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Abstract

In biological systems, the dynamic analysis method has gained increasing attention in the past decade. The Boolean
network is the most common model of a genetic regulatory network. The interactions of activation and inhibition in the
genetic regulatory network are modeled as a set of functions of the Boolean network, while the state transitions in the
Boolean network reflect the dynamic property of a genetic regulatory network. A difficult problem for state transition
analysis is the finding of attractors. In this paper, we modeled the genetic regulatory network as a Boolean network and
proposed a solving algorithm to tackle the attractor finding problem. In the proposed algorithm, we partitioned the
Boolean network into several blocks consisting of the strongly connected components according to their gradients, and
defined the connection between blocks as decision node. Based on the solutions calculated on the decision nodes and
using a satisfiability solving algorithm, we identified the attractors in the state transition graph of each block. The proposed
algorithm is benchmarked on a variety of genetic regulatory networks. Compared with existing algorithms, it achieved
similar performance on small test cases, and outperformed it on larger and more complex ones, which happens to be the
trend of the modern genetic regulatory network. Furthermore, while the existing satisfiability-based algorithms cannot be
parallelized due to their inherent algorithm design, the proposed algorithm exhibits a good scalability on parallel
computing architectures.
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Introduction

The majority of human diseases is complex and caused by a

combination of genetic, environmental and lifestyle factors,

including cancer, Alzheimer’s disease, asthma, multiple sclerosis,

osteoporosis, connective tissue diseases, kidney diseases, liver

diseases, autoimmune diseases, etc. The high-throughput-high-

content gene screen technology is a possible way to uncover

genetic and genomic approaches. The research interests are

gradually shifted from single-gene disorders to polygenic relation-

ship. Since a large number of potential biological and clinical

applications are identified to be a solvable problem using network-

based approaches. A Genetic regulatory network (GRN) and its

functional biology are important to be utilized for the identifica-

tion of mechanisms of the complex disease and therapeutic targets

[1,2].

The GRN consists of a collection of molecular species and their

interactions. To understand the dynamical properties of a GRN, it

is necessary to compute its steady states, which is also known as

attractors. The attractor has a practical implication: a cell type

may correspond to an attractor. For instance, the GRN of T

helper has 3 attractors, which correspond to the patterns of

activation observed in normal Th0, Th1 and Th2 cells respectively

[3]. A number of methods have been proposed to model the GRN

[4]. In these models, the Boolean network is a simple and efficient

logical model for the GRN. It utilizes two states to represent the

gene states of the GRN [5]. At a particular moment, the state set of

all nodes in the Boolean network is called a state of the network.

The graph formed by all states of the network is called a State

Transition Graph (STG). In an STG, a fixed point or a periodic

cycle is defined as an attractor that is corresponding to a steady

state of a GRN. The interesting attractor finding is, however,

identified as a NP-hard problem [6,7].

Algorithms of finding attractors have been extensively studied in

the past decade [3,8–12]. A few of these algorithms are available

as released tools, such as Genetic Network Analyser [13], SQUAD

[14], CellNetAnalyzer [15], Odefy [16], Jemena [17], etc. All

these existing algorithms can be categorized into four groups. The

simulation-based approach is proposed to find attractors by

choosing several initial states heuristically and to simulate the

activation and inhibition for each initial condition [8,13,15–17]. It

is, however, difficult to cover all the attractors in a GRN because

the initial states are randomly generated. The rest three categories

of algorithms find attractors by formulating the original problem

as follows: binary decision diagram (BDD) problem [3,9,10,14],

satisfiability (SAT) problem [11], and aggregation problem [12].
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The BDD is a data structure for describing a Boolean function. In

a BDD-based algorithm, all relations of activation and inhibition

between genes are represented as reduced ordered binary decision

diagram (ROBDD or in short BDD) [3,9,10,14,18]. It is then that

the Boolean operations are computed based on the BDD. The size

of the BDD is determined both by the Boolean function and by the

order of variables. Therefore it is exponential to the order in the

worst case and a state explosion could happen, which limits the

BBD based algorithms to simple Boolean networks only [3,9,10].

