analysis on the

complete genomes of 11 taxa was carried out by [50] and again

found strong support for the ecdysozoa hypothesis. Both of these

two analyses chose a more slowly evolving nematode and excluded

the fast-evolving sequences of Caenorhabditis elegans, which is used in

our analysis, as a representative nematode. Their results indicated

a strong relationship between the nematode and the arthropods.

However, Blair et al. [51] found strong support for the coelomata

hypothesis based on their analyses on 100 individual protein data

sets consisting of four taxa. Another genome-wide analysis using a

type of rare genomic change robust to long branch attraction and

taxon sampling again found strong support for the coelomata

hypothesis [52]. Philippe, Brinkmann and Lartillot [53] argued

that strong support for the coelomata theory was due to sparse

taxon sampling. They analysed 146 genes on a sample of 35 taxa

and found strong support for the ecdysozoa hypothesis.

Figure 3(b) and Figure 3(c) show the combined-gene trees

obtained using the first right eigenvectors of the SVD of the

12|28 matrices of JTT-based distances and SpCov-based

dissimilarities with BIONJ tree building method. The tree

topologies obtained with FITCH method are the same as that

from BIONJ method in both cases. The combined-gene tree

estimated from the SpCov-based dissimilarities agrees with the

reference tree under the ecdysozoa hypothesis shown in Figure 3(a).

The combined-gene tree estimated from JTT-based distances

corresponds to the topology found using concatenated sequences

presented in [40], with the roundworm (nematode) and honeybee

being erroneously grouped together as sister taxa. As observed in

[26], using the SpCov-based dissimilarities which are based on

structure could better correct this erroneous pairing of roundworm

and honeybee.

The top panels of Figure 4 show the cumulative proportion of

the squared singular values among the sums of all squared singular

values. For the nematode data set, the first squared singular values

make up 98.5% and 93% of the total, and the sums of the first

three squared singular values make up 99.5% and 97% in the

SVD of JTT-based distances and SpCov-based dissimilarities,

respectively. These high percentages mean that there is a

consistent signal among genes and noise in the data is small again

for this data set. The bottom panels of Figure 4 show the

diagnostic plots of l3u3 versus l2u2 from SVD of the JTT-based

distances and SpCov-based dissimilarities. There are no obvious

Figure 2. Primate data. Top panels show cumulative proportion of the sum of the squared singular values of the SVD of JTT-based distances (left)
and the SpCov-based dissimilarities (right); bottom panels show the diagnostic plots of l3u3 versus l2u2 from SVD of JTT-based distances (left) and
the SpCov-based dissimilarities (right). The solid squares in the bottom panels label the positions of the directions of v1 .
doi:10.1371/journal.pone.0094279.g002
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outlier genes although we have labelled a couple of genes which

are slightly further away from the center of the data. Given the

small percentage of the squared singular values in the subspace

spanned by the second and the third right eigenvectors, we expect

no change of the tree topologies estimated in the re-analyses when

omitting these labelled genes. That is indeed the case. Omitting

these observations, the resulting trees correspond to the same trees

shown in Figure 3(b) and Figure 3(c) respectively.

The estimated combined-gene topologies have strong bootstrap

support, though there is some variability within the estimated

topologies of the arthropod clade. The BIONJ and FITCH

majority-rule consensus trees derived from 1000 bootstrap trees for

the JTT-based distances and the SpCov-based dissimilarities are

shown in Figure 5. Under both distance methods the bootstrap

trees indicate that the variation with regard to the relative

placement of vertebrates, nematode and arthropods is small.

Variability in the placement of honeybee in particular is greater in

trees estimated with FITCH than those estimated with BIONJ.

The estimated trees derived from the JTT-based distances have

strong bootstrap support. The JTT-based bootstrap trees group

honeybee and roundworm as sister taxa in 98.7% of BIONJ trees

and 92.2% of FITCH trees. However, separation of honeybee and

roundworm occurs in more than 99% of the trees estimated from

the SpCov-based dissimilarities. 80% of BIONJ trees and 50% of

FITCH trees obtained with the SpCov-based dissimilarities

recover the reference tree. The bootstrap trees obtained with the

SpCov-based dissimilarities recover the reference tree with greater

frequency than the bootstrap trees obtained with the JTT-based

distances. However, the estimated variation in the arthropod clade

for the combined-gene tree obtained with SpCov-based dissimi-

larities is relatively high, particularly for the honeybee.

