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Abstract

Escalation with overdose control (EWOC) is a Bayesian adaptive phase I clinical trial design that produces consistent
sequences of doses while controlling the probability that patients are overdosed. However, this design does not take
explicitly into account the time it takes for a patient to exhibit dose limiting toxicity (DLT) since the occurrence of DLT is
ascertained within a predetermined window of time. Models to estimate the Maximum Tolerated Dose (MTD) that use the
exact time when the DLT occurs are expected to be more precise than those where the variable of interest is categorized as
presence or absence of DLT, given that information is lost in the process of categorization of the variable. We develop a
class of parametric models for time to toxicity data in order to estimate the MTD efficiently, and present extensive
simulations showing that the method has good design operating characteristics relative to the original EWOC and a version
of time to event EWOC (TITE-EWOC) which allocates weights to account for the time it takes for a patient to exhibit DLT. The
methodology is exemplified by a cancer phase I clinical trial we designed in order to estimate the MTD of Veliparib (ABT-
888) in combination with fixed doses of gemcitabine and intensity modulated radiation therapy in patients with locally
advanced, un-resectable pancreatic cancer.
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Introduction

Cancer phase I clinical trials constitute the first step in

investigating the safety of potentially promising new cytotoxic or

biological drugs in humans. In these studies, patients are accrued

to the trial sequentially and the dose allocated to the next patient

depends on the doses and dose limiting toxicity (DLT) status of all

previously treated patients. The goal is to estimate a dose level that

is associated with a pre-determined level of DLT.

Dose assignment is carried out after the DLT status of patients

under observation is resolved. This occurs within one cycle of

therapy, which typically lasts 3 to 6 weeks. The target dose c is

referred to as the maximum tolerated dose (MTD), and is defined

as the dose that is expected to produce DLT in a specified

proportion h of patients:

P(DLT jDose~c)~h: ð1:1Þ

Several statistical methodologies have been proposed in the

literature to select the MTD, see [1,2,3,4] for a review. An

important class of methods that produce consistent sequences of

doses are Bayesian adaptive designs, such as the continual

reassessment method (CRM) proposed by O’Quigley et al. [5]

and its modifications [6,7,8,9,10], and the escalation with overdose

control (EWOC) method described by Babb et al. [11], Zacks et al.

[12], Tighiouart et al. [13,14,15,16], and Tighiouart and Rogatko

[17].

A limitation with this design is that the toxicity outcome is coded

as a binary variable, presence or absence of DLT. For trials where

the length of a cycle of therapy is two months or longer as in

treatments involving radiotherapy, total trial duration can be very

long making the trial practically non-feasible. This limitation

motivated the development of models to estimate the MTD that

take into account the amount of time patients are under

observation when new patients are about to enter the trial.

Cheung and Chappell [18] extended the CRM to allow late-onset

toxicity. Their approach was to allocate weights to account for the

time it takes for a patient to exhibit DLT. A similar approach was

adapted to EWOC by Mauguen et al. [19]. They showed that the

design operating characteristics of EWOC in terms of safety and

MTD recommendation were maintained while the length of the

trial was reduced when compared with EWOC. These approaches

assume that the weights are linear function of the time to follow up

with value equal to 1 if a patient experiences DLT. This implies

that patients who experience DLT at different time points will

contribute the same information to the likelihood function.

In this paper, we develop a class of adaptive Bayesian models

that take into account not only the status of DLT during the

observation window, but also the time it takes for the patient to

exhibit DLT. These designs are expected to be more efficient

when estimating the MTD since more information is being
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collected and used in the trial. Design operating characteristics are

studied using extensive simulations and are compared to two

versions of EWOC and time to event EWOC (TITE-EWOC)

described in [19].

Methods

In this section, we describe our design by assuming that the risk

of DLT given dose follows a proportional hazards model [20]. The

design is termed EWOC-PH.

2.1 EWOC-PH
Let T1, T2,…, Tn be nonnegative absolutely continuous random

variables representing time to DLT. Suppose that each patient is

observed up to time t after he or she is given the treatment. In

practice, t is usually equal to one cycle of therapy, equivalent to 3

or 4 weeks since drug administration or even longer for therapies

involving radiation. Let Dn = {(Yi, xi, di), i = 1,…,n} be the

observed data, where Yi = min(Ti, t), xi is the dose allocated to

patient i, and di = I(Ti#t). In other words, if di = 1, we observe a

DLT within the observation window, otherwise, the time to DLT

is censored at time t. Note that here, we are assuming that the

DLT status of all patients can be resolved by the end of the cycle of

therapy. The methodology is equally applicable to the case where

censoring occurs before time t. For instance, the time to DLT is

censored before time t if a patient is withdrawn from the study due

to disease progression or if a patient exhibits a severe adverse event

not attributed to the treatment. Following the classical definition of

the MTD where the DLT outcome variable is binary given in

(1.1), we define the MTD c as the dose at which a proportion h of

patients exhibit DLT during the observation window [0, t], i.e.