SAT-based algorithms avoid this problem by solving a set of

satisfiable constraints alternatively without searching throughout

the entire state space. It often leads to more efficient search

because of the automatic splitting heuristics and applying different

splitting orderings on different branches SAT-based algorithms are

tailored for finding attractors in a large-scale Boolean network

using SAT-based bounded model checking [11,19]. These

algorithms unfold the transition relation for N iterative steps to

form a propositional formula and solve it using a SAT solver. In

each iterative step, a new variable is used to represent a state of a

node in a Boolean network. The number of variables in the

propositional formula is, however, N times of the number of nodes

in the Boolean network, if a transition relation is unfolded for N

steps. Therefore the larger the number of nodes and unfolding

steps are, the higher the computation complexity will be. An

aggregation algorithm is also proposed to find the attractors in a

large-scale Boolean network [12]. The min-cut aggregation [20]

and max-modularity aggregation [21] can be utilized to partition

the Boolean network. In each subnetwork, the Johnson’s algorithm

[22,23] and semi-tensor product approach [24] can be applied to

find attractors, whereas, the aggregation algorithm only provides a

framework without an efficient implementation.

To tackle the aforementioned problems, we are proposing an

algorithm that partitions a Boolean network into smaller blocks,

such that SAT algorithm can be applied efficiently on these

smaller blocks for finding attractors. Furthermore, the proposed

algorithm can be parallelized and better performance is exhibited

on a multicore architecture. The proposed algorithm is tested

using two set of benchmarks, test cases acquired from literature

[8,25-30], which are typically very small, and larger test cases

generated in an R environment [31] based on the BoolNet

package [32]. On the smaller cases, the runtime of the proposed

algorithm is comparable to the state-of-the-art solver BNS [11].

However, on the larger test cases, which are the trend of the

modern genetic regulatory network, the proposed algorithm

outperforms BNS.

The rest of this paper is organized as follows. The model,

definitions, and algorithm description are provided in Section 2.

The experimental results and discussion are illustrated in Section

3. Finally, Section 4 concludes the paper.

Methods

The Boolean Network Model
A Boolean network can be considered as a directed graph

G~vV ,Ew: Each node vi[V has an associated state variable

xi[f0,1g and a state transition functionfi : f0,1gm?f0,1g, where

m is the number of nodes related to nodevi. The

edgeeij~vvi,vjw(i,j[f1,:::,ng) directing from nodevi to nodevj

describes that the next state of node vj depends on the current state

of node vi.

At the time step i, the state of the Boolean network is a binary

vector si~(x1,x2,:::,xn),i[f1,2,:::,ng. If the states in si are updated

simultaneously, the Boolean network is called a synchronous

Boolean network (SBN). When only one state variable,

xi,i[f1,2,:::,ng, is updated at each time step, it is called an

Figure 1. A 6-node Boolean Network. It is a general model of a
GRN. A node/describes a gene in the GRN. A directed edge/expresses
the interaction of activation and inhibition between two genes. The
next state of a node/is a Boolean function of the previous states of the
nodes which are predecessors of vi.
doi:10.1371/journal.pone.0094258.g001

Figure 2. The State Transition Graph of Boolean Network. Each
state is a 6-tuple (x1,x2,x3,x4,x5,x6). A directed edge indicates the state
transition.
doi:10.1371/journal.pone.0094258.g002

Figure 3. The SCCs, Gradients and Blocks of the Boolean
Network.
doi:10.1371/journal.pone.0094258.g003
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asynchronous Boolean network (ABN). In the SBN, each state

vector has a unique next state in STG. All states eventually

converge to an attractor. The SBN is used to model a GRN in the

following discussions.

In a Boolean network, the transition relation, T(sk,skz1), can

be represented by the following formula:

T(sk,skz1)~ L
n

j~1
xkz1, j<fj(xk,1,:::,xk,n) ð1Þ

where xk,j is the state variable of node vj at the time step k, sk and

skz1 stand for states of the Boolean network at the time step k and

k+1 [19]. Considering an STG corresponding to this SBN, sk and

skz1 are the source and the destination node of one edge.

Therefore, a path of the STG can be defined as the following

expression:

Path(si,sj)~ L
j{1

k~i
T(sk,skz1) ð2Þ

In the SBN, the next state of a state in an STG is unique. Hence,

the next state of a state in an attractor must be in the attractor.

According to the definition of an attractor and expression of the

path, we have the following theorem1:

Theorem 1: In the STG of an SBN, if a path includes an

attractor, the last state of the path must be in the attractor.