Chloroplast Data Set
As a final example, we apply the method to the larger

chloroplast data set [42] which has 22 taxa and 25 genes. For

this data, the debate has been mainly over the placement of

Amborella trichopoda within the angiosperms. The majority of

analyses place Amborella as a sister taxon to the rest of the

angiosperms [54–56]. However, in some cases an Amborella+Nym-

phaea clade was found, and placed as sister to the rest of the

angiosperms [57], and [26] found a clade of Calycanthus floridus,

Amborella trichopoda and Nymphaea alba as sister to the rest of the

angiosperm clade. Goremykin et al. [58] presented an alternative

topology with the monocots as the most basal lineage of the

angiosperms, and Amborella in a clade with Calycanthus, which was

refuted by [59], [60] and later [61] showed that model

Figure 3. Nematode data. Reference topologies under the ecdysozoa hypothesis and coelomata hypothesis (top) [51]; Combined-gene trees
estimated from first right eigenvectors of the SVD with JTT-BIONJ or JTT-FITCH (b); with SpCov-BIONJ or SpCov-FITCH (c).
doi:10.1371/journal.pone.0094279.g003
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misspecification and long branch attraction was the cause of the

monocot-first topology. The most recent and comprehensive

analyses [62–64] support placing Amborella trichopoda as sister to the

rest of the angiosperms. This tree is now widely accepted. An

important point to note about the controversy here is that the

papers that place Amborella as basal use parsimony or maximum

likelihood, while the distance methods have placed Amborella in a

clade with Nymphaea. Since our method is a distance method, it

may be subject to the same inclination to place Amborella in a clade

with Nymphaea, and possibly Calycanthus. The reference tree for the

chloroplast data [43] is shown in Figure 6.

Figure 7 shows the combined-gene trees obtained using the first

right eigenvectors of the SVD of the 25|231 matrices of JTT-

based distances and SpCov-based dissimilarities computed with

the BIONJ and FITCH methods. Separation of taxa into the

major groups of green algae, non-seed plants, conifers and

angiosperms shown in the reference tree in Figure 6 is recovered

by all these combined-gene trees. The controversies between these

trees are all within the subtrees of non-seed plants and

angiosperms. Among these four combined-gene trees, the JTT-

BIONJ tree is the closest to the reference tree. The differences

between the reference tree and JTT-BIONJ tree are all within the

clade of angiosperms. The JTT-BIONJ tree places a clade of

Calycanthus floridus, Amborella trichopoda and Nymphaea alba as the most

basal lineage in the angiosperm clade, as given in [26]. It also

places one monocot, Acorus americanus, as a sister taxon to the

eudicots. The JTT-FITCH tree is the same as JTT-BIONJ within

the angiosperms clade, but the JTT-FITCH tree erroneously

separates the two ferns, Psilotum nudum and Adiantum capillus-veneris.

This separation of two ferns is again observed in both the SpCov-

BIONJ and SpCov-FITCH trees. Within the angiosperms clade,

the SpCov-BIONJ and SpCov-FITCH trees both place a clade of

Amborella trichopoda, Nymphaea alba and Calycanthus floridus as the most

basal lineage and place one monocot, Acorus americanus, among the

eudicot clade. In addition, the SpCov-FITCH tree also places

Lotus corniculatus as the most basal lineage in the clade of eudicots

and monocots.