Pr Tƒtjx~cð Þ~h: ð2:1Þ

The value chosen for the target probability h depends on the

nature and clinical manageability of the DLT; it is set relatively

high when the DLT is a transient, correctable or non-fatal

condition, and low when it is lethal or life threatening. Suppose

that dose levels in the trial are selected in the interval [Xmin, Xmax].

2.1.1. Likelihood. We model the risk of DLT given dose

h(t|x) by assuming that patients given different doses of an agent

have proportional risks of DLT. Following Cox proportional

hazards model [20], we have

h(tjx)~h0(t; m) exp (b:(x{Xmin)), ð2:2Þ

where h0(t; m) is the baseline hazard function corresponding to the

risk of DLT for a patient given dose Xmin and m is a vector of

parameters associated with the parametric baseline hazard. The

regression effect b represents the fixed dose effect on the risk of

DLT. We assume that bw0 so that the hazard of DLT is an

increasing function of dose. After enrolling n patients in the trial,

the likelihood function for the parameters is

L(b,mDDn)~ P
n

i~1
h(Yi Dxi)

di exp {

ðYi

0

h(sDxi)ds

� �
: ð2:3Þ

We reparameterize model (2.2) in terms of c and r0, the

probability that a DLT manifests within the first cycle of therapy

for a patient given dose x = Xmin. This reparameterization is

convenient to clinicians since c is the parameter of interest and

prior information on r0 may be available from other trials or from

trials using similar agents. Since there is a one to one

correspondence between the survival function and hazard function

P(Twtjx)~S(tjx)~e{

ðt

0

h(sjx)ds, ð2:4Þ

it follows that

c~
1

b
bXminz log

log (1{h)

{H0(t; m)

� �� �

r0~1{ exp {H0(t; m)f g,
ð2:5Þ

where H0(t; m)~
Ð t

0
h0(u; m)du is the cumulative baseline hazard

function.

Assuming that the baseline instantaneous risk of DLT follows an

exponential distribution with hazard function h0(t;m) = m, one can

show that

m~{
1

t
log (1{r0)

b~
1

c{Xmin

log
log (1{h)

log (1{r0)

� �
,

ð2:6Þ

and the likelihood (2.3) becomes

L(b,mDDn)~

P
n

i~1
½m exp (b(xi{Xmin))�di expf{mYi exp (b(xi{Xmin))g:

ð2:7Þ

Other flexible parametric baseline hazards such as Weibull and

lognormal distributions can be used at the expense of increased

number of parameters. Using (2.6) and (2.7), one can easily write

the likelihood of the reparameterized model L(r0,c|Dn). From

(2.6), the assumption b.0 implies that 0,r0,h.

2.1.2. Prior and Posterior Distributions. Let g(r0,c) be a

prior distribution on r0 and c on [0, h]6[Xmin, Xmax]. Using Bayes

rule, the posterior distribution of the model parameters is

proportional to the product of the likelihood and prior distribution

p(r0,cjDn)!L(r0,cjDn)|g(r0,c): ð2:8Þ

We designed an MCMC sampler based on the Metropolis-

Hastings algorithm [21,22] to obtain model operating character-

istics. We also used WinBUGS [23] to estimate features of the

posterior distribution of the MTD and design a trial. In the

absence of prior information about the MTD and probability of

DLT at Xmin, independent vague priors are selected for r0 and c.

2.1.3 Trial Design. Dose levels in the trial are selected in the

interval [Xmin, Xmax]. The adaptive design proceeds as follows.

The first patient receives the dose x1 = Xmin. If this patient

experiences DLT within the observation window(0,t�, then we

would recommend stopping the trial. Otherwise, the marginal

posterior cdf of the MTD given that the first patient did not exhibit

DLT by the end of the cycle of therapy is denoted by P1(c) = P(c

| (t, x1, 0)). The second patient receives the dose x2~P{1
1 (a) so

that the posterior probability of exceeding the MTD is equal to the

feasibility bound a. This is the overdose protection property of

EWOC, where at each stage of the design, we seek a dose to

EWOC Using Time to Toxicity
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allocate to the next patient while controlling the posterior

probability of exposing patients to toxic dose levels. Suppose the

k-th patient is ready to enter the trial at time tk. We then calculate

Pk-1(c) = P(c | (Yi, xi, di), i = 1,…,k-1) up to time tk. Note that

here, Yi is either equal to t if patient i already finished one cycle of

therapy with no evidence of DLT by the time patient k is ready to

enter the trial, or Yi is the time since patient i was given dose xi

until time tk if this patient is still at risk by this time. Otherwise, Yi is

the time to DLT for that patient. The k-th patient receives the

dosexk~P{1
k{1(a). The trial proceeds until a pre-determined

number of patients are enrolled to the trial. At the end of the trial,

we estimate the MTD as the median of the posterior distribution

of c. We note that here, information on the DLT status of a patient

past the observation window (0,t� is not used in the model due to

the definition of the MTD in (2.1). Such data may be appropriate

to use if one is interested in optimizing both dose and number of

cycles as in Braun et al. [24].

2.2 TITE-EWOC
Cheung and Chappell [18] extended the CRM to allow patients

to enter the trial continuously, and called the design time to event

CRM, TITE-CRM. Their approach was to allocate weights to

take into account the time it takes for a patient to exhibit DLT.