Proof: In the STG of an SBN, if a state is in an attractor, its next

state must be in the attractor. Suppose the last state of the path is

not in the attractor, then the state before the last state in this path

cannot be in the attractor. Therefore, no state in the path is in the

attractor. It is contradictory with the statement that the path

includes an attractor.

A Boolean network with six nodes is illustrated in Figure 1 as an

example. It is a general model of a GRN, where the node v1 is an

initial node. The value of state variables at next time step will be

computed based on the following transition functions:

f1~x1~1; f2~:x1 ^ x3; f3~x4; f4~:x2; f5~x4;

f6~:x5 ^ x3

ð3Þ

The corresponding STG is shown in Figure 2. The initial value

of the state variable x6 does not affect the next state of any node.

Therefore, in the first column, we denote the initial state of x6 as

‘‘2’’. In the last column, the state ‘‘101110’’ is an attractor. All

states eventually arrive at that attractor. If a path includes

‘‘101110’’, for example, ‘‘10100?100101?101110?101110’’,

the last state of the path must be ‘‘101110’’. In other words, the

next state node of the state node in the attractor must be in the

attractor.

Figure 4. The STG of Blocks in Boolean network.
doi:10.1371/journal.pone.0094258.g004

Algorithm 1: A sequential version of the algorithm
for finding attractors in a Boolean network

//Initialization.
1 startGrad = 0;//It is starting gradient of SCC in a block.
2 res = NULL;//It stores the set of solutions.
3 curResNum = 0;//It denotes the index of the current
solution.
4 resCount = 0;//It stores the number of solutions.
5 countOfDecisionNodes = 0;//It records the number of
decision nodes.
6 decisionNodesSolSeq = NULL;//The assignment sequence
that has been solved from last level gradient SCCs.
//Identifying the SCCs and Gradient.
7 SCCs = getSCC(G).
8 setGrad(SCCs).
//Finding attractors.
9 endGrad = getMaxGrad(startGrad);
10 while (startGrad, = endGrad){
11 While(resCount = = 0 || curResNum,resCount) {.
12 F0 = getCNF(startGrad, endGrad);
13 decisionNodesSolSeq = getDecisionNodesSol(Res,start-
Grad, endGrad);
14 N = getCountOfNodes(F0) +sizeof(decisionNodes-
SolSeq);//The N is the count of nodes in the problem.
15 Fn = transNStep(F0, N);//The Fn is the state transi-
tion set by N time steps based on the transition relation F0.
16 Fn = Fn ^ extend(decisionNodesSolSeq, N);
17 while (SAT(Fn)) {
18 If (isAttractor(satRes)) {//based on Theorem 1.
19 assemble(Res[curResNum], satRes);
20 Fn = Fn^ : satRes.
21 If (initGrad = = 0) resCount++, curResNum++;
22 } else {
23 delete(Res[curResNum]);
24 Fn = transNStep(Fn, N);
25 N = N * 2;
26 }
27 }
28 startGrad = endGrad +1;//set the starting gradient of
the next block.
29 endGrad = getMaxGrad(startGrad);
30 }
31 Print(Res);//print all solutions.

An Attractor Finding Algorithm Based on SAT
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The Boolean Network Partition and Gradient Calculation
To decrease the computation complexity, we partition the

Boolean network into several blocks based on the coupling

between nodes in Boolean network. Then we find the attractors by

computing the state transition of each block. Below, we present the

four definitions for the Boolean network partition and gradient

calculation.

Definition 1: Strongly Connected Component (SCC) is a

maximal strongly connected subgraph in a directed graph, G.

Here a subgraph G0 is strongly connected if there is a path from

each node to every other node in G0.
In particular, the graph G turns out to be a directed acyclic

graph (DAG) if we consider all its SCCs as super nodes. In the

DAG, we define the node without incoming node as root node,

and the node without an outgoing edge as leaf node.

Definition 2: Gradient of a node is the length of the longest

path from any root node to the node.

Definition 3: Block is a set of nodes with continuous gradient.

The graph can be considered as a single block or partitioned into

multiple blocks without overlap.

Definition 4: Decision node of a block is a node that has an

edge pointing to any node in this block. It is named decision node

because the value of its state variable determines the state of the

block.