The existence of such controversies can be explained by the

following diagnostic plots. The top panels of Figure 8 show the

cumulative proportion of the squared singular values among

the sums of all squared singular values. For this data set, the first

squared singular values only make up 85% and 86% of the total,

and the sums of the first three squared singular values make up

95% and 96% in the SVD of JTT-based distances and SpCov-
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Figure 4. Nematode data. Top panels show cumulative proportion of the sum of the squared singular values of the SVD of JTT-based distances
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doi:10.1371/journal.pone.0094279.g004
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based dissimilarities, respectively. The bottom panels of Figure 8

show the diagnostic plots of l3u3 versus l2u2 from SVD of the

JTT-based distances and SpCov-based dissimilarities. In the JTT-

based distance diagnostic plot, points show an interesting pattern.

There are two tight clusters of genes with one outlier (gene psaC).

The first cluster consists of genes atpI, clpP, psaB, rbcL and rpoC1;

the rest of the 19 genes belong to the second cluster with the

direction v1 close to the second cluster. In the diagnostic plot from

SpCov-based dissimilarities, the same five genes atpI, clpP, psaB,

rbcL and rpoC1 are clearly separated from the rest with a different

outlier, (rps19). The direction v1 is in the middle of these two

clusters. The two outliers are different, but both are outlying on

the v3 direction. Considering the third squared eigenvalues only

make up 2% of the total in both cases, the influence of this outlier

should not be very large. The five genes atpI , , , , and

rpoC1 were previously shown to be important in placing Amborella

trichopoda, Nymphaea alba and Calycanthus floridus as a sister clade to

the remainder of the angiosperms, in the covariance-based

chloroplast tree [26]. Re-analysis using the group of 19 genes

given in the JTT-based distance diagnostic plot resulted a very

similar BIONJ tree as the JTT-BIONJ tree in Figure 7. The only

differences are that the clade of two ferns changes position with the

Figure 5. Nematode data. The majority-rule consensus tree by the SVD method estimated from 1000 bootstrap samples with JTT-BIONJ (a); JTT-
FITCH (b); SpCov-BIONJ (c) and SpCov-FITCH (d).
doi:10.1371/journal.pone.0094279.g005

Figure 6. Chloroplast data. Reference tree topology with 22 taxa
[43].
doi:10.1371/journal.pone.0094279.g006

Combining Distance Matrices Using SVD

PLOS ONE | www.plosone.org 9 April 2014 | Volume 9 | Issue 4 | e94279

 rbcL psaB clpP



clade of the other three non-seed plants, and a clade of monocots

(Triticum aestivum, Oryza sativa and Zea mays) is placed as sister to the

rest of the angiosperm clade, with the clade of Calycanthus floridus,

Amborella trichopoda and Nymphaea alba grouped together with Acorus

americanus. Re-analysis with just the five genes atpI, clpP, psaB, rbcL

and rpoC1 doesn’t result a very sensible tree, but it does place the

clade of Calycanthus floridus, Amborella trichopoda and Nymphaea alba

very far away from most of the other angiosperm species, which

might explain why these five genes are important in placing

Amborella trichopoda, Nymphaea alba and Calycanthus floridus as sister to

the rest of the angiosperm clade for the analysis with the full set of

genes.

These controversies are all again shown in the consensus trees in

Figure 9. Due to the size of this data set, the bootstrap support of

the combined-gene tree using SpCov-based dissimilarities was

estimated from 100 bootstrap samples rather than 1000 bootstrap

samples, since calculating SpCov dissimilarities is time consuming.

All the bootstrap trees obtained with both distance methods

separate green algae, non-seed plants, conifers and angiosperms,

with a clade of Amborella trichopoda, Nymphaea alba and Calycanthus

floridus as sister to the rest of the angiosperm clade. Within the

Amborella trichopoda, Nymphaea alba and Calycanthus floridus clade, the

majority of bootstrap trees from JTT-BIONJ and JTT-FITCH

place Calycanthus floridus and Amborella trichopoda as sister taxa and

the majority of bootstrap trees from SpCov-BIONJ and SpCov-

FITCH place Amborella trichopoda and Nymphaea alba as sister taxa.