The method was further studied by Polley [25] to accommodate

situations where we have fast patient accrual. TITE-CRM was

adapted to EWOC by Mauguen et al. [19]. They assumed that the

probability of DLT is given by

Pr d~1jxð Þ~F(b0zb1x)~
exp (b0zb1x)

1z exp (b0zb1x)
, ð2:9Þ

where b1.0. Letting wi = Yi/t if di = 0 and wi = 1 if di = 1, the

corresponding likelihood function is

L(b0,b1DDn)~P
n

i~1
½wiF (b0zb1xi)�di 1{wiF (b0zb1xi)½ �1{di :ð2:10Þ

The model is further reparameterized in terms of r0 and c as in

Section 2.1.1. These parameters are given by:

c~
log (h){ log (1{h){b0

b1

r0~
exp b0zb1Xminð Þ

1z exp b0zb1Xminð Þ :
ð2:11Þ

We note that this approach implies that patients who experience

DLT at different time points will contribute the same information to

the likelihood function. Trial design proceeds as described in

Section 2.1.3.

2.3 Characteristics of EWOC-PH
The proposed design EWOC-PH assigns dose levels to future

patients by taking into account the most recent DLT status of

currently and previously treated patients according to the

following properties.

(i) At each stage of the design, we seek a dose to allocate to the

next patient while controlling the posterior probability of

exposing patients to toxic dose levels.

(ii) Suppose the DLT status of the first k-2 patients has been

resolved. If patient k-1 does no exhibit DLT by the time

patient k is ready to be enrolled to the trial at time tk, then

the longer the time tk, the higher the recommended dose for

patient k is.

(iii) Suppose the DLT status of the first k-2 patients has been

resolved. If patient k-1 exhibits DLT shortly after he or she is

given dose xk-1, then the dose recommended for the next

patient is much lower than the dose given to patient k had

patient k-1 exhibited DLT later in the cycle.

Property (i) is the overdose protection defining characteristic of

EWOC which is also satisfied by TITE-EWOC but not by TITE-

CRM. Property (ii) is intuitively appealing and although not

mentioned in [18] and [19], it is shared by both TITE-CRM and

TITE-EWOC. In fact, the property holds because the weight

function w in (2.10) is an increasing function of Y as is shown in the

proof of Theorem 1 below. Property (iii) is also naturally appealing

because the amount of dose level reduction is a decreasing

function of the time it takes for a patient to exhibit DLT. Property

(iii) does not hold for TITE-CRM and TITE-EWOC since

patients who exhibit DLT at different time points contribute the

same weight in the likelihood function (2.10). Characteristics (ii)

and (iii) are summarized in the following theorem.

THEOREM 1. Let Dk = {(Y1, x1, d1),…,(Yk, xk, dk)} be the data on

the first k patients generated by the design described in Section 2.1.3 and

Pk(c;Yk) be the cdf of c given the data Dk. Let xkz1~P{1
k (a; Yk) and

x’kz1~P{1
k (a; Y ’k). Suppose that for all i = 1,…,k-1, either di = 1 or

(Yi, di) = (t, 0). Then, x’kz1§xkz1 whenever Yk
’
§Yk: Furthermore, if

the data Dk is generated by TITE-EWOC in Section 2.2 or TITE-CRM,

and if dk = 0, then x’kz1§xkz1 whenever Yk
’
§Yk:

Proof.

Let

L(r0,cDDk)~

P
k

i~1
{

log (1{r0)

t
: exp

log log (1{h)= log (1{r0)ð Þ
c

:(xi{Xmin)

� �� �di

| exp Yi
: log (1{r0)

t
: exp

log log (1{h)= log (1{r0)ð Þ
c

:(xi{Xmin)

� �� �

be the likelihood (2.7) reparameterized in terms of r0 and c. To

simplify notation and presentation of the proof, we assume that

Xmin = 0, Xmin = 1, t = 1, and r0 is fixed. Let Lk(c) = Lk(r0,c|Dk),

p(c) be a proper prior density for c, and h(c)~ log (1{r0)
exp (xk=c) log log (1{h)= log (1{r0)ð Þf g: We note that since

0,r0,h, the function h(N) is negative and monotonically

increasing in c. Using Bayes’ rule, the posterior c.d.f Pk(t;Yk) of

the MTD c is

Pk(t; Yk)~

Ð t

0
Lk{1(c)({h(c))dk exp (Yk h(c))p(c)dcÐ 1

0
Lk{1(c)({h(c))dk exp (Yk h(c))p(c)dc

:

It follows that

Pk(t; Yk){Pk(t; Y ’k)~Ð t

0
Lk{1(c)({h(c))dk exp (Yk h(c))p(c)dcÐ 1

0
Lk{1(c)({h(c))dk exp (Yk h(c))p(c)dc

{

Ð t

0
L
0
k{1(c)({h(c))dk exp (Y ’k h(c))p(c)dcÐ 1

0
L
0
k{1(c)({h(c))dk exp (Y ’k h(c))p(c)dc

:

