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Abstract

South Africa has the largest worldwide HIV/AIDS population with 5.6 million people infected and at least 2 million people on
antiretroviral therapy. The majority of these infections are caused by HIV-1 subtype C. Using genotyping methods we
characterized HIV-1 subtypes of the gag p24 and pol PR and RT fragments, from a cohort of female participants in the
Western Cape Province, South Africa. These participants were recruited as part of a study to assess the combined brain and
behavioural effects of HIV and early childhood trauma. The partial HIV-1 gag and pol fragments of 84 participants were
amplified by PCR and sequenced. Different online tools and manual phylogenetic analysis were used for HIV-1 subtyping.
Online tools included: REGA HIV Subtyping tool version 3; Recombinant Identification Program (RIP); Context-based
Modeling for Expeditious Typing (COMET); jumping profile Hidden Markov Models (jpHMM) webserver; and subtype
classification using evolutionary algorithms (SCUEAL). HIV-1 subtype C predominates within the cohort with a prevalence of
93.8%. We also show, for the first time, the presence of circulating BC strains in at least 4.6% of our study cohort. In addition,
we detected transmitted resistance associated mutations in 4.6% of analysed sequences. With tourism and migration rates
to South Africa currently very high, we are detecting more and more HIV-1 URFs within our study populations. It is stil
unclear what role these unique strains will play in terms of long term antiretroviral treatment and what challenges they will
pose to vaccine development. Nevertheless, it remains vitally important to monitor the HIV-1 diversity in South Africa and
worldwide as the face of the epidemic is continually changing.
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Introduction

HIV/AIDS is a major health problem in South Africa with

approximately 5.6 million people infected with Human Immuno-

deficiency Virus type 1 (HIV-1) [1], the majority with HIV-1

subtype C. At least 2 million people are receiving antiretroviral

therapy (ART) [2], the largest ART program world-wide.

Although the epidemic in the country has stabilized during the

last few years, an estimated 850 new infections still occur each day.

In the latest annual antenatal survey it is estimated that

approximately 29.5% of women between the ages of 15 and 49

are infected. High variations are also seen between the different

provinces of South Africa. In the age group between 15 and 49

years, the Western Cape Province has the lowest prevalence

(4.75%) and KwaZulu-Natal the highest (24.7%) [3].

HIV-1 is characterized by a high degree of genetic diversity and

can be divided into four groups: M (major), O (outlier), N (non-M

non-O) and P. Group M can further be divided into 9 subtypes

(A–D, F–H, J, K) [4]. HIV-1 diversity is primarily caused by the

fast replication cycle of the virus coupled with the high error prone

rate of its reverse transcriptase (RT) enzyme [5]. Genetic

recombination during the replication cycle of primate lentiviruses

is a frequent event and also contributes to the global genetic

variation of HIV-1 [6]. Intersubtype recombination is well

documented for HIV-1 and at least 55 circulating recombinant

forms (CRFs) and several unique recombinant forms (URFs) have

been identified [http://www.hiv.lanl.gov/content/sequence/

HIV/CRFs/CRFs.html]. The genetic variation of HIV-1 may

influence diagnostic assays, viral replication capacity as well as

antiretroviral therapy (ART) outcomes [6].

HIV-1 subtype C predominates worldwide with a prevalence of

52% [4] and is found in the Southern African region, the Indian

sub-continent, with smaller subtype C epidemics in East African

countries, Brazil and the southern provinces of the Peoples

Republic of China [7]. HIV-1 subtype B is most prevalent in

North America, Western Europe, Australia and Japan [7]. Many

studies have shed light on the degree of sequence variation within

the South African HIV/AIDS epidemic. Although the majority of

people are infected with HIV-1 subtype C, with a minor subtype B

PLOS ONE | www.plosone.org 1 March 2014 | Volume 9 | Issue 3 | e90845

http://creativecommons.org/licenses/by/4.0/


epidemic [8,9], other non-subtype C and URFs have sporadically

been identified over the last few years [10–17].

In this study, we have characterized the HIV-1 subtypes in a

cohort of female participants from the Western Cape Province in

South Africa using different online tools and manual phylogenetic

analysis. The genetic variability of HIV-1 in two genome regions

were investigated in order to increase the chance of characterizing

recombinants and/or non-C subtypes in South Africa. To the best

of our knowledge this is the first time that HIV-1 subtype BC

recombinants have been described in South Africa.

Materials and Methods

Ethics statement
This study was approved by the Health Research Ethics

Committee (HREC) of Stellenbosch University (IRB0005239) and

all study participants provided written informed consent for the

collection of samples and subsequent analyses. The investigations

also complies with the South Africa National Health Act No

612003 and abides by the ethical norms and principles for

research as established by the Declaration of Helsinki, the South

African Medical Research Council Guidelines as well as the

Department of Health Guidelines.

Study population and sample collection
EDTA blood samples and demographic information were

collected, between 2008 and 2010, from 84 patients in the

Western Cape Province. They were recruited from different HIV

clinics and/or hospitals across the Cape Town Metropole, as well

as the Paarl and Stellenbosch districts. The participants in the

cohort were recruited as part of a study to assess the combined

brain and behavioural effects of HIV and early childhood trauma,

using neurocognitive and structural brain imaging assessments.