Obviously, in a DAG, the state of a block is determined by all its

decision nodes of the block.

A Boolean network with 4 SCCs, S1,S2,S3, and S4, are illustrated

in Figure 3. Considering each SCC as an abstract node, called a

supernode, the Boolean network can be mapped to a DAG, where S1

is a root supernode and S4is a leaf supernode. Assuming the gradient of

S1 is 0, then the gradients of other SCCs are Grad(S1) = 0,

Grad(S2) = 1, Grad(S3) = 2, Grad(S4) = 3 accordingly. This network

can be partitioned into two blocks, Block1~fS1,S2g,Block2~

fS3,S4g. The decision nodes of these blocks are DecNode

(Block1)~NULL,DecNode(Block2)~fv3,v4g, respectively.

Algorithm
According to the network partition discussed in the previous

section, we can find the attractors of a Boolean network by finding

the attractors of each block. An attractor in a block is called a local

attractor to distinguish the attractor in the entire Boolean

Network.

An attractor can be expanded to the following pathway form

based on expression (1) and (2):

Attr~f(x0,1,:::,x0,n)?(x1,1,:::,x1,n)?:::?(xk,1,:::,xk,n)g ð4Þ

where (xi,1,:::,xi,n),Vi[f0,1,:::,kg represents a state in the attrac-

tor, and(xk,1,:::,xk,n) is the state after k time steps from

(x0,1,:::,x0,n). When a Boolean network is partitioned into blocks,

the state vector (xi,1,:::,xi,n) is also divided to multiple parts.

Hence, an attractor of Boolean network is a combination of local

attractors of all blocks.

First, we find local attractors of the block including the root

SCC and get the solution sequences of all local attractors. Second,

local attractors of the neighbor block are computed based on the

solution sequence of each decision node. We combine the solutions

in the first two steps to form a new solution set. The solutions can

be computed step by step until all the blocks are computed.

Because a block has less constraint than the entire Boolean

network, the total number of local attractors in a block is greater

than or equal to the number of attractors in the Boolean network.

To decrease the number of redundant solutions in a block, we

need to consider the coupling between SCCs. In the meantime,

the computation complexity increases along with its block size.

Therefore we can construct a block according to the following

steps: 1) get the lowest gradient of SCCs that are not in any block

as the initial gradient of a new block; 2) search for the SCC with

the highest gradient among all SCCs that are directly connected to

the initial gradient SCCs, and configure the highest gradient as the

maximum gradient of the new block; and 3) form a block with all

the SCCs whose gradients are from the initial gradient to the

maximum gradient.

A solution sequence of decision nodes is required to find the

local attractors of a neighbor block. There could be three different

kinds of solution conditions while finding the local attractors: 1)

only one solution and this solution will be combined to the

previous solution; 2) no solution, and previous solution will be

deleted; and 3) two or more solutions, while each solution forms a

new solution together with the previous solution.

In Figure 3, we partition the Boolean network into two blocks,

Block1~fS1,S2g~fv1,v2,v3,v4gandBlock2~fS3,S4g~fv5,v6g.
According to the transition function (3), the STGs of Block1 and

Block2 are illustrated in Figure 4. In Figure 4(a), the state variable

sequence is (x1,x2,x3,x4). We get a local attractor f(1011)g for

Block1. In the meantime, we get the solution sequence f(11)g for

the decision nodes DecNode(Block2)~fv3,v4g. That means nodes

v3v4 will repeatedly be set to the sequence f(11)g when block

Block2 is computed. Then the STG of ,Block2~fS3,S4g
~fv5,v6gwith decision nodes are presented in Figure 4(b), where

the state variable sequence is (x3,x4,x5,x6). Thus, we find the local

attractor f(10)g of Block2. Eventually, we can get the attractor

f(101110)g as a combination of f(1011)g and f(10)g.
Comparing Figure 2 and Figure 4, the state space is decreased

drastically. As a consequence, our algorithm need less runtime to

find the attractors because of the network partition.

Implementations of the Algorithm
Sequential implementation of the algorithm. The pseu-

docode of the sequential version of the proposed algorithm

implementation is presented in Algorithm 1. The Gabow’s

algorithm [33] is adopted to compute SCCs. Then the gradients

of SCCs are computed. The startGrad and endGrad describe the

initial gradient and the maximum gradient of SCCs in a block

respectively. To determine a block, we use getMaxGrad function to

get the maximum gradient of SCCs which will be included in the

Algorithm 2: A parallel implementation of the
algorithm for finding attractors in a Boolean network

//Initialization and solving the first block.
1 resFirst = getFirstBlockResult();//using the algorithm1 to
find the attractors in the first block.
2 base_res[1.CPU_NUM] = dispatch(resFirst, CPU_NUM);//The
resFirst is divided to CPU_NUM parts.
//Creating sub-process and solving attractors of the rest
blocks.
3 chPID = fork(CPU_NUM);//Creating CPU_NUM sub-pro-
cesses.
4 if (chPID = = 0){//sub-process body.
5 Result = Solve(base_res[cpu_index]);//Solving the rest
blocks based on the algorithm1.
6 } else wait(subProcess);//Parent Process wait until the sub-
processes are over.
7 Print(Result);//print all solutions.

An Attractor Finding Algorithm Based on SAT
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block. To find the local attractors of a block, the SAT-solver that is

implemented based on MiniSat [34] and it is used to solve the

paths of a particular length N in the STG of the block. The STG of

the block is created based on the solution sequence of the decision

nodes and transition relation of the block. The extend function is

designed to extend the solution sequence of decision nodes into

paths of the STG of a block. A satisfying assignment solved by the

SAT-solver is corresponding to a valid path in the STG of a block.

Based on Theorem 1, we can determine whether the solution

includes a local attractor. If the solution does not include a local

attractor, it means the path is too short to enter a local attractor.

Thus, we increase the length of the path until a local attractor is

found. The assemble function is developed to combine the local

attractors to the attractor of the entire Boolean network. If there is

no satisfying assignment, the computation of local attractors in the

current block is done and the current basic solution is deleted. The

aforementioned procedures are repeated until all blocks are

traversed.

Parallelization. Furthermore, conventional attractor finding

algorithms based on SAT cannot be parallelized due to their

inherent algorithm design. In this work, we take the parallelization

into consideration during the algorithm design phase. As we

partition the GRN into blocks and set gradients of the blocks, it is

possible to map the SAT solving of different blocks to parallel

hardware. In particular, if the first block of a Boolean network

consists of multiple local attractors, our algorithm can fork a series

of sub-processes to find attractors using the attractors found in the

first block. The parallel version of the algorithm is described in

Algorithm 2 briefly.

Table 1. The real Boolean network models of GRN.

Name
Number of
nodes

Number * length
of attractors genYsis(sec)

BooleNet Real
time (sec)

BNS Real
time (sec)

Proposed ST Real time
(sec)

Arabidopsis Thaliana 15 10*1 N/A 0.026 0.005 0.007

Budding yeast 12 7*1 0.142 0.051 0.012 0.013

Drosophila
melanogaster

52 7*1 N/A .1000 0.057 0.093

Fission yeast 10 13*1 0.077 0.021 0.005 0.005

Mammalian cell 10 1*1,1*7 0.053 0.023 0.004 0.007

T-helper cell 23 3*1 0.085 0.059 0.005 0.006

T-cell receptor 40 8*1,1*6 0.826 0.047 0.011 0.017

Note: N/A denotes that the genYsis could not be executed in synchronous mode with experimental data in which the gene has a constant value with ‘HIGH’.
doi:10.1371/journal.pone.0094258.t001

Figure 5. The results for finding attractor of randomly generated GRNs (K = 2). The parameters of generateRandomNkNetwork function are
set to K = 2 and topology = ‘‘scale_free’’. The number of nodes is from 100 to 1000. Five random instances are generated based on each number of
nodes. The x-axis indicates the number of nodes. The y-axis is the average runtime of the five random instances corresponding to each number of
nodes.
doi:10.1371/journal.pone.0094258.g005
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As the gradient identification guarantees unidirectional search

of solving between the blocks and the independence between the

local attractors of each block, our algorithm can be implemented

in even more sophisticated parallel way than algorithm 2. After the

solver finds a local attractor of the first block, a sub-process can be

created to find local attractors of the other blocks. Similarly, our

algorithm creates a series of sub-processes that are proportional to

the number of attractors in Boolean network.