Since we are assuming that the DLT status of the first k-1 patients

EWOC Using Time to Toxicity
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has been resolved, i.e., either di = 1 or (Yi, di) = (t, 0) for i#k-1,

then Lk{1(c)~Lk{1
0
(c): Hence,

Pk(t; Yk){Pk(t; Y ’k)

~A{1

ðt

0

ð1

t

Lk{1(c)Lk{1(c’)({h(c))dk ({h(c’))dk

�

exp (Yk h(c)) exp (Y ’k h(c’))p(c)p(c’)dc’dc�
{A{1

ðt

0

ð1

t

Lk{1(c)Lk{1(c’)({h(c))dk ({h(c’))dk

�

exp (Y ’k h(c)) exp (Yk h(c’))p(c)p(c’)dc’dc�
~A{1

ðt

0

ð1

t

Lk{1(c)Lk{1(c’)(h(c)h(c’))dk p(c)p(c’)
�

eYk h(c)eY ’k h(c’){eY ’k h(c)eYk h(c’)� 	
dc’dc�,

where

A~

ð1

0

ð1

0

Lk{1(c)Lk{1(c’)({h(c))dk ({h(c’))dk exp (Yk h(c))

exp (Y ’k h(c’))p(c)p(c’)dc’dc:

Since YkƒY ’k, cƒc’ and h(.) is increasing in c, then

eYk h(c)eY ’k h(c’){eY ’k h(c)eYk h(c’)§0: Furthermore, since h(?) is

negative, h(c)?h(c9) is nonnegative. Hence, Pk(t; Yk)§Pk(t; Y ’k),

which implies that P{1
k (a; Yk)ƒP{1

k (a; Y ’k), that is xkz1ƒ

x’kz1: This completes the proof of the first part of Theorem 1.

If dk = 0, then the likelihood (2.10) for TITE-EWOC is Lk(c) =

Lk-1(c)(1-wk(Yk) F(c;xk)), where wk(Yk) is the weight function defined

in Section 2.2 and F(c;xk) is the logistic function in (2.9)

reparameterized in terms of the MTD c. Using similar calculations

as above, we have

Pk(t; Yk){Pk(t; Y ’k)~A{1

ðt

0

ð1

t

Lk{1(c)Lk{1(c’)p(c)p(c’) (wk(Yk){wk(Y ’k))(F(c’; xk){F (c; xk))½ �dc’dc

� �
,

where

A~

ð1

0

ð1

0

Lk{1(c)Lk{1(c’) 1{wk(Yk)F (ck; xk)½ �

1{wk(Y ’k)F (c’k; xk)½ �p(c)p(c’)dc’dc:

Since wk(Yk) is monotonically increasing in Yk and assuming

that F(c;xk) is decreasing in c, which is the case for the logistic

function, then wk(Yk){wk(Y ’k)½ � F (c’; xk){F (c; xk)½ �§0: Hence,

Pk(t; Yk)§Pk(t; Y ’k), which implies that P{1
k (a; Yk)ƒ

P{1
k (a; Y ’k), that is xkz1ƒx’kz1: A similar argument shows

that the property holds for the TITE-CRM.

2.4 Coherence of EWOC-PH
In the design of Cancer phase I trials using cytotoxic agents, it is

ethical not to escalate the current dose xk if patient k (currently

treated at this dose level) exhibits DLT. Similarly, if patient k does

not experience DLT by the end of the first cycle of therapy, then

the dose recommended for patient k+1 should not be lower than

xk. This property is known as Coherence and was introduced by

Cheung [26]. The CRM as proposed in [5] was shown to be

coherent by Cheung [26] and the coherence of EWOC was

established by Tighiouart and Rogatko [17]. For time to event

toxicity Bayesian adaptive models, the definition of coherence has

been extended in [26] who also showed that TITE-CRM is

coherent. However, coherence in escalation does not have a

practical interpretation in the case of delayed toxicities. Following

the definition of coherence for time to event DLT in [26], one can

easily show that EWOC-PH is also coherent.

We note that here, properties (ii) and (iii) of Theorem 1 are

different from the notion of coherence. Theorem 1 makes a

statement about the dose to be given to patient k given the length

of time patient k-1 is under observation; the longer the time patient

k-1 is under observation with no evidence of DLT, the higher the

dose to be allocated to patient k. A similar statement is made if the

patient exhibits DLT. Unlike the notion of coherence, we are not

comparing the doses of patient k-1 and patient k.