The variation in the estimated trees is fairly small with regards

to the placement of most of taxa including some of those in

the angiosperm clade. However, surprisingly the two taxa with

the greatest variation regarding their placement in the estimated

combined-gene trees are the two ferns, Psilotum nudum and Adiantum

capillus-veneris. Among these bootstrap trees, Only 73% of the

Figure 7. Chloroplast data. Combined-gene trees estimated from first right eigenvectors of the SVD with JTT-BIONJ (a); JTT-FITCH (b); SpCov-
BIONJ (c) and SpCov-FITCH (d).
doi:10.1371/journal.pone.0094279.g007
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JTT-BIONJ, 41% of the JTT-FITCH, 33% of the SpCov-BIONJ

and 0% of the SpCov-FITCH trees recover the clade of two ferns

seen in the reference tree in Figure 6.

Discussion

The results obtained from the application of the singular value

decomposition method for obtaining combined-gene phylogenetic

trees indicate that the performance of the method at estimating the

reference tree topologies is comparable with the best other

distance methods. The variability of the estimates obtained with

this method was found to be mostly small, suggesting that the

common signal extracted from the multiple genes using this

method is fairly strong relative to noise or conflicting signals. The

subsequent eigenvectors of the SVD of the distance matrix may be

used as diagnostics to identify outlier genes or groups of genes with

conflicting signals. The simulation results confirm that the

performance of the SVD method is comparable to other existing

similar types of methods. In our view, SVD provides a very simple

and useful method for combining the phylogenetic signal as

measured by distances across genes, and it has potential to be

developed further to achieve better results due to its simplicity.

As shown in the Methodology section, the SVD method

provides a generalization of the least squares criterion for multiple

genes to combine the phylogenetic signals. This can be easily

extended to the weighted least squares criterion if the assumption

that the diagonal variance matrices for the pairwise distance

estimates across different genes are proportional to each other

holds. In this case, denote the inverse of one diagonal variance

matrix as W , (the proportionality coefficients don’t make any

difference in the results), we right multiply the X matrix by W 1=2

before performing SVD, then we transform the resulting first right

eigenvector v1 to W{1=2v1 and use W{1=2v1 to construct the

combined-gene tree. More exploration on this issue is needed

before extending SVD to the weighted least squares criterion. The

results obtained for the nematode and chloroplast data sets which

are known to suffer from long-branch attraction indicate that the

SVD method can perform quite well with difficult data sets and

provide fairly efficient combined-gene tree estimates.

As we observed in the methodology section, the complexity of

the singular value decomposition is O(n2k2) in most cases. In

Figure 8. Chloroplast data. Cumulative proportion of the sum of the squared singular values of the SVD of JTT-based distances (top left) and the
SpCov-based dissimilarities (top right); Diagnostic plots of l3u3 versus l2u2 from SVD of JTT-based distances (bottom left) and the SpCov-based
dissimilarities (bottom right). The solid squares in the bottom panels label the positions of the directions of v1 .
doi:10.1371/journal.pone.0094279.g008
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practical terms, this means that the method should scale well,

being able to handle 1000 taxa and 1000 genes within a day, even

on a standard desktop computer. The speed could be improved

even further by only doing a partial SVD, computing only the first

few eigenvectors.

We have focused the SVD method on the consensus setting in

this article. This is different from the focus of the methods SDM

and SDM* which is to construct a distance super-matrix when

missing data are present because some genes or species are less

represented in databases. However, our method can be easily

extended to the cases when missing data are present in the distance

matrices. Multiple imputation methods based on the model

assumptions or calculating the SVD and imputing the missing

values iteratively are two different ways to consider. Currently we

are extending the SVD method along these directions.

The SVD method is based on the assumption that most genes

have a consistent phylogeny signal and that the estimated branch

lengths from different genes are proportional to each other. The

second assumption is a strong assumption and may be violated if,

for example, the rates of substitution are different for some

lineages across different genes. In this case, SVD still gives a

consistent topology estimate, but there is potential to improve the

efficiency of the method. Instead of finding a vector to combine all

phylogenetic signals across genes based on SVD, a better aim is to

find the (2n{3) dimensional hyperplane that is associated with a

tree topology and with the least error when projecting the distance

vectors from different genes on the hyperplane. This will be an

interesting subject for subsequent research.