HIV-1 Viral load and CD4+ cell counts
Viral loads were performed using the Abbott m2000sp and the

Abbott m2000rt analysers (Abbott laboratories, Abbott Park,

Illinois, USA). RNA was isolated from patient samples according

to the manufacturer’s instructions using the Abbott RealTime

HIV-1 amplification reagent Kit. CD4 counts were done in

conjunction with viral loads in order to determine the immune

competence and viral burden for each patient. Analyses of cells

were performed on the FACSCalibur flow cytometer in conjunc-

tion with the MultiSET V1.1.2 software (BD Biosciences, San

Jose, CA, USA).

PCR amplification of the partial gag p24 and pol regions
HIV-1 RNA was extracted from the plasma using the QIAamp

Viral RNA kit (QIAGEN GmbH, Hilden, Germany) and the

QIAcube automated extraction system, according to the manu-

facturers instructions and stored at 270uC until use. Two genomic

regions of the HIV-1 genome were targeted for characterization:

the gag p24 region (HXB2 nucleotides 1237–1721) and a segment

of the pol gene, that includes the Protease (PR) and a partial

segment of the Reverse Transcriptase (RT) region (HXB2

nucleotides 208223334), important for resistance analysis. PCR

amplification and purification was done using previously described

primers and methods [18,19]. Briefly, cDNA synthesis and first

round PCR amplification was done with the Access-RT PCR

system (Promega, Wisconsin, USA), while second round nested

PCR amplification was done with the GoTaq DNA polymerase

system (Promega, Wisconsin, USA).

DNA Sequencing
PCR products were sequenced using the BigDye Terminator v

3.1 Cycle Sequencing Ready Reaction Kit (Applied Biosystems,

Foster City, CA, USA) and run on an ABI Prism 3130xl Genetic

Analyzer (Applied Biosystems, Foster City, CA, USA), according

to the manufacturers instructions. Both strands were sequenced

using overlapping primers. Sequences were read and assembled

into contigs using Sequencher v 5.1 (Gene Codes Corporation,

Ann Arbor, MI, USA). All sequences were checked for quality

assurance using the HIV-1 Sequence Quality Analysis tool

(http://www.hiv.lanl.gov/content/sequence/QC/index.html) be-

fore further analyses.

HIV-1 subtyping using online tools
All gag and pol sequences were preliminary subtyped with online

HIV-1 subtyping tools using the default parameter settings: the

REGA HIV Subtyping Tool Version 3. (http://www.bioafrica.

mrc.ac.za/rega-genotype/html/subtypinghiv.html) [20], Recom-

binant Identification Program (RIP 3.0) (http://www.hiv.lanl.gov/

content/sequence/RIP/RIP.html) [21], COMET HIV-1 (Con-

text-based Modeling for Expeditious Typing) (http://www.comet.

retrovirology.lu) and the jumping profile Hidden Markov Models

(jpHMM) webserver http://www.jphmm.gobics.de/ [22,23]. Sub-

type classification using evolutionary algorithms (SCUEAL)

analysis was done using pol sequences only (http://www.

datamonkey.org/dataupload_scueal.php) [24]. These tools were

compared and the agreement (frequency of similar assignment)

calculated.

Phylogenetic and recombinant analysis
For phylogenetic analysis, the 2010 HIV-1 subtype reference

sequence dataset was obtained from the Los Alamos National

Laboratory (LANL) database (http://www.hiv.lanl.gov/content/

sequence/NEWALIGN/align.html). Given the large number of

HIV-1 subtype C sequences, as well as the identification of

possible BC recombinants in the subtyping analyses, this reference

data set were supplemented with additional randomly selected

subtype B and C reference sequences from LANL. Sequence

alignments were constructed in Clustal X2 (http://www.clustal.

org/clustal2/) [25] and edited in Se-Al v 2.0 (http://tree.bio.ed.

ac.uk/software/seal/). All positions with less than 95% site

coverage were manually eliminated. Although the GeneCutter

program in the HIV-1 Sequence Quality Analysis tool can codon

align sequences, each data set were manually edited until a perfect

codon alignment was obtained.

Five different alignments were constructed: 1 for the gag p24

data set and 4 different alignments for the pol data. Due to miss

matches in the pol sequence data set (some fragments were smaller

than 500 bp, while others were larger than 1000 bp) the pol data

set were split into 4 based on fragment length and genomic region

(PR or RT). The first pol data set is only 385 bp long (2250–2634

relative to HXB2) and encompassed a small portion of the 39

terminal end of the gag coding region the entire protease (PR) coding

region and a small portion of the 59 coding region of the reverse

transcriptase (RT) coding region. The second pol data set is only 769

bp long (2530–3300 relative to HXB2) and included a small

portion of the 59 coding region of PR and a large section of the RT

coding region of HIV-1. The third pol data set is 549 bp long

(2244–2792 relative to HXB2) and includes a small portