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Abstract

We examined whether or not the predictive ability of genomic best linear unbiased prediction (GBLUP) could be improved
via a resampling method used in machine learning: bootstrap aggregating sampling (‘‘bagging’’). In theory, bagging can be
useful when the predictor has large variance or when the number of markers is much larger than sample size, preventing
effective regularization. After presenting a brief review of GBLUP, bagging was adapted to the context of GBLUP, both at the
level of the genetic signal and of marker effects. The performance of bagging was evaluated with four simulated case
studies including known or unknown quantitative trait loci, and an application was made to real data on grain yield in
wheat planted in four environments. A metric aimed to quantify candidate-specific cross-validation uncertainty was
proposed and assessed; as expected, model derived theoretical reliabilities bore no relationship with cross-validation
accuracy. It was found that bagging can ameliorate predictive performance of GBLUP and make it more robust against over-
fitting. Seemingly, 25–50 bootstrap samples was enough to attain reasonable predictions as well as stable measures of
individual predictive mean squared errors.
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Introduction

A method for whole-genome enabled prediction of quantitative

traits known as GBLUP, standing for ‘‘genomic best linear

unbiased prediction’’, was seemingly suggested first by Van Raden

[1–2]. In GBLUP, a pedigree-based relationship matrix among

individuals [3] is replaced by a matrix valued measure of genomic

similarities constructed using molecular markers, such as single

nucleotide polymorphisms (SNPs) [4]. This ‘‘genomic relation-

ship’’ matrix or variants thereof [5–6], referred to as G hereinafter,

defines a covariance structure among individuals (even if

genetically unrelated in the standard sense), stemming from

‘‘molecular similarity’’ in state at additive marker loci among

members of a sample. Given G and values of some needed

variance components, one can use the theory of best linear

unbiased prediction (BLUP) to obtain point and interval (e.g.,

prediction error variances) estimates of the genetic values of a set

of individuals as marked by the battery of SNPs. While G can be

constructed in different manners we do not address this issue here.

However, we note that it is possible to separate ‘‘genomic’’ from

‘‘residual’’ variance components statistically even in the absence of

genetic relatedness. Hence, care must be exercised when relating

the ‘‘genomic’’ to the ‘‘genetic’’ variance; this is discussed in [7].

Using theory developed by Henderson [8–10] it can be shown

that GBLUP is equivalent to a linear regression model on additive

genotypic codes of markers, with the allelic substitution effects at

marker loci treated as drawn independently from a distribution

possessing a constant variance over markers [11–13]. There is also

an equivalence between pedigree-based BLUP or G-BLUP (or of

models using both pedigree and marker relationships) and non-

parametric regression [14]. For instance, if the n|p marker

matrix X (n~number of observations, p~number of markers) is

used to construct a kernel matrix XX
0
, it can be established that

GBLUP is a reproducing kernel Hilbert spaces regression

procedure [15–16]. Also, BLUP and GBLUP can be represented

as linear neural networks where inputs are entries of the pedigree-

based or G matrices, respectively [17]. Hence, GBLUP can be

motivated from several different perspectives.

There are many competing procedures for genome-enabled

prediction, such as the members of the growing Bayesian alphabet

[14],[18–19], but most of these require a Bayesian Markov chain

Monte Carlo (MCMC) implementation. On the other hand,

GBLUP is simple, easy to understand, explain and compute, and

there is software available for likelihood-based variance compo-

nent estimation and for prediction of random effects. Also,

GBLUP handles cross-sectional and longitudinal data flexibly and

extends to multiple-trait settings in a direct manner. Further,

GBLUP delivers a competitive predictive ability since members of

the Bayesian alphabet typically differ by little in predictive

performance and differences among methods are typically masked

by cross-validation noise [19–23]. Last but not least, some

members of this alphabet produce predictions that are sensitive
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to hyper-parameter specification [24]. Given these considerations,

GBLUP or extensions thereof [25] are good candidates for routine

whole-genome prediction in animal and plant breeding applica-

tions and possibly for prediction of complex traits in humans as

well [7],[26].

The closeness between predictions and realized values depends

mainly on three factors: prediction bias, variance of prediction

error and amount of noise associated with future observations.

The latter cannot be reduced by any prediction machine based on

training data, so it is impossible to construct predictors attaining a

perfect predictive correlation, even if the model holds. Theoretical

and empirical results [1], [27–30] indicate that the proportion of

(cross-validation) variance explained by a linear predictor increases

up to a point with training sample size, then reaching a plateau.

However, when a small number of individuals is available, any

prediction machine is bound to produce predictions with a large

variance. In this context, it seems worthwhile to explore avenues

for enhancing accuracy (i.e., reduce bias) and reliability (i.e.,

decrease variance) of predictions when training size is small.

The question examined here is whether or not the predictive

ability of GBLUP can be improved by recourse to resampling

methods used in machine learning. These include bootstrap

aggregating sampling (‘‘bagging’’) and iterated bagging or

‘‘debiasing’’ [31–34]. Bagging uses bootstrap sampling to reduce

variance and can enhance reliability and reduce mean squared

error [31]. The conditional bias of GBLUP [19] cannot be

removed by bagging, but iterated bagging has the potential of

reducing variance while removing bias simultaneously. This study

investigates bagging of GBLUP, with consideration of debiasing

deferred to a future investigation. The second section of this paper

gives a review of GBLUP and of its inherent inaccuracy (bias). The

third section describes bagging in the context of GBLUP at the

level of the genetic signal and of marker effects. The fourth section

examines the performance of bagging in four simulated case

studies, and the fifth section presents an application to real data on

grain yield in wheat planted in four environments. The paper

concludes with a discussion and with a proposal of a metric aimed

to quantify candidate-specific cross-validation uncertainty.

Materials and Methods

GBLUP
Idealized conditions. Assume that effects of nuisance factors

(e.g., year to year variation) have been removed in a pre-

processing stage (this can also be done in a single-stage, but we

ignore this for simplicity). GBLUP can be motivated by positing

the linear regression model on markers

y~Xbze, ð1Þ

where y is an n|1 vector of observations or pre-processed data

measured on a set of individuals or lines; X is an n|p matrix of

marker genotypes, with its typical element xij being the genotype

code at locus j observed in individual i, and with

rank Xð Þƒmin n,pð Þ; b is a p|1 vector of unknown allelic

substitution effects when marker genotypes are coded, e.g., as

{1,0 and 1 for aa, and AA at locus A, say, or when these

coded values are deviated from the corresponding column means

or standardized. Above, e*N 0,Ns2
e

� �
is a vector of residuals

where s2
e is the residual variance and N is an n|n diagonal matrix

with typical element Nii; if y consists of single measurements on

individuals, Nii~1 for all i~1,2,:::,n, and if y is a vector of means,

Nii would be the number of observations entering into the mean.

In BLUP, a distribution is assigned to b and the simplest one is

bDs2
b*N 0, s2

b

� �
, where s2

b is the variance of marker allele

substitution effects. Using this assumption together with model (1)

gives as marginal distribution of the data (after assuming that X

and y have been centered) yDX*N 0,XX
0
s2

bzNs2
e

� �
. In BLUP

s2
b and s2

e are treated as known but these parameters are typically

estimated from data at hand [35]. With markers, most often nvp
so it is convenient to form the best linear unbiased predictor of b as

b̂b~s2
bX
0
V{1y, where V~XX

0
s2

bzNs2
e . If model (1) holds, it can

be shown that b̂b is unbiased in the sense that E b̂bDX
� �

~E bð Þ~0.