Simulation Studies

3.1 Design Operating Characteristics
In the simulation studies, we compare the operating character-

istics of EWOC-PH with the original EWOC, TITE-EWOC and

EWOC-W. The original EWOC introduced by Babb et al. [11]

assumes that the DLT outcome is binary and dose allocation is

carried whenever a patient is available for treatment. It is not

necessary to wait for the DLT status of patients under observation

to be resolved. EWOC-W, which stands for EWOC ‘‘waiting’’

works just like EWOC except that patients are enrolled to the trial

only after the DLT status of all previously treated patients have

been resolved. Both EWOC and EWOC-W use a logistic model

(2.9). The designs are compared with respect to safety of the trial

and efficiency of the estimate of the MTD by simulating m = 1000

trials of n = 48 patients each. Specifically, we calculated the

average bias avebias~m{1:
Xm

i~1
(ĉci{ctrue), where ĉci is the

estimate of the MTD for the i-th trial and ctrue is the true MTD

under a particular scenario, the mean square error MSE~m{1:Xm

i~1
(ĉci{ctrue)2, the average proportion of patients exhibiting

DLT 1=(m:n):
Xm

i~1

Xn

j~1
I(di,j~1), the percent of trials with

estimated MTD within 10% of the dose range of the true MTD,

and the percent of trials with DLT rate exceeding 40%. These last

two summary statistics approximate the probability that a given

trial will result in an estimated MTD close to the true MTD and

the probability that a trial will be safe, respectively.

Dose levels have been standardized so that Xmin = 0 and

Xmax = 1. We took t = 1, the target probability of DLT was fixed at

h = 0.33, and the feasibility bound was set to a = 0.25. Indepen-

dent uniform prior distributions were selected for r0 and c, (r0, c)

, Uniform([0, h]6[0, 1]). We considered nine scenarios corres-

ponding to three values for the true MTD c = 0.3, 0.5, 0.7, three

values for the accrual rate n = 1, 2, and 4 patients per unit of time

equal to the length of the observation window [0, t], and fixed

value of r0 = 0.05. In order to make a fair comparison between the

different models and assess the performance of EWOC-PH under

model misspecification, we simulated the times to DLT using two

different models as described in the next section. For each

scenario, patients enter to the trial according to a time

homogeneous Poisson process with rate n.

EWOC Using Time to Toxicity
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3.2 Models to generate time to DLT
The first model we considered for generating the time to DLT is

similar to the proportional hazards model (2.2) but with a Weibull

baseline hazard function

h0(t)~(k=l) t=lð Þk{1: ð3:1Þ

We took k = 0.5, 1, 1.5. Note that the case k = 1 corresponds to

the exponential true model for EWOC-PH. Figure 1 shows the

corresponding cdfs P (T#t | l, k, b, dose = x) for various values of

the true MTD ctrue, ctrue = 0.3, 0.5, 0.7 given three different doses

x = 0.2, x = ctrue, x = 0.8. The solid line corresponds to the true

model EWOC-PH and serves as a reference for departure of the

other cdfs from the true model. Note that these curves have been

chosen so that they have the same MTD value in each scenario.

This is accomplished by setting P (T#t | l, k, b, dose = c) = h
and P (T#t | l, k, b, dose = Xmin) = r0. It then follows that l =

[2k/((k+1) log(12r0))]1/k and b = c21 log[2k21 (k+1) lk

log(12h)].

The second model we considered is a non-proportional hazards

model

h(tDx)~h0(t) eb1x I(tƒt1)zb2x I(twt1), 0vt1vt: ð3:2Þ

We used h0(t) = b = 0.15, t1 = 0.5, and two different values for

b2, b2 = 0.5, 2. The values for b1 were selected to match the

MTDs with the other models as above. It can be shown that b1 =

c21 log[2ecb2 22b21 log(12h)]. The corresponding cdfs are

shown in Figure 2 along with the cdf of the true model which

corresponds to the case b1 = b2. These models yield reasonable

separations of the corresponding cdfs of the time to DLT from the

true model and the extent of this separation increases with dose.

For each of the above models, let Ti be the time to DLT for

patient i generated from that model under a particular scenario. If

Ti.t, then the observed time to DLT is censored at t and the

DLT response for EWOC and EWOC-W models is recorded as

di = 0. Otherwise, di = 1 for EWOC and EWOC-W models.

Results

4.1 Trial Duration
Table 1 shows the median trial duration across the m = 1000

simulated trials along with the first and third quartiles for the

different designs as a function of the accrual rate. As expected,

design of cancer phase I trials where the treatment is delayed until

we observed the DLT status of all patients under observation can

take at least twice as long when the expected number of available

patients per cycle is 2, and can be more than four times longer

when the accrual rate is 4.

4.2 Trial Efficiency
Figure 3 shows that EWOC-PH has smaller average bias

relative to TITE-EWOC and the other two versions of EWOC

under all scenarios when k = 0.5, 1. When k = 1.5, EWOC-PH

has a larger bias relative to TITE-EWOC but the extent of this

difference is much smaller compared to the differences observed

when k = 0.5. The MSE for all models shown in Figure 4 are fairly

close in most scenarios. Similarly, Figure 5 shows that when

b2 = 0.5, the absolute average bias for EWOC-PH is smaller than

the average bias using the other 3 models except when the true

MTD is high (c = 0.7). When b2 = 2.0, EWOC-PH has smaller

absolute average bias relative to TITE-EWOC in 8 out of the 9

scenarios. In the 9th scenario corresponding to the true MTD

c = 0.5 and accrual rate n = 1, EWOC-PH and TITE-EWOC

have about the same bias. Again, the MSE for all models shown in

Figure 6 are very close in most scenarios. Based on these results,

EWOC-PH does better than TITE-EWOC in the majority of

these scenarios and model misspecifications combined. These

cases occur when the cdf of the model from which the time to

DLT is generated is above the cdf of the true model when the dose

x is below the true MTD, see Figures 1 and 2.

Figure 7 shows that EWOC-PH does better than the other

models in terms of percent of trials with estimated MTD within 0.1

of the true MTD in the majority of the scenarios when k = 0.5, 1.

The extent of this difference can be as high as 12% between

EWOC-PH and EWOC. This occurs when the true MTD is low

(c = 0.3) and the accrual rate is n = 1. When k = 1.5, the results are

mixed and depend on the value of the true MTD and accrual rate.

Figure 1. Cumulative distribution function plots for different values of k and the true value of the MTD c for various dose levels.
doi:10.1371/journal.pone.0093070.g001
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However, in eight out of the nine scenarios, the percent of trials

with estimated MTD within 0.1 of the true MTD for EWOC-PH

and TITE-EWOC are very close. When the time to DLT is

generated by a non-proportional hazards model, Figure 8 shows

that when b2 = 0.5, the percent of trials with estimated MTD

within 0.1 of the true MTD using EWOC-PH is higher than the

corresponding percentages using the other 3 models in six out of

the nine scenarios. TITE-EWOC does better when the MTD is

high, c = 0.7. Similarly, when b2 = 2.0, the percent of trials with

estimated MTD within 0.1 of the true MTD using EWOC-PH is

higher than the corresponding percentages using the other 3

models in seven out of the nine scenarios. These percentages are

very close in the case where the true MTD is c = 0.5. Based on

these summary statistics, we conclude that EWOC-PH is a good

alternative design to TITE-EWOC since it may result in a smaller

bias under the majority of scenarios considered here and some

model misspecification.

4.3 Trial Safety
Figures 9 and 10 show that the average proportion of patients

exhibiting DLT does not exceed h = 0.33 using all four models for

all scenarios and under the two model misspecifications. Further-

more, Figures 11 and 12 show that the estimated probability that a

prospective trial will result in an excessive number of DLTs,

defined as a DLT rate exceeding 40%, is very small and does not

exceed 0.04 under all 9 scenarios and all the different models for

generating the time to DLT considered here. We conclude that in

general, designing a trial using EWOC-PH is safe but additional ad

hoc stopping rules for excessive toxicity should always be put in

place in writing the protocol.

4.4 Model Robustness
For a given scenario, Figures 3 and 5 show that the largest

difference in the average bias using EWOC-PH is around 0.12, or

12% of the dose range. This occurs when the true MTD c = 0.7,

accrual rate n = 1, and k = 1.5 (Figure 3) and the true MTD

c = 0.7, accrual rate n = 1, and b2 = 2.0 (Figure 5). When the true

MTD is c = 0.3, the largest difference in the average bias using

EWOC-PH under the Weibull hazards corresponding to k = 0.5,

1.0, 1.5 and the non-proportional hazards models corresponding

to b2 = 0.5, 2.0 is about 0.03. When the true MTD is c = 0.5, the

largest difference in these average biases is around 0.065.

Similarly, when comparing the percent of trials with estimated

MTD within 0.1 of the true MTD for a given scenario, Figures 7

and 8 show that the largest differences between these percentages

across the different models for generating the times to DLT is

around 10%. We conclude that EWOC-PH is reasonably robust

in terms of precision of the estimate of the MTD under the model

misspecifications considered here.

Figures 9 and 10 also show that EWOC-PH is robust under the

model misspecifications considered here where the largest

difference in the average probability of DLT is about 0.05. This

occurs when the true MTD is c = 0.3 and the times to DLT are

generated from a proportional hazards model with Weibull

baseline hazards corresponding to k = 0.5 and k = 1.5. Similarly,

the largest difference in the percent of trials with DLT rate

exceeding 40% is 0.036. Again, this occurs under the same

scenario and models misspecification discussed above, see

Figure 11.

4.5 Real Trial Example
We designed a cancer phase I clinical trial in order to estimate

the MTD of Veliparib (ABT-888) in combination with fixed doses

Figure 2. Cumulative distribution function plots for the non-proportional hazards model for different values of the true MTD c and
for various dose levels.
doi:10.1371/journal.pone.0093070.g002

Table 1. Median duration of the four trial designs by accrual
rate.

Design Accrual Rate

1 2 4

EWOC 48.2(44, 52.9) 25.2(22.8, 27.5) 13.8(12.8, 14.9)

EWOC-W 86.2(81.6, 90.7) 64.5(61.9, 67.6) 61.6(59.8, 63)

EWOC-PH 48.3(44.4, 53) 25.2(22.9, 27.5) 13.7(12.7, 15)

TITE-EWOC 48.4(44.2, 52.9) 25.3(23.2, 27.7) 13.7(12.7, 14.8)

The first and third quartiles are shown in parentheses.
doi:10.1371/journal.pone.0093070.t001
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of Gemcitabine and Intensity Modulated Radiation Therapy in

patients with locally advanced, un-resectable pancreatic cancer.