In summary, due to its simplicity, this method has potential to

be further developed in multiple ways to be more robust or more

efficient, and can have ability to deal with missing values.

Figure 9. Chloroplast data. The majority-rule consensus trees by the SVD method estimated from 1000 bootstrap samples with JTT-BIONJ (a); JTT-
FITCH (b) and from 100 bootstrap samples for SpCov-based dissimilarities with SpCov-BIONJ (c) and SpCov-FITCH (d).
doi:10.1371/journal.pone.0094279.g009

Combining Distance Matrices Using SVD

PLOS ONE | www.plosone.org 12 April 2014 | Volume 9 | Issue 4 | e94279



Supporting Information

Table S1 Primate Genebank numbers.
(EPS)

Table S2 Nematode Genebank numbers.
(EPS)

Table S3 Chloroplast Genebank numbers.

(EPS)

Author Contributions

Analyzed the data: MA TK CF HG. Wrote the paper: MA TK CF HG.

References

1. Philippe H, Delsuc F, Brinkmann H, Lartillot N (2005) Phylogenomics. Annual
Review of Ecology, Evolution, and Systematics 36: 541–562.

2. Miyamoto MM (1985) Consensus cladograms and general classifications.

Cladistics 1: 186–189.
3. Kluge AG (1989) A concern for evidence and a phylogenetic hypothesis of

relationships among epicrates (biodae, serpentes). Systematic Zoology 38: 7–25.
4. Bull JJ, Huelsenbeck J, Cunningham C, Swofford D (1993) Partitioning and

combining data in phylogenetic analysis. Systematic Biology 42: 384–397.

5. Nixon K, Carpenter JM (1996) On simultaneous analysis. Cladistics 12: 221–
241.

6. Rokas A, Williams B, King N, Carroll S (2003) Genome-scale approaches to
resolving incongruence in molecular phylogenies. Nature 425: 798–804.

7. de Queiroz A, Gatesy J (2007) The supermatrix approach to systematics. Trends

in Ecology & Evolution 22: 34–41.
8. Kubatko LA, Degnan JH (2009) Inconsistency of phylogenetic estimates from

concatenated data under coalescence. Systematic Biology 56: 17–24.

9. Edwards SV (2009) Is a new and general theory of molecular systematics
emerging? Evolution 66: 763–775.

10. Bryant D (2002) A classification of consensus methods for phylogenetics.
Bioconsensus: DIMACS Series in Discrete Mathematics and Theoretical

Computer Science, AMS 61: 163–184.

11. de Queiroz A (1993) For consensus (sometimes). Systematic Biology 42: 368–
372.

12. Miyamoto M, Fitch W (1995) Testing species phylogenies and phylogenetic
methods with congruence. Systematic Biology 44: 64–76.

13. Cotton JA, Page RDM (2002) Going nuclear: Gene family evolution and

vertebrate phylogeny reconciled. Proc R Soc Lond B 269: 1555–1561.
14. Buckley TR, Cordeiro M, Marshall DC, Simon C (2006) Differentiating

between hypotheses of lineage sorting and introgression in new zealand alpine
cicadas (maoricicada dugdale). Systematic Biology 55: 411–425.

15. Liu L, Pearl DK (2007) Species trees from gene trees: reconstructing bayesian

posterior distributions of a species phylogeny using estimated gene tree
distributions. Systematic Biology 56: 50417514.

16. Kubatko LS, Carstens BC, Knowles LL (2009) Stem: species tree estimation
using maximum likelihood for gene trees under coalescence. Systematic Biology

25: 97117973.

17. Liu L, Yu L, Pearl DK (2010) Maximum tree: a consistent estimator of the
species tree. J Math Biol 60: 95–106.

18. Huang H, He Q, Kubatko LS, Knowles LL (2010) Sources of error inherent in
species-tree estimation: impact of mutational and coalescent effects on accuracy

and implications for choosing among different methods. Systematic Biology 59:

573–583.
19. Wu Y (2012) Coalescent-based species tree inference from gene tree topologies

under incomplete lineage sorting by maximum likelihood. Evolution 66: 763–
775.