Its covariance matrix (given X) is

Vb̂b~s4
bX
0
V{1X, ð2Þ

and its prediction error covariance matrix (also covariance matrix

of the conditional distribution of b given y and X under normality

assumptions) is

VbDy~Vb{Vb̂b~s2
b I{s2

bX
0
V{1X

� �
, ð3Þ

where Vb~Is2
b. The diagonal elements of VbDy (vjj ) lead to a

measure of reliability of prediction of marker effect j: relj~1{
vjj

s2
b

.

A matrix of reliabilities and co-reliabilities is

R~I{VbDyV{1
b ~Vb̂bV{1

b : ð4Þ

If one wishes to predict a future vector yf ~Xf bzef , with future

residuals independent of past ones and provided that future and

past residuals stem from the same stochastic process, under

normality assumptions the predictive distribution [19] is

yf Dy,X,Xf *N Xf b̂b,Xf VbDyX
0
f zIf s2

e

� �
: ð5Þ

Further, if yf is the predictand and BLUP Xf b
� �

~Xf b̂b~ŷyf is the

predictor, BLUP theory yields

Var yf Dy
� �

~Var yf

� �
{Var ŷyf

� �
, ð6Þ

so that Var ŷyf

� �
~Xf Vb̂ X

0
f . If the marker effects could be

estimated such that VbDy?0, then Var ŷyf

� �
?Xf VbX

0
f and

Var yf Dy
� �

?If s2
e . Hence, the distribution in (5) would still have

variance, indicating that it is not possible to attain a predictive

correlation equal to 1 even if a training set has an infinite size

(more formally, if the training process conveys an infinite amount

of information about markers); [7] gives a discussion of related

matters.

Blup is conditionally inaccurate
While BLUP theory is well established, quantitative geneticists

tend to interpret the unbiasedness property of BLUP as if it

pertained to the true unknown b, when in fact it applies to the

average of the distribution of b, that is, 0. If b in (1) were viewed as

a model on unknown effects of known quantitative trait loci

(QTL), it is obvious that one should think in terms of a fixed effects

model, as per the standard finite number of loci model of
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quantitative genetics [36]. Accordingly, if effects of markers are

sought because these ‘‘flag’’ some genomic region of interest, the

random sampling assumption made in BLUP is not relevant,

although it might lead to a more stable estimator. In the fixed

effects case both b and the marked genetic signal Xb are estimated

with bias by BLUP even if the model holds [19].

Markers are not QTL and the latter are ‘‘causes’’ of generating

a signal to phenotype. Suppose that the ‘‘true model’’ is linear on

effects qð Þ of QTL relating to phenotypes via incidence matrix Q,

that is

y~Qqze: ð7Þ

If the QTL effects q are viewed as fixed entities (arguably

geneticists have this in mind in their quest of finding genes),

E yDQqð Þ~Qq. In this situation BLUP produces the following

average outcomes

E b̂bDq,Q,X
� �

~E s2
bX
0
V{1yDq

h i
~s2

bX
0
V{1Qq,

and

E Xb̂bDq,Q,X
� �

~E s2
bXX

0
V{1yDq

h i
~s2

bXX
0
V{1Qq,

so the bias of the estimated signal is

Qq{s2
bXX

0
V{1Qq~ I{s2

bXX
0
V{1

h i
Qq:

On the other hand, if q is assigned a distribution, say, N 0,Is2
q

� �
and the p markers are treated as random as well, e.g.,

bDs2
b*N 0,Is2

b

� �
, under normality assumptions one has

E qDb̂b,Q,X
� �

~E qð ÞzCov(q,b̂b
0
)V{1

b̂b
b̂b~q̂qmarkers ð8Þ

where

Cov(q,b̂b
0
)~Cov(q,s2

by
0
V{1X)

~s2
bCov q,q

0� �
Q
0
V{1X~s2

bs2
qQ
0
V{1X:

Using this in (8)

q̂qmarkers~s2
bs2

qQ
0
V{1XV{1

b̂b
b̂b

where Q
0
V{1X conveys unknown linkage disequilibrium rela-

tionships between QTL and marker genotypes; similarly, the best

statement about the signal is E QqDb̂b,Q,X
� �

~Qq̂qmarkers: Unfor-

tunately, neither s2
q nor Q are known, so statements made about

QTL from markers are based on untestable assumptions,

including the view that the QTL effects and the genotypes are

linearly related, as in (7).

Predictive correlation when markers are the QTL
Imagine a best case scenario where the markers are the QTL,

and consider predicting yf ~Qf qzef . Here, Qf is the incidence

matrix relating QTL effects to yet to be realized phenotypes yf ,

and ef is a future vector of residuals. BLUP theory, using Qf q̂q

(here, q̂q is the BLUP(q) under the true model) as predictor, gives

the following squared correlation between the ith elements of yf

and Qf q̂q (below Q
0

f ,i is the ith row of Qf )

r2
ii~

Var Q
0
f ,iq̂q

� �
Var yf ,i

� � ~
Q
0
f ,iVar q̂qð ÞQf ,i

s2
qQ
0
f ,iQf ,izs2

e

:

Let now n?? in which case BLUP theory yields

Q
0
f ,iVar q̂qð ÞQf ,i?Q

0
f ,iQf ,is

2
q, so that

r2
ii?1= 1zs2

e= s2
qQ
0
f ,iQf ,i

� �h i
:

This shows that it is impossible to attain a perfect predictive

correlation even when the markers are the QTL. Further,

Q
0
f ,iQf ,i~

nq

j~1
Q2

f ,ij , where Qf ,ij is the genotype at QTL locus j

(j~1,2:::,nq) of individual i in the testing set. If QTL genotypes

are centered and assumed to be in Hardy-Weinberg equilibrium

E Q2
f ,ij

� �
~2pj 1{pj

� �
, so approximately

r2
ii& 1z

s2
ePnq

j~1

2pj 1{pj

� �
s2

q

2
6664

3
7775

{1

~h2, ð9Þ

where pj is the frequency of a reference allele,
Pnq

j~1

2pj 1{pj

� �
s2

q is

additive genetic variance and

h2~

Pnq

j~1

2pj 1{pj

� �
s2

q

Pnq

j~1

2pj 1{pj

� �
s2

qzs2
e

,

is trait heritability. Hence, the predictive correlation has an upper

bound at h.

If instead of predicting individual phenotypes the problem is

that of predicting an average, the upper bound for the predictive

correlation is higher. The corresponding formula is easy to arrive

at and it just requires replacing s2
e in (9) by s2

e=nAve, the number of

observations intervening in the average. Then

r2
ii& 1z

s2
e=nAvePnq

j~1

2pj 1{pj

� �
s2

q

2
6664

3
7775

{1

~
nAveh2

1z nAve{1ð Þh2
,

which is heritability as used in plant breeding, or ‘‘heritability of a

mean’’ [36]. The predictive correlation never reaches 1 but can

get close to 1 if nAve is very large. Values of squared predictive

correlations in the range of 0.5–0.75 have been attained in dairy

cattle progeny tests where predictands are processed averages of

production records of cows sired by a bull [2].

Bagging GBLUP (BGBLUP) and marker effects
Bagging GBLUP. ‘‘Bagging’’ exploits the idea that predictors

can be rendered more stable by repeated bootstrapping and

averaging over bootstrap samples, thus reducing variance [31].

Bagging Genomic BLUP
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Bagging has been found to have advantages in cases where

predictors are unstable, i.e., when small perturbations of the

training set produce marked changes in model training [31], [34],

[37]; for example, with ordinary least-squares under severe multi-

colinearity. An important application of bagging is in prediction

using random forests [38].

Prediction methods that use regularization, such as those

applied in genome-enabled selection, are often stable because

penalties on model complexity reduce the effective number of

parameters drastically, thus lowering variance. However, this is

attained at the expense of bias with respect to marker effects and to

the unknown function to be predicted (marked genetic value). A

priori it would seem that bagging would not bring advantages in

the context of a regularized method such as GBLUP. However,

this issue has not been examined so far and there may be cases,

e.g., in ‘‘small’’ populations, where random variation in training

sets of small sizes has a marked impact on predictive ability.

To motivate bagging, we recall that GBLUP is a regression of

phenotypes on genomic relationships between individuals. Let

g~Xb be a vector of ‘‘genomic values’’, G!XX
0
and assume that

G{1 exists; then (1) can be written in equivalent form as

y~GG{1gze~Gg�ze ð10Þ

where g*N 0,Gs2
b

� �
and g�~G g{1 *N 0,G{1s2

b

� �
. In scalar

form, the datum for individual i is expressible under this

parameterization as the regression

yi~
Xnq

j~1

Gijg
�
j zei

~G
0
i g
�zei ,

ð11Þ

where Gij is an element of the n|n matrix G and G
0
i is its ith row.

From basic principles,

BLUP g�ð Þ~Cov(g�,y
0
)V{1y~s2

bV{1y~ĝg�,

and since Gg�~g, use of invariance gives

BLUP gð Þ~GBLUP(g�)~s2
bGV{1y~ĝg ð12Þ

Note that s2
bGV{1 is an n|n matrix of ‘‘heritabilities’’ and ‘‘co-

heritabilities’’; the diagonal elements of G may be distinct from

each other, so each individual may have a different heritability

ascribed to it, as noted by de los Campos et al. (2013).

The intuitive idea behind bagging was outlined in [1]. Suppose

there is a large number of training samples from the same

population; by averaging over the predictions made from these

samples we would end up with a reduction of variance but with the

bias properties remaining the same as those from the predictor

derived from a single training set. This large supply of training sets

can be emulated by bootstrap sampling: by averaging over

samples, one gets ‘‘closer’’ (in the mean squared error sense) to the

true value, on average. Technical details of why this works are

given in Appendix S1.

Let the predictor formed from a single training set of size NTrain

be ŵw G
0

i

� �
~G

0

i ĝg� i~1,2,:::,NTrainð Þ. Its variance can be lowered

by taking B bootstrap copies of size NTrain (i.e., sampling with

replacement from the training set) and then averaging over copies.

A given yi,G
0

i

� �
may not appear at all or may be repeated several

times over the B bootstrap samples. The bagging algorithm is:

N For each copy b b~1,2,:::,Bð Þ run GBLUP using estimates of

variance components obtained from the entire data set (to

simplify computations), find the regressions ĝg�b and form a

bootstrap draw for BLUP(g) as

ĝgb~Gbĝg�b; b~1,2,:::,B: ð13Þ

N After running the B GBLUP implementations take the

following averages

ĝg�Bagged~

PB
b~1

ĝg�b

B
,

and

ŵwbagged~

PB
b~1

ĝgb

B
: ð14Þ

N Predict vector yTest in the testing set as ŵwTest~GTest,Trainĝg�Bagged

where GTest,Train is a matrix of genomic relationships between

individuals in testing and training sets. If yTest pertains to

records on the same individuals the predictor is ŵwTest~ŵwbagged:

To see how improvement arises consider the following

argument. We seek to learn signal g from the GBLUP predictor

ĝg. Under the setting of BLUP (where g and y both vary at random

over conceptual repeated sampling), the best predictor of g in the

mean squared error sense is ĝg because this is the conditional

expectation under normality [39–40]. However, if g is the signal of

a fixed target set of candidates, ĝg is biased as shown earlier. Thus,

E ĝgDgð Þ~gzd, where d is a vector of biases, and the mean squared

error matrix of ŵwbagged is

MSE ŵwbaggedjg
� �

~ E ŵwbagged{g
� �

E ŵwbagged{g
� �0� �

zVar ŵwbagged

� �
:

Now, if the B bootstrap copies of GBLUP are drawn from the

same distribution, ŵwbagged has the same expectation as ĝg and,

therefore, the same bias: E ŵwbagged{gDg
� �

~d. Further, if the B

copies are viewed as drawn independently, the variance of ŵwbagged

should be B times smaller than that of any ĝgb. Thus

MSE ŵwbagged

� �
~dd

0
z

Var ĝgð Þ
B

;

a formula for taking the correlation between samples into account

is not available but the reduction in MSE would be obviously

smaller than in the idealized situation where samples are

independent. Hence, ŵwbagged has the same bias of GBLUP but at

best is B times less variable. If a prediction machine has little

Bagging Genomic BLUP
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variance, as it is the case for shrinkage methods with a large

amount of regularization, predictive performance might be

degraded [31], but whether this occurs in a particular problem

or not can be assessed empirically only.

Bagging marker effects
Alternatively, one can work directly with the linear model (1),

but this is more involved computationally because the problem

becomes a p-dimensional one (in GBLUP there are nvp
unknowns). Assuming centered data, the ridge regression estimator

(BLUP of marker effects) is

b̂b~ X
0
XzIl

� �{1

X
0
y,

where some l~
s2

e

s2
b

(in the BLUP framework) is available,

estimated from data at hand or chosen over a cross-validation

grid. Given the data matrix D~ y,X½ �, of order n| 1zpð Þ, draw B
bootstrap copies by randomly sampling n rows from D with

replacement, such that a particular bootstrap sample is

Db~ yb,Xb½ �. The bagged ridge regression estimator is

b̂bBagged~
1

B

XB

b~1

X
0
bXbzIl

� �{1

X
0
byb:

Then, given an out of sample case with marker matrix XTest, the

yet-to be realized phenotypes are predicted as ŷyBagged~XTest

b̂bBagged.

Using the relationship g~Xb, one can obtain ‘‘indirect’’

samples of the bootstrap distribution of ĝg as

Xb X
0

bXbzIl
� �{1

X
0

byb~Hbyb (where

Hb~Xb X
0

bXbzIl
� �{1

X
0

b is the ‘‘hat’’ matrix for sample b) and

form the ‘‘indirect’’ bagged GBLUP as

ĝgBagged,indirect~
1

B

XB

b~1

Hbyb: ð15Þ

Results

Simulated case studies
Case Study 1: model training with 200 known QTL and

NTrain~500. To evaluate the impact of bagging on model

training, we simulated 200 QTL with known binary genotypes (as

in inbred lines, where genotypes at a given locus are either aa or

AA). Genotypes were sampled with a frequency of 0:05 at all loci

and their effects were drawn independently from a N(0, 1
2

)

distribution; sample size was NTrain~500 so all QTL effects were

likelihood identified (estimable) in the regression model described

below. Any resulting disequilibrium was due to finite sample size

only. Phenotypes were formed by summing the product of QTL

genotype codes (0,1) times their corresponding effects over the 200

QTL and then adding a random residual drawn from N 0,10ð Þ;
the ‘‘effective’’ heritability (variance among simulated realized

genetic values as a fraction of the total variance) attained in the

simulation was 0.34. The ‘‘true’’ model was employed in the

training process using the ‘‘true’’ variance ratio l~20 and the

effect of the number of bootstrap samples (B), each of size

NTrain~500, on the bagged predictor was examined by taking

B~50, 200 and 500. While B~25 or 50 is often adequate [31], a

larger number of bootstrap samples is not harmful.

Regressions of the 200 elements of q on either their ordinary

least-squares estimates (OLS), BLUP-ridge regression l~20ð Þ and

on a bagged mean obtained by averaging over bootstrap sample

estimates of the BLUPs of q were calculated. This was also done

for the regression of the 500 simulated genetic signals g~Qqð Þ on

either GBLUP and on the average of the GBLUP bootstrap

samples ĝgBagged

� �
. Table 1 presents results. As expected from

BLUP theory [10] the regressions of either q or g on their

corresponding BLUPs were near their expected value: 1. By

construction, Var BLUP qð Þ½ �~Cov q,BLUP qð Þð Þ, so the expected

regression is necessarily 1. For QTL effects, OLS, even though

being an unbiased estimator of q, produced a regression of about

0.42. The bagging procedure produced regressions that exceeded

1, both at the level of the QTL effects and of the genetic signal g.

From the point of view of goodness of fit to the data, ridge

regression and bagging produced models that accounted for more

variation of the training data than OLS: for OLS R2 was about

0:49 whereas it ranged between 0.51 and 0.53 for bagging and

ridge regression. Increasing the number of bootstrap copies in the

bag increased R2 mildly with no sizable gain resulting from

increasing B from 200 to 500. The regressions of g on ĝgBagged were

larger than 1 but the bagged means accounted for the same

proportion of variation in true g values as ĝgGBLUP did, with

R2~0:63 for the latter and for bagged GBLUP with B~200 or

500.

Figure 1 (left panel) gives the distribution of estimates of the 200

QTL effects within each of 4 bootstrap samples for the run with

B~500 as well as within the vector of bagged means. As expected

bagging produced less variability among individual effect esti-

mates, as ‘‘extreme’’ values are tempered by the averaging

procedure. The impact of bagging is seen in the right panel of

Figure 1: the variance among bagged means of individual effects

was much less than the variance within any of the 500 bootstrap

copies. Figure 2 (left panel) shows the variance reduction when

bagging was applied to the GBLUPs of individuals: the horizontal

line at the bottom is the variance among the bagged GBLUPs of

the 500 individuals in the training sample. The right panel of

Figure 2 shows that bagged GBLUP (BGBLUP) produces an

understatement of genetic values relative to what is predicted by

GBLUP for individuals ranked as ‘‘high’’ by the latter, but an

overstatement otherwise; however, the two procedures give

aligned predictions of genetic values. Bagging regresses extreme

GBLUP estimates towards their average, which might attenuate

influence from idiosyncratic samples on which GBLUP is trained.

Hence, bagging enhances the shrinkage towards 0 inherent to

GBLUP.

Case Study 2: model training with 1000 known QTL and

NTrain~500. As in case 1, sample size was NTrain~500 but 1000

QTL with known binary genotypes and unknown effects were

simulated. Here nvrank(Q) so least-squares cannot be used due

to lack of estimability. The setting was as in case 1, but ‘‘effective

heritability’’ was 0.68, that is, twice as when 200 QTL were

simulated. The ‘‘true’’ model was employed in the training process

using the ‘‘true’’ variance ratio l~20, and the number of

bootstrap samples for bagging was B~25,50 or 100.

Results are presented in Table 2. The regressions of q on q̂qBagged

were much larger than 1 and the slope seemingly stabilized at

about 1.32 with a bag consisting of 50 bootstrap copies. As

expected, the regression of q on q̂qRidge was near 1. However, the

proportion of variation in true q accounted for by the variation in
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bagged or ridge regression estimates was smaller than in case 1,

with R2*0:29{0:30 for bagging and ridge regression versus

R2*0:51{0:53 in case 1. On the other hand, bagged GBLUP

accounted for about 73% of the variation of the true genetic values

g, providing a ‘‘fit to signal’’ similar to that of GBLUP. The

regression of g on ĝgGBLUP was also near its expected value of 1,

whereas true differences in genetic values among individuals were

exaggerated by a factor of about 1.25–1.27 by bagging. The left

panel in Figure 3 shows the alignment between 4 randomly chosen

bootstrap samples and the 500 GBLUP estimates obtained in

NTrain. The right panel illustrates clearly that bagging B~100ð Þ

‘‘pulls down’’ individuals with large GBLUP values and ‘‘pulls up’’

those placed at the left tail of the distribution of GBLUPs.

Case Study 3: model training with 20 unknown QTLs, 200

markers and NTrain~500. The setting was as in case 1

NTrain~500ð Þ but here the genetic signal was generated from

q~20 QTL with unknown binary genotypes that were in linkage

disequilibrium (LD) with p~200 binary markers as specified

below. The true model was

y~Qqze,

where q is a 20|1 vector of allelic substitution effects. QTL

genotypes were equally frequent at all loci and their effects were

Table 1. Regression coefficients of true QTL effects qð Þ on their ordinary least-squares q̂qOLSð Þ, ridge regression BLUP q̂qRidge

� �
and

bagged ridge regression BLUP estimates q̂qBagged

� �
, and regressions of true genetic signal gð Þ on genomic BLUP ĝgGBLUPð Þ and

bagged genomic BLUP ĝgBagged

� �
at varying number of bootstrap samples Bð Þ.

No. Bootstrap samples? B~20 B~200 B~500

Regressions of q on ;

q̂qOLS 0:42 R2~0:49
� �

{ { {

q̂qRidge 0:98 R2~0:53
� �

{ { {

q̂qBagged { 1:05 R2~0:51
� �

1:07 R2~0:53
� �

1:08 R2~0:53
� �

Regressions of g on ;

ĝgGBLUP 0:99 R2~0:63
� �

{ { {

ĝgBagged - 1:05 R2~0:61
� �

1:08 R2~0:63
� �

1:08 R2~0:63
� �

R2 is the coefficient of determination of the regression fitted. The simulation involved a training set of 500 individuals with 200 true additive QTL fitted in the model.
doi:10.1371/journal.pone.0091693.t001

Figure 1. Simulation with 200 known QTL, 500 individuals in
the training sample and 500 bootstrap copies for bagging. Left
panel: distribution of 200 effects within each of 4 bootstrap samples (1–
4), and within the average (bag) of 500 samples (5). Right panel:
distribution of variance among 200 effects within each of 500 bootstrap
samples and within their average (item 501, flagged with arrow).
doi:10.1371/journal.pone.0091693.g001

Figure 2. Simulation with 200 known QTL, 500 individuals in
the training sample and 500 bootstrap copies for bagging. Left
panel: variance (VAR) among 500 GBLUPs in each of 500 bootstrap
samples. The horizontal line gives the variance among bootstrap
(bagged) means for the 500 individuals. Right panel: scatter plot of
bagged GBLUP (BGBLUP) versus exact GBLUP for 500 individuals.
doi:10.1371/journal.pone.0091693.g002
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drawn independently from a N(0,
1

2
) distribution. Phenotypes

were formed by summing the product of QTL genotype codes

(0,1) times their corresponding effects over the 20 QTL, and

adding a random residual drawn from N 0,10ð Þ. The method

employed for training was ridge regression (BLUP) on 200 markers

using the ‘‘true’’ variance ratio l~20, and the number of

bootstrap samples for bagging was B~100: The simulation

generated an effective heritability of about 0.19.

LD was simulated statistically by introducing correlations

among columns of the Q (QTL genotypes) and X (marker

genotypes) matrices, respectively. This was done by drawing NTrain

Figure 3. Simulation with 1000 known QTL, 500 individuals in the training sample and 100 bootstrap copies for bagging. Left
panel: relationship between GBLUP with the entire sample and GBLUPs in 4 bootstrap samples of size 500. Right panel: relationship between
bagged GBLUP (BGBLUP) and GBLUP of the 500 individuals.
doi:10.1371/journal.pone.0091693.g003

Table 2. Regression coefficients of true QTL effects qð Þ on their ridge regression BLUP q̂qRidge

� �
and bagged ridge regression BLUP

estimates q̂qBagged

� �
, and regressions of true genetic signal (g) on genomic BLUP ĝgGBLUPð Þ and bagged genomic BLUP ĝgBagged

� �
at

varying number of bootstrap samples Bð Þ.

No. Bootstrap samples? B~25 B~50 B~100

Regressions of q on ;

q̂qRidge 0:97 R2~0:30
� �

{ { {

q̂qBagged { 1:30 R2~0:29
� �

1:32 R2~0:29
� �

1:32 R2~0:29
� �

Regressions of g on ;

ĝgGBLUP 0:99 R2~0:73
� �

{ { {

ĝgBagged - 1:25 R2~0:73
� �

1:27 R2~0:73
� �

1:27 R2~0:73
� �

R2 is coefficient of determination of the regression fitted.
The simulation involved a training set of 500 individuals with 1000 true additive QTL fitted in the model.
doi:10.1371/journal.pone.0091693.t002
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independent Beta(a,b) random variables corresponding to the

rows of these matrices and then sampling a Bernoulli random

variable (i.e., 0 for aa and 1 to AA, say) with probability of success

given by the draw from the Beta distribution. Thus, columns of

matrices Q or X (with entries 0 or 1) had a beta-binomial

distribution (e.g., Casella and George, 1992) and an expected

correlation equal to 1=(azbz1); employing a~0:30 and

b~0:70 a correlation equal to
1

2
would be expected. Using this

approach the ‘‘first’’ 10 QTL were in LD among themselves as

well as in LD with the ‘‘first’’ 100 markers; these markers were in

mutual LD themselves with a correlation of
1

2
also. On the other

hand, QTL 11–20 were in mutual linkage equilibrium as well as

with all other markers. To illustrate, in the sample simulated

realized genotypes at QTL 1 and 2 had a correlation of 0.48,

whereas QTL 1 and 15 had a correlation of 20.02. Likewise, the

correlation between markers 1 and 2 was 0.50, that between

markers 1 and 200 was 20.04 and QTL 2 was correlated with

marker 105 at 0.03. QTL genotypes at each locus were multiple-

regressed on the 200 marker genotypes: for QTL 1–10 (in LD with

markers) the R2 of the regression of QTL genotypes on the 200

marker genotypes was about 0.70 or larger. For the 10 QTL in LE

with markers R2 fluctuated around 0.40. This last result illustrates

that even a null association accounts for some variation, merely

because the likelihood increases monotonically with model

complexity (in this case there are 200 partial regressions of each

QTL genotype on markers).

The regression of phenotypes on QTL genotypes or on markers

had an R2 at 0.24 and 0.43, respectively, with the latter being

larger simply because more parameters are fitted in the model. On

the other hand, the squared correlation between true signal and

fitted values was 0.87 for the QTL model versus 0.15 for the

marker-based model: even though markers captured more

variation (because of higher model complexity) than a regression

on true genotypes, their ability of capturing signal was much less.

We measured similarity among individuals by constructing

‘‘genomic correlation matrices’’. This was done by centering both

Q and X, calculating QCenteredQ
0

Centered and XCenteredX
0

Centered, and

converting these into correlation matrices RQ and RM , respec-

tively. A plot of the off-diagonal elements of RM versus those of

RQ is shown in Figure 4 for the corresponding pairs of individuals.

Although there is an association between genomic correlations at

the QTL and marker levels, the latter ones were smaller in

absolute values. This association was not perfect: at a given level of

correlation at the QTL level, there was much variation in

relationships when measured by markers. Implications of this on

accuracy of genome-enabled prediction are discussed in [7].

GBLUP and BGBLUP were calculated at each of
l

2
,l and

3

2
l

(with l~20) as variance ratio, to investigate the impact of

regularization on the ability of capturing ‘‘true’’ signal, Qq. The

regression of signal on GBLUP was 0.48, 0.54 and 0.60 for the

three values of the regularization parameter, respectively, whereas

that for BGBLUP was 0.50, 0.59 and 0.65, respectively. This

illustrates that the regression of ‘‘true values’’ on GBLUP

predictions is not 1 when the model is incorrect, as it is the case

when markers are not QTL, as simulated here. The corresponding

R2 values were 0.25, 0.27 and 0.28 for GBLUP, and 0.24, 0.28

and 0.30 for BGBLUP. While l~20 is the ‘‘correct’’ regulariza-

tion to be exerted at the QTL level, this is not so for the model

based on markers, where a stronger degree of regularization is

needed the number of markers was larger than the number ofð
QTLÞ. An approximation is that the ‘‘correct’’ variance ratio for

the marker based model should be p=nq~10 times larger than l,

where nq~20 is the number of QTL. We found (results not

shown) that the regressions of signal on GBLUP and BGBLUP

increased as larger values of the regularization parameter were

applied to the marker based model, with the ‘‘optimum’’ being

near 10l, as expected.

Case Study 4: predictive cross-validation with 100

unknown QTLs and 500 markers. The simulation posed

100 unknown QTL whose additive effects were drawn from a

N 0,1:25ð Þ distribution and 500 individuals genotyped for 500

markers. The LD structure was similar to that of case 3: the first 50

QTL were in mutual linkage disequilibrium as well as in LD with

the first 250 markers. QTL 51–100 were in LE among themselves

as well with all markers; the first 250 markers were in mutual LD

and markers 251–500 were in LE. Residuals were drawn from

N 0,10ð Þ and the ‘‘effective’’ heritability attained was about 0.74.

The 500 individuals were distributed at random into two non-

overlapping training and testing sets with 250 members in each.

This was done 100 times at random, producing 100 training-

testing pairs enabling estimation of the cross-validation distribu-

tion. GBLUP and BGBLUP were fitted to the training data

NTrain~250ð Þ for each of 13 values of the regularization

parameter l in the sequence

lSeq~
1

16
,
1

8
,
1

4
,
1

2
,1,2,4,8,16,32,64,128,256

� 	
|l00True00 , ð16Þ

where l00True00~
s2

e

s2
b

with s2
b&s2

q

nq

p
. In each training instance,

BGBLUP was implemented with B~25 bootstrap samples of size

NTrain drawn from the training set of size 250. Three metrics were

used to evaluate the two prediction methods: goodness of fit in the

training set (correlation between fitted and observed values),

predictive correlation (predicted phenotypes in the testing set and

realized values) and predictive mean-squared error, that is,

average squared difference between predicted and realized values

over the NTest~250 cases in the testing set.

Figure 4. Simulation with 20 unknown QTL, 200 markers and
500 individuals: ‘‘genomic correlations’’ among 500 individu-
als at QTL or marker loci.
doi:10.1371/journal.pone.0091693.g004
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The preceding involved 13 BGBLUP and GBLUP implemen-

tations in each of the 100 random cross-validations, for a total of

1300 comparisons. Overall (Figure 5), BGBLUP attained a better

predictive performance than GBLUP because predictive correla-

tions were typically larger (in some cases more than twice as large

as GBLUP) and mean squared errors of prediction were lower as

well. Thus, BGBLUP was more reliable (larger correlation) and

more accurate (smaller mean squared error) than GBLUP. The

superiority of BGBLUP over GBLUP became smaller when

regularization was stronger over the grid defined by lSeq.

However, it was not until log10 lSeq became 5 or more times

larger than (log10 l00True00 ) that GBLUP ‘‘caught up’’ with bagging

but was never better. Actually, it was not until the l value used for

model training was 32 times larger than lTrue that the two

predictors delivered the same performance, suggesting a ‘‘robust-

ness’’ property of BGBLUP that GBLUP seems to lack. Model

complexity is reduced as l increases (the effective number of

parameters decreases) so the variance of GBLUP decreases as well,

in which case bagging offers little help. Contrary to what was

stated by [7] we did not find evidence that bagging damaged

predictive performance under any of the regularization regimes

entertained. Results for selected settings are discussed in the

following paragraph.

Figure 6 shows training and predictive correlations and mean

squared errors for BGBLUP (y-axis) and GBLUP (x-axis) at 2

levels of ‘‘under-regularization’’: l~lTrue=16 and l~lTrue=2.

Here, where shrinkage is less than it should be, given the model,

BGBLUP reduced overfitting (smaller training set correlations),

increased predictive correlations and reduced mean squared

errors, relative to BLUP. Differences were marked: in the upper

(lower) middle panels of Figure 6 it is seen that the largest

predictive correlation attained by GBLUP was smaller than 0.30

(0.39) and that bagging increased the corresponding correlation to

about 0.38 (0.41). The effect of bagging on reducing predictive

mean squared was also clear.

Figure 7 presents results when the ‘‘true’’ value of l (400) was

used for training. GBLUP was again close to overfitting and

BGBLUP reduced training correlations, thus tempering the

problem. Predictively, BGBLUP was better than GBLUP in all

100 comparisons, both in the correlation and MSE senses. Over

the 100 cross-validation runs, the predictive correlation ranged

between 0.195 and 0.391 (median 0.282) for GBLUP and between

0.243 and 0.423 (median 0.330) for BGBLUP. MSE of prediction

ranged between 33.64 and 46.66 (median 38.47) for GBLUP and

between 30.24 and 43.41 (median 35.01) for BGBLUP. Compar-

ing the medians of the distributions, BGBLUP enhanced the

predictive correlation by 17% and MSE was 91% of that of

GBLUP. Figure 8 depicts what was found when ‘‘excessive’’

shrinkage was applied in training: the regularization parameter

values were 8lTrue (upper panel) and 16lTrue (lower panel).

BGBLUP was only marginally better than GBLUP. Strong

shrinkage rendered the training model exceedingly simple so both

methods delivered similar same predictive ability. Differences

between methods vanished when 256lTrue was used as shrinkage

parameter.

We repeated the experiment with the setting of case study 4 but

increasing training and testing sample sizes to 2500 each. Here,

training sample size was 5 times larger than the number of

markers: no differences between BGBLUP and GBLUP were

found at any level of regularization. The reason is that n now

exceeds p, making GBLUP fairly stable, in which case the variance

reduction property of BGBLUP does not help much.

In summary, in our simulations BGBLUP was typically better

than GBLUP at most points of the regularization grid considered.

Its performance was better than that of GBLUP at values close to

‘‘optimal’’ regularization, and differences were large when

shrinkage was small, because bootstrap sampling with averaging

reduced variance. If l is small, GBLUP tends to overfit and to be

variable but BGBLUP alleviates these problems. In addition to

helping with overfitting, BGBLUP was robust with respect to

departures from optimal regularization, e.g., to errors in the

variance ratio. The experiment with a much larger training sample

size than the number of markers indicated that the performance of

bagging depends on p=NTrain: we conjecture that as this ratio

increases (as it will surely be the case with DNA sequence data) use

of BGBLUP may enhance predictive ability in some real data

situations, simply because overfitting and colinearity will be

exacerbated by introducing a massive number of variates in the

model.

Analysis of wheat data
The data set is at http://cran.r-project.org/web/packages/

BLR/index.html, in the BLR package in R, and has been used by,

e.g., [17],[42–43]. The data represents 599 wheat inbred lines

each genotyped with 1279 DArT (Diversity Array Technology)

markers, and planted in 4 distinct environments. DArT markers

may take on one of two values, denoting presence or absence of an

allele. Records came from several international trials conducted at

the International Maize and Wheat Improvement Center

(CIMMYT), Mexico. The trait considered was average grain

yield for each line in each of the four environments. This response

variable is an average over a balanced set of plots and replicates

and, within environment, the residual variance is expected to be

constant over lines.

To provide ‘‘proof of concept’’, we used a ridge-regression

BLUP model with 600 randomly chosen markers. All markers

were not employed in order to facilitate calculations, since matrix

inversion was used for every bootstrap sample and cross-

validation. With a large number of markers or individuals or for

routine application, GBLUP can be computed in using iterative

algorithms, but this is a numerical, as opposed to conceptual, issue.

Further, NTrain~449 and NTest~599{449~150; the model was

trained using a grid with 10 values of l: 5, 10, 50, 100, 150, 200,

250, 300, 350 and 400. All lines were present in each partition of

the data into the two disjoint training and testing sets, with the

process repeated at random 100 times, to estimate the cross-

validation distribution. Each implementation of BGBLUP used 25

bootstrap samples and performance was evaluated via predictive

correlation, predictive mean squared error and mean absolute

deviation between predicted and realized phenotypes. We found

(results not shown) that the ‘‘optimum’’ l was around 50–100 in

environments 1 and 2 with stronger regularization needed in

environments 3 and 4. BGBLUP was slightly better than GBLUP

in environment 1 near optimum regularization, and clearly better

at the lower values of l because GBLUP nearly overfitted; a

similar picture emerged in environment 2. Overall, BGBLUP was

better than GBLUP when l was below the optimum, sometimes

slightly better at the optimum, with no difference if regularization

was excessive, due to the fact that the two models were rendered

effectively simpler as l grew.

The upper and lower panels of Figure 9 give results for

environments 3 and 4, respectively; results for environments 1 and

2 were similar. As found with the simulated data, over the 100
repetitions |10 values of l~1000 comparisons, BGBLUP tended

to produce larger predictive correlations and smaller mean

squared errors than GBLUP. However, this superiority was not

uniform and depended on whether or not the model was ‘‘under’’

or ‘‘over’’ regularized, with BGBLUP having slightly better
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performance in the former situation but slightly worse in the latter.

This is illustrated for environment 4 in the upper left panel of

Figure 10, where average differences between BGBLUP and

GBLUP over the grid of lambda values are shown for predictive

correlations, predictive mean square error and average absolute

difference between predicted and realized values. The other panels

of Figure 10 indicate that, over the 100 cross-validations,

BGBLUP was better at low values of l, slightly better at near

optimum values of l and mildly worse when regularization was

extreme l~400ð Þ. Hence, it would seem that BGBLUP performs

at least as well as GBLUP unless a gross error is made in assessing

the value of the regularization parameter in model training. Such a

large error is unlikely if the variances are estimated from training

data (unless the sample is small) or evaluated over a grid of suitable

candidate values. One should be cautious about elicitations of the

regularization parameter based on simple theoretical arguments

that may not hold.

Discussion

We examined whether or not bootstrap sampling in the context

of GBLUP can enhance predictive ability in cross-validation.

Simulation (with known or unknown QTL) and a wheat data set

with grain yield information were used for this purpose. In the

simulations, it was found that bagging BLUP estimates of marker

effects or of genomic signal increased the slope of the regression of

true marker or marked breeding value on predictor relative to

what is expected under BLUP theory. When an individual was

evaluated as ‘‘extreme’’ by GBLUP, bagging made the estimate

less extreme. If the linear model entertained holds, the regression

of true signal on GBLUP is expected to be 1, but the regression on

BGBLUP is steeper because the latter has smaller variance. This is

easy to see: if T is a predictand and T̂T is its BLUP, then

Cov(T ,T̂T)~Var(T̂T) so the slope of the regression of T on T̂T is

one. Now, if T̂TBagged is the average of B bootstrap copies of T̂T , the

variance of T̂TBagged is about B times (assuming samples are mildly

correlated) smaller than that that of T̂T , but Cov(T ,T̂T)~Cov

(T ,T̂TBagged). Hence, the regression must be larger than 1.

It was also found that bagging conferred robustness to GBLUP

because it is less prone to over-fitting and often delivered better

predictions in terms of correlation and mean squared error even

when regularization was ‘‘optimal’’. At least in simulated data,

Figure 5. Simulation with 100 unknown QTL, 500 markers and 250 individuals in each training and testing set: training
correlations, predictive correlations and predictive mean-squared error (MSE) for 1300 comparisons between bagged GBLUP
(BGBLUP, 25 bootstrap samples) and GBLUP.
doi:10.1371/journal.pone.0091693.g005
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BGBLUP was not inferior to GBLUP when shrinkage was beyond

what it should be.

Bagging allows estimating a cross-validation prediction error

mean squared error for each subject tested. In theory, given

training data, GBLUP in a testing set can be computed as

ĝgTrain~GTrain GTrainzINtrain

s2
e

ps2
b

 !{1

y~ INtrainzG{1
TrainlOptimum

� �{1
y,

with lOptimum being some ‘‘optimum’’ value of the regularization

parameter. If the problem is that of predicting a future set of

records yTest of the same individuals, the variance-covariance

matrix of prediction errors (under normality assumptions) is

Var yTestDyTrainð Þ~Var gDyTrainð ÞzIs2
e :

Given that the assumptions hold, there are two sources of

uncertainty here. The first is uncertainty about signal (breeding

value) given training data, and the second is noise variability

associated with the yet to be realized observations. The model

derived (expected) reliabilities of the predicted genomic value

values from the training data are given by the diagonals of matrix

Figure 6. Simulation with 100 unknown QTL, 500 markers and 250 individuals in each training and testing set: training
correlations, predictive correlations and predictive mean-squared error (MSE) for 100 comparisons between bagged GBLUP
(BGBLUP, 25 bootstrap samples) and GBLUP at two levels of ‘‘under-regularization’’.
doi:10.1371/journal.pone.0091693.g006
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VG~I{s2
e INtrainzG{1

TrainlOptimum

� �{1

Var{1 XTrainX
0
Trains2

b

� �
,

ð17Þ

where XTrain is the marker matrix in the training set. Note that (17)

does not make reference at all to realized outcomes (testing set

phenotypes) or to realized predictions, so using the term

‘‘accuracy’’ in lieu of ‘‘reliability’’ is misleading. While the

diagonal elements of VG may be close to 1, this does not give

assurance that predictions will be any good. The reliability matrix

uses only information on marker genotypes (via the X matrix) and

variance components, but do not exploit information on pheno-

types. Importantly, the two measures ignore model uncertainty,

thus exaggerating prediction reliability relative to what would be

observed in a cross-validation distribution. Model goodness of fit

statistics in training data lead to expectations that seldom translate

into what is observed in cross-validation (e.g., [44]) and examples

of this are in a study of human height with molecular markers by

[7] and [45]. The problem of developing credible individual-

specific measures of reliability in cross-validation has not been

solved yet [30] but a practical solution can be arrived at by use of

bagging.

Let the fixed, observed, outcome (e.g., the mean of an inbred

line of wheat, a daughter yield deviation of an artificial

insemination bull or the phenotype of a subject) in a testing set

be ~yyi, i~1,2,:::,NTest, and let the prediction from GBLUP be ŵwi,

so the realized prediction error is ~yyi{ŵwi. In BLUP theory,

predictor and predictand (the latter with eventual realized value ~yyi)

vary at random over conceptual repeated sampling, given

some linear model, but here ~yyi is an observed realization from

an unknown process. Using bagging, B bootstrap samples of the

distribution of ŵwi are available, so one can form the set of

prediction errors Ei~ ~yyi{ŵw
1ð Þ

i ,~yyi{ŵw
2ð Þ

i ,:::,~yyi{ŵw
Bð Þ

i

n o
for

Figure 7. Simulation with 100 unknown QTL, 500 markers and 250 individuals in each training and testing set: training
correlations, predictive correlations and predictive mean-squared error (MSE) for 100 comparisons between bagged GBLUP
(BGBLUP, 25 bootstrap samples) and GBLUP at the ‘‘correct’’ level of regularization.
doi:10.1371/journal.pone.0091693.g007
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i~1,2,:::,NTest. For each i, the bootstrap average squared

prediction error associated with GBLUP (given ~yyi, XTrain and

XTest) is assessed as

BPEi~

PB
b~1

~yyi{ŵw
bð Þ

i

h i2

B
; i~1,:::,NTest, ð18Þ

noting that this squared cross-validation prediction error reflects

both squared bias (unknown) and variance. Similarly, a cross-

validation reliability measure can be constructed as

BPRELi~1{
BPEi

vTest

; i~1,:::,NTest, ð19Þ

where

vTest~

PNTest

i~1

~yyi{
�~yy~yyi


 �2
NTest{1

:

BPREL takes values between 0 and 1 provided that BPEiƒ vTest,

which cannot be assured unless one replaces vTest by, say,

max
j[Testing set

BPEj

� �
. A disadvantage of BPRELj is that it does

not take into account the fact that, given X, all observations are

expected to have a different phenotypic variance, depending on

how a genomic relationship matrix is constructed in GBLUP.

Recall that GBLUP poses gDs2
g*N 0,Gs2

g

� �
, leading to the testing

set expected variance-covariance structure

VTest~GTests
2
gzITests

2
e :

Figure 8. Simulation with 100 unknown QTL, 500 markers and 250 individuals in each training and testing set: training
correlations, predictive correlations and predictive mean-squared error (MSE) for 100 comparisons between bagged GBLUP
(BGBLUP, 25 bootstrap samples) and GBLUP at two levels of ‘‘over-regularization’’.
doi:10.1371/journal.pone.0091693.g008
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In the absence of some scaling (with the latter having

consequences on the definition of s2
g) the diagonal elements of G

vary over individuals, so the diagonals of VTest vary as well; this

does not occur in a pedigree-based model if all individuals have the

same level of inbreeding. One way of taking this into account is to

modify the ‘‘reliability’’ measure (19) into

BPREL
0
i~1{

BPEi

diagi VTestð Þ , ð20Þ

where diagi VTestð Þ is the ith diagonal element of VTest.

We examined this proposal under the setting of case 4, with 100

unknown QTL, 500 binary markers, NTrain~NTest~250. In the

simulation (results not shown), we found in cross-validation that

the ‘‘optimum’’ l in terms of predictive correlation and mean-

squared error sense was 3200. We trained the model using

l~1600, 3200 and 6400 and B~25,50 and 100. Differences in

BPEi obtained with the three values of B were very small and the

three levels of regularization produced the same qualitative

picture, with prediction mean-squared error increasing with

stronger shrinkage. Figure 11 illustrates the disconnect between

prediction error variances derived in the training process and

bootstrap average squared prediction errors, which make use of

both training phenotypes, via ŵw
bð Þ

i and realized values ~yyi. Likewise,

as shown in Figure 12 the empirical BPREL (top panel) and the

adjusted reliabilities (bottom panel) are unrelated to model derived

reliabilities. The adjusted reliabilities were calculated as

BPREL
00
i ~1{

BPEi

max Var(yTest),maxi[Testing set BPEj

� �
 � ð21Þ

with Var(yTest) constant over the training set. When using

BPREL median reliability (using B~25) was estimated at 0.702,

0.725 and 0.722 at the three level of regularization but a few ones

were negative. After the adjustment in (21) all reliabilities varied

mostly between about 0.40 and slightly less than 1 and these values

were unrelated to theoretical reliabilities. Predictions were quite

accurate, in general (recall that the same stochastic process was

used to create training and training sets).

There does not seem to be a theoretical reason leading to expect

an agreement between model based reliabilities and measures of

Figure 9. Wheat data in environments 3 and 4: predictive correlations and mean-squared errors in 1000 cross-validations (100
random partitions intro training-testing sets and 10 levels of the regularization parameter).
doi:10.1371/journal.pone.0091693.g009
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cross-validation performance, because the latter gauge different

things. The theoretical reliabilities, based on a model deduced

quantity, are just indicators of the amount of information in the

training data set without making reference to the ‘‘goodness’’ of

any prediction. On the other hand, BPREL or variants thereof

take into account ‘‘closeness’’ between prediction and realized

value, with bagging enhancing the stability of the prediction.

Hence, we argue that bagging is sensible because it reduces the

variance of GBLUP, seemingly without hampering predictive

ability, and provides a means for ascertaining the (conditional)

prediction bias in a strict sense. If BPEi is close to 0 the squared

prediction error is small, so that the prediction has a small

variance, a small bias, or both. Irrespective of the cause, the cross-

validation measure of reliability would be close to 1.

To discuss influences that theoretical reliability may have on

predicted values in a testing set ŷyTestð Þ, note that, when using ridge

regression BLUP,

ŷyTest~XTest X
0
TrainXTrainzINtrainl

� �{1

X
0
TrainyTrain:

The influence training data have on predictions via GBLUP can

be measured by the derivative or ‘‘hat matrix’’

LŷyTest

Ly
0
Train

~XTest X
0
TrainXTrainzINtrainl

� �{1

X
0
Train

Now, the matrix of ‘‘reliabilities of marker effects’’ is

Rb~Ip{l X
0
TrainXTrainzINtrainl

� �{1

,

so that

Figure 10. Wheat data in environment 4. Upper left panel: average differences (over 100 cross-validations) between bagged GBLUP and GBLUP
for predictive correlations (PCOR), mean-squared error (PMSE) and absolute value of differences (PABS) between prediction and realization at 10
values of the regularization parameter. Upper right, lower left and lower right panels give the three metrics for lambda values of 5, 100 and 400,
respectively.
doi:10.1371/journal.pone.0091693.g010
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LŷyTest

Ly
0
Train

~XTest
Ip{Rb

l

� 	
X
0
Train:

Hence, the predicted values can be seen to be less sensitive with

respect to variation in training data when reliabilities (in this case

of marker effects, but the same logic carries for GBLUP) increase

and when l gets larger; when l?? the model becomes essentially

null as the effective number of parameters goes to 0. Informally,

Rb has an upper bound at Ip so, when reliabilities are perfect,

predictions are insensitive with respect to variation in training

data. However, even in this perfect case and assuming the model is

correct, there is no clear connection between reliability and

predictive outcome.

Bagging did reduce the variability of GBLUP predictions and,

as observed in our case studies, it enhanced predictive perfor-

mance when the model was ‘‘under-regularized’’. When, regular-

ization was near optimum, bagging did not improve predictive

performance, but it provided a means for assessing predictive

mean squared error for any individual or candidate item in a

testing set. This is because bagging can emulate variation in

training data sets of a given size, allowing calculation of

conditional (given XTrain, XTest and yTest) mean squared errors

and of a measure of ‘‘reliability’’ connecting directly to predictive

outcomes. These measures reflect variation in the predictor

(rendered small by bagging), prediction bias and, of course, noise

inherent to the fact that prediction can never be perfect. We did

not find that bagging deteriorated predictive performance in any

Figure 11. Disconnect between expected prediction error
variances (theoretical PEV) and empirical bootstrap average
squared prediction errors (empirical PEV) for a simulation
under the settings of case study 4. True lambda = 20.
doi:10.1371/journal.pone.0091693.g011

Figure 12. Relationship between expected reliabilities and empirical reliabilities (see text) in the top panel, and empirical adjusted
reliabilities (see text) in the bottom panel.
doi:10.1371/journal.pone.0091693.g012
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of the settings simulated, with only a slight hint in the wheat data

set when regularization was excessive. As anticipated by [31]

bagging helped when the predictor was more variable, due to

small shrinkage. Coupled with the finding that predictive

performance was not degraded otherwise, it seems that bagging

confers robustness to the GBLUP prediction machine.

Conclusions

In short, bagging ameliorated the predictive performance of

GBLUP, providing a means for developing candidate-specific

measures of cross-validation reliability. It is computationally

intensive when one searches for an optimum value of l because

of the simultaneous bootstrapping. In our study it seemed that 25–

50 bootstrap samples were enough to attain reasonable predictions

as well as stable measures of individual predictive mean squared

errors. In practice, l can be assessed by estimating the variance

components in some data set and this may need to be done only

once; the optimum l in cross-validation is often close to what one

obtains from estimating l in the training set (de los Campos,

personal communication), but regularization depends on the p=n
ratio, so studies from other studies with different sample sizes (even

from the same population) may not provide a good guide to attain

optimum regularization in a given problem.

Bagging may not be feasible for immense data sets, but a

question is whether or not such huge data sets are really needed for

attaining an optimal predictive performance. Typically, predictive

ability increases with training set size [27], [30] but it plateaus at

some point. A smaller training data set with less ‘‘molecular

redundancy’’ than a huge data set that spans less genomic

variation may deliver a better predictive performance. Perhaps the

design of training data sets needs to be studied in more depth. An

unresolved problem is that of reducing empirical prediction bias,

which is a research area of potential interest.
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