The trial has just been approved by the FDA and the first patient

was enrolled at the time of writing of the manuscript. The MTD is

defined to be the dose level of Veliparib that when administered to

a patient results in a probability equal to h = 0.4 that a dose

limiting toxicity will be manifest within ten weeks, t = 10. Due to

the long length of the observation window to resolve DLT status,

EWOC-PH was used to design the trial.

The dose for the first patient in the trial was set at 20 mg,

previous results indicating this to be a safe dose. The dose for each

subsequent patient will be determined so that, on the basis of all

available data, the probability that it exceeds the MTD is equal to

a pre-specified feasibility bound a = 0.25. The prior distribution of

the MTD is based on the correlated priors model M4 described in

Tighiouart et al. [13] where the support of the MTD is (0, ‘).

After extensive consultation with the principal investigator (PI) of

the trial, we will assume that the a priori probability that the MTD

exceeds 100 mg is 10%. Upon completion of the trial, the MTD

will be estimated as the median of the marginal posterior

distribution of the MTD.

Figure 13 shows an example of a simulated trial when the true

value of the MTD c = 70 mg and the probability of DLT at the

initial dose r0 is 0.05. Patients enter the trial according to a time

homogeneous Poisson process with an average number of 3

patients per 10 weeks. This figure shows patients’ number, the

time when they enter the trial, the DLT status and how long it

took to exhibit DLT if they did. To assess design operating

Figure 3. Average bias of the estimated MTD for each of the four models and nine scenarios when the time to DLT is generated
from a proportional hazards model with Weibull baseline hazard rate with parameters k = 0.5 (left panel), l = k = 1.0 (middle panel),
and k = 1.5 (right panel).
doi:10.1371/journal.pone.0093070.g003

Figure 4. Mean square error of the estimated MTD for each of the four models and nine scenarios when the time to DLT is
generated from a proportional hazards model with Weibull baseline hazard rate with parameters k = 0.5 (left panel), l = k = 1.0
(middle panel), and k = 1.5 (right panel).
doi:10.1371/journal.pone.0093070.g004
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characteristics, we simulated 1000 trials under 3 scenarios for the

true value of the MTD c. In each case, the probability of DLT at

the initial dose is 0.05, the arrival times follow a time

homogeneous Poisson process with rate equal to 3 patients per

cycle, and n = 30 patients per trial. Table 2 shows the summary

statistics based on 1000 trials. We can see that the estimated MTD

Figure 5. Average bias of the estimated MTD for each of the four models and nine scenarios when the time to DLT is generated
from a non-proportional hazards model. b2 = 0.5 (left panel), b2 = 2.0 (right panel).
doi:10.1371/journal.pone.0093070.g005

Figure 6. Mean square error of the estimated MTD for each of the four models and nine scenarios when the time to DLT is
generated from a non-proportional hazards model. b2 = 0.5 (left panel), b2 = 2.0 (right panel).
doi:10.1371/journal.pone.0093070.g006
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is close to the true underlying c and the overdose protection

property of EWOC is illustrated by the last row of Table 2.

Discussion and Conclusion

We proposed a Bayesian adaptive design for dose finding studies

with the distinctive feature that it takes into account the time for a

patient to exhibit DLT. The method is an extension of EWOC

where the dose allocated to a patient is based on the doses

allocated to previously and currently treated patients and the time

it takes to exhibit DLT. The design is dynamic in the sense that

patients can enter the trial at any time and the dose allocated to a

patient makes use of all the information available at the time the

patient enters the trial. We used a proportional hazards model

with exponential baseline hazard function h0(t;m) to describe the

dose-toxicity relationship for simplicity. The assumption of

Figure 7. Percent of trials with estimated MTD within 0.1 of ctrue for each of the four models and nine scenarios when the time to
DLT is generated from a proportional hazards model with Weibull baseline hazard rate with parameters k = 0.5 (left panel), k = 1.0
(middle panel), and k = 1.5 (right panel).
doi:10.1371/journal.pone.0093070.g007

Figure 8. Percent of trials with estimated MTD within 0.1 of ctrue for each of the four models and nine scenarios when the time to
DLT is generated from a non-proportional hazards model. b2 = 0.5 (left panel), b2 = 2.0 (right panel).
doi:10.1371/journal.pone.0093070.g008
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constant baseline hazard function is reasonable since the

parameter of interest c depends on h0(t;m) only through the

cumulative baseline hazard H0(t;m) in the observation window [0,

t] as shown in equation (2.5).