20. Lapointe FJ, Cucumel G (1997) The average consensus procedure: combination

of weighted trees containing identical or overlapping sets of taxa. Systematic
Biology 46: 306–312.

21. Bevan RB, Lang F, Bryant D (2005) Calculating the evolutionary rate of
different genes: a fast, accurate estimator with applications to maximum

likelihood phylogenetic analysis. Systematic Biology 54: 900–915.

22. Bulmer M (1991) Use of the method of generalized least squares in
reconstructing phylogenies from sequence data. Molecular Biology and

Evolution 8: 868–883.
23. Criscuolo A, Berry V, Douzery E, Gascuel O (2006) SDM: A fast distance-based

approach for (super) tree building in phylogenomics. Systematic Biology 55:

750–755.
24. Criscuolo A, Michel CJ (2009) Phylogenetic inference with weighted codon

evolutionary distances. Journal of Molecular Evolution 68: 377–392.

25. Guénoche A, Garreta H (2000) Can we have confidence in a tree
representation? Proceedings of JOBIM00 LNCS 2066: 45–56.

26. Abeysundera M, Field C, Gu H (2012) Phylogenetic analysis using spectral
methods. Molecular Biology and Evolution 29: 579–597.

27. Stuart G, Moffett K, Leader J (2002) A comprehensive vertebrate phylogeny

using vector representations of protein sequences from whole genomes.
Molecular Biology and Evolution 19: 554–562.

28. Collins K, Gu H, Field C (2006) Examining protein structure and similarities by
spectral analysis. Statistical Applications in Genetics and Molecular Biology 5.

29. Jones D, Taylor W, Thornton J (1992) The rapid generation of mutation data

matrices from protein sequences. Computer Applications in the Biosciences 8:
275–282.

30. Hastie T, Tibshirani R, Friedman J (2001) The elements of statistical learning.
Springer.

31. Rhzetsky A, Nei M (1992) Statistical properties of the ordinary least-squares,
generalized least-squares, and minimum-evolution methods of phylogenetic

inference. Journal of Molecular Evolution 35: 367–375.

32. Fitch W, Margoliash E (1967) Construction of phylogenetic trees. Science 155:
279–284.

33. Felsenstein J (1997) An alternating least-squares approach to inferring
phylogenies. Systematic Biology 46: 10117111.

34. Sanderson MJ (2003) Inferring absolute rates of molecular evolution and

divergence times in the absence of molecular clock. Bioinformatics 19:
30117302.

35. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate
large phylogenies by maximum likelihood. Systematic Biology 52: 696–704.

36. Zhong B, Yonezawa T, Zhong Y, Hasegawa M (2010) The position of gnetales

among seed plants: overcoming pitfalls of chloroplast phylogenomics. Molecular
Biology and evolution 27: 2855–2863.

37. Rambaut A, Grassly NC (1997) Seq-Gen: An application for the monte carlo

simulation of DNA sequence evolution along phylogenetic trees. Computer
Applications Biosciences: 235–238.

38. Adachi J, Waddell PJ, Martin W, Hasegawa M (2000) Plastid genome phylogeny
and a model of amino acid substitution for proteins encoded by chloroplast dna.

Journal of Molecular Evolution 50: 348–358.

39. Robinson DR, Foulds LR (1981) Comparison of phylogenetic trees. Mathemat-
ical Biosciences 53: 131–147.

40. Foster P, Hickey D (1999) Compositional bias may affect both DNA-based and
protein-based phylogenetic reconstructions. Journal of Molecular Evolution 48:

284–290.

41. Wu J, Susko E (2009) General heterotachy and distance method adjustments.
Molecular Biology and Evolution 26: 2689–2697.

42. Gruenheit N, Lockhart P, Steel M, Martin W (2008) Difficulties in testing for
covarion-like properties of sequences under the confounding influence of

changing proportions of variable sites. Molecular Biology and Evolution 25:

1512–1520.
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