Results and Discussion

We use the real GRN models in [8,25–30] and N-K random

Boolean networks [5,35] as benchmarks. As the objective of the

experiment is to find all attractors of a GRN, the proposed solvers,

including both the sequential version and the parallelized version,

are compared with BDD-based solvers, genYsis [3] and BooleNet

[9] and the SAT-based solver BNS [11] in the experiment.

Figure 6. The results for finding attractor of randomly generated GRNs (K = 3). The parameters of generateRandomNkNetwork function are
set to K = 3 and topology = ‘‘scale_free’’. The number of nodes is from 100 to 1000. Five random instances are generated based on each number of
nodes. The x-axis indicates the number of nodes. The y-axis is the average runtime of the five random instances corresponding to each number of
nodes.
doi:10.1371/journal.pone.0094258.g006

Figure 7. The speedup of proposed ST solver vs. BNS solver over the random instances (K = 2). The number of nodes is from 100 to 1000.
Five random instances are generated based on each number of nodes. The x-axis indicates the number of nodes. The speedup on the y-axis is the
ratio of BNS solver to proposed ST solver.
doi:10.1371/journal.pone.0094258.g007

An Attractor Finding Algorithm Based on SAT

PLOS ONE | www.plosone.org 6 April 2014 | Volume 9 | Issue 4 | e94258



N genYsis [3]: the solver in SQUAD for finding all attractors

[14]. It has three run modes: synchronous, asynchronous and

synchronous-asynchronous combined. In our experiment, the

genYsis is configured in the synchronous mode.

N Boolenet [9] and BNS [11]: the state-of-the-art algorithms

based on BDD and SAT respectively.

N Proposed ST: the sequential version of the proposed algorithm.

N Proposed MT: the parallel version of the proposed algorithm.

Figure 8. The speedup of proposed ST solver vs. BNS solver over the random instances with (K = 3). The number of nodes is from 100 to
1000. Five random instances are generated based on each number of nodes. The x-axis indicates the number of nodes. The speedup on the y-axis is
the ratio of BNS solver to proposed ST solver.
doi:10.1371/journal.pone.0094258.g008

Figure 9. The speedup of proposed MT solver vs. ST solver over the random instances (K = 2). The proposed ST solver runs on a single
core. The proposed MT solver runs on 2-core, 4-core and 8-core respectively. The number of nodes is from 100 to 1000. Five random instances are
generated based on each number of nodes. The x-axis indicates the number of nodes. The speedup on the y-axis is the ratio of proposed ST solver to
proposed MT solver.
doi:10.1371/journal.pone.0094258.g009
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Other tools, such as CellNetAnalyzer, Odefy and Jemena are

not chosen because they are mostly based on simulation approach

that cannot find all attractors [8,13,15–17]. All tests are performed

on a machine equipped with Intel Xeon CPU @3.3 GHz 8-Core

with 128 GB memory running Ubuntu 12.04.

Comparison between SAT-based Algorithms and BDD-
based Algorithms

We compared the BDD-based algorithms, genYsis, BooleNet

with SAT-based algorithms, BNS and proposed ST. The runtime

of these sequential algorithms on finding all attractors in real GRN

models are shown in Table 1.

The results indicate that the SAT-based solvers are faster than

BDD-based solvers in overall. In addition, the GRN models in

Table 1 are all small and each runtime is relatively short. And our

algorithm needs to compute strongly connected components and

their gradient before solving attractors. Due to the overhead, the

approach of the partition in the small GRN has not improved the

performance of solving.

Solver Runtime in Large-scale Random GRNs
For human beings, the potential complexity of the resulting

network is daunting. The number of functionally relevant

interactions between the components of this network, repre-

senting the links of the interaction, is expected to be much

larger. To test the performance of these algorithms on larger

examples, we use the BoolNet package [32] in the R

environment [31] to generate the N-K random Boolean

networks. The parameters of generateRandomNKNetwork function

are set to K = 2 and K = 3, and topology = ‘‘scale_free’’ based on

the literature [5,35]. We generate a series of GRNs with the

nodes from 100 to 1000 and choose 100 instances with a

special number of nodes and parameter K in which the

attractors can be found in limited time by BNS solver. The

BNS solver and proposed ST solver run on the single core. The

average runtime of test cases is showed in Figure 5 and

Figure 6.