Simulation studies showed that EWOC-PH has smaller average

bias when estimating the MTD compared to EWOC, TITE-

EWOC, and EWOC-W in the majority of scenarios considered

and under two different model misspecifications. Moreover, the

estimated probability that a prospective trial will result in an

estimate of the MTD within 10% of the dose range of the true

MTD is higher when using EWOC-PH relative to EWOC, TITE-

EWOC, and EWOC-W in the majority of scenarios and under

model misspecification. We have also shown that EWOC-PH

results in a safe trial design under all scenarios and model

misspecification considered here. Furthermore, EWOC-PH is

practically robust with respect to trial safety and efficiency under

Figure 9. Average proportion of DLTs for each of the four models and nine scenarios when the time to DLT is generated from a
proportional hazards model with Weibull baseline hazard rate with parameters k = 0.5 (left panel), k = 1.0 (middle panel), and k = 1.5
(right panel).
doi:10.1371/journal.pone.0093070.g009

Figure 10. Average proportion of DLTs for each of the four models and nine scenarios when the time to DLT is generated from a
non-proportional hazards model. b2 = 0.5 (left panel), b2 = 2.0 (right panel).
doi:10.1371/journal.pone.0093070.g010
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reasonable model misspecification. Therefore, we conclude that

EWOC-PH is a good alternative design for late-onset toxicity

cancer phase I trials relative to TITE-EWOC.

We applied this methodology to design a phase I cancer trial in

which the length of the cycle is 10 weeks due to the use of

radiation. In this trial, the PI could not provide an upper bound

for the support of the MTD. However, based on previous clinical

trials using ABT-888 in combination with Gemcitabine, the PI

believes that the probability that the MTD exceeds 100 mg is

about 10% a priori. Therefore, we used a class of correlated priors

for c and r0 described in [13]. To our knowledge, this is the first

cancer phase I trial which uses time to DLT and an unbounded

support for the MTD a priori.

An important characteristic of EWOC-PH is the effect of the

length of time a patient is under observation on the dose

recommended to the next patient. We have shown that the longer

Figure 11. Percent of trials with DLT rate exceeding 40% for each of the four models and nine scenarios when the time to DLT is
generated from a proportional hazards model with Weibull baseline hazard rate with parameters k = 0.5 (left panel), k = 1.0 (middle
panel), and k = 1.5 (right panel).
doi:10.1371/journal.pone.0093070.g011

Figure 12. Percent of trials with DLT rate exceeding 40% for each of the four models and nine scenarios when the time to DLT is
generated from a non-proportional hazards model. b2 = 0.5 (left panel), b2 = 2.0 (right panel).
doi:10.1371/journal.pone.0093070.g012
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is a patient under observation with no evidence of DLT, the higher

is the recommended dose for the next patient, assuming the DLT

status of the previously treated patients has been resolved. This

intuitively attractive property holds for TITE-EWOC and TITE-

CRM as shown by Theorem 1. We have also shown that if a

patient exhibits DLT shortly after treatment starts, then the

recommended dose for the next patient is much lower than the

recommended dose had the previous patient experienced DLT

later on in the cycle. This property is not shared by either TITE-

EWOC or TITE-CRM since patients given the same dose and

who exhibit DLT at different time points contribute the same

information to the likelihood function.

The design we presented is Bayesian and the dose allocated to

the next patient corresponds to the estimate of the MTD c having

minimal risk with respect to the asymmetric loss function la(x,y) =

a (c2x) if x,c, and la(x,y) = (12a) (x2c) otherwise. As such, it

belongs to the ‘‘type I Best Intension design’’ defined by Fedorov

et al. [27]. While the original EWOC [12] design is consistent in

probability under a one parameter logistic model, we do not have

a proof that this new design is consistent due to its added

complexity. We did some simulations (data not shown) and we

observed that the average bias of the estimate of the MTD

decreases as a function of the sample size in the trial under the true

model.

The methodology presented here assumes continuous dose

levels of the agent under study, which is not uncommon in

practice. When a prospective trial uses a pre-specified number of

dose levels, we can apply this method by rounding down the dose

recommended by EWOC-PH to the nearest available dose in the

trial as proposed in [11,17]. The corresponding design will likely

suffer the drawbacks of large variability of the distribution of the

number of cohorts treated at the MTD relative to the ‘‘Up-and-

Down’’ designs, see Oron and Hoff [28]. However, it is important

to note that the use of ‘‘Up-and-Down’’ designs is impractical in

this setting due to the fact that the length of a cycle of therapy is

much longer than the traditional 3 or 4 weeks follow up and the

status of DLT must be resolved before enrolling the next cohort of

patients. For instance, Table 1 shows that with an accrual rate of 2

patients per month, the median duration of a trial using EWOC-

W (or an ‘‘Up-and-Down’’) design is 64.5 months relative to 25.2

months for EWOC-PH, which is practically not feasible.

We plan to make available a software application for trial design

and operating characteristics evaluation of cancer phase I trials

using EWOC-PH. This would be an addition to our established

Web based application of EWOC [29]. We are also working on

adapting EWOC-PH to account for patients’ baseline character-

istics as in [15] and extending the binary DLT outcome to an

ordinal toxicity grade, see [16] for an extension of EWOC to

account for an intermediate grade of toxicity. Since our model

makes use of the proportional hazards assumption, design

operating characteristics under model miss-specification should

always be studied under practical scenarios when designing

prospective trials using this design. At the end of the trial, if there

is evidence that the proportional hazards assumption is violated,

standard techniques including the use of time varying covariate

[30] will be carried out to analyze the data. Finally, extending

EWOC-PH for determining the MTD curve of drug combination

of two agents is under investigation.
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