In Figure 5, the parameter K is set to 2 and 3 is set in Figure 6.

The x-axis indicates the number of nodes and corresponding

average runtime of five instances with same node number and K

is on the y-axis. The results show the proposed ST has

remarkably improvement in the large scale instances than the

BNS solver. For example, in Figure 5, the average runtime of the

five instances with node number 600 and K = 2 is & 537 seconds

in the BNS solver, 185 seconds in the proposed ST solver. In

Figure 6, the average runtime with node number 600 and K = 3 is

&1121 seconds in the BNS solver, 162 seconds in the proposed

ST solver. The higher time complexity is, the larger reduced time

is.

Figure 7 and Figure 8 described the speedup ratios of

random instances with K = 2 and K = 3, and the x-axis indicates

the number of nodes and the speedup ratio is on the y-axis.

As we can see, the proposed algorithm is more efficient than

BNS in large and complex random instances. The proposed ST

solver is faster than the BNS solver which speedup ratios are

1.64–10.58 | faster in the random instances. For example, in

Figure 7, the speedup ratio of the sample with 900 nodes and

K = 2 is 1.64 and the speedup ratio with 700 nodes and K = 3 is

10.58 in Figure 8. Compared to the BNS solver, the proposed-

ST solver is 4.5 | faster on average.

Analysis of Parallelization of the Algorithm
The proposed MT takes advantage of the multicore to

improve the performance of the proposed algorithm, while

other SAT-based algorithm cannot. In the proposed algorithm,

the network is partitioned into blocks and multiple sub-

processes are created after the solution of the first block is

computed. The total runtime after parallelization could be

Figure 10. The speedup of proposed MT solver vs. ST solver over the random instances (K = 3). The proposed ST solver runs on a single
core. The proposed MT solver runs on 2-core, 4-core and 8-core respectively. The number of nodes is from 100 to 1000. Five random instances are
generated based on each number of nodes. The x-axis indicates the number of nodes. The speedup on the y-axis is the ratio of proposed ST solver to
proposed MT solver.
doi:10.1371/journal.pone.0094258.g010
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considered as:

Ttotal~Tfirst blockz max (T1,T2,:::,TCPU NUM ) ð5Þ

where Tfirst block is the runtime for solving local attractors of

the first block. Ti,i[f1,2,:::,CPU NUMg is the runtime of the

ith sub-process based on the local attractors of the first block.

CPU_NUM is the number of available concurrent cores on

which the sub-processes can be executed. The minimum

runtime of the proposed MT will be greater than the

Tfirst block. As a result, the scalability of parallel algorithm is

only constrained by Tfirst block. To further reduce the

Tfirst block, the first block of the proposed MT algorithm only

includes the nodes with grad 0. In the meantime, we verify the

scalability of the improved MT algorithm using the same test

cases with Section 3.2, with 2, 4, and 8 concurrent cores. The

results are illustrated in Figure 9 and Figure 10.

The results show a significantly improved performance com-

pared with the sequential algorithm in 17 of 20 instances. In

Figure 9, the average speedup is 1.47, 2.06 and 2.64 on 2-core, 4-

core and 8-core. In Figure 10, the average speedup is 1.46, 1.82

and 2.44 on 2-core, 4-core and 8-core. Because the time of SAT

solving is nonlinear, the speedup is not proportional to the number

of cores. The performance of parallel algorithm is impacted by

Tfirst block and the time of SAT solving could not be forecasted,

therefore, the three instances (nodes 100, 1000, 900) have almost

at the same runtime with sequential algorithm in Figure 10.

Conclusion

In this paper, we presented an algorithm based on the partition

and SAT for finding the attractors in a GRN modeled by the SBN.

The algorithm uses the SCC and gradient to determine blocks and

finds attractors in blocks based on the unfolding of the transition

relation. We have verified the feasibility and efficiency of the

algorithm by performing experiments on both small and large test

cases. Our algorithm exhibits higher efficiency compared with

other state of the art solvers (including BooleNet solver, BNS

solver, and genYsis solver from SQUAD) in the larger and more

complex cases, which would be the typical condition in real

biological process model.

A potential future work could be studying the property of a

GRN to realize the adaptive size of block to improve the

performance of the algorithm, since the performance of solvers is

also related to the structure of the network, and it is not

proportional to the number of nodes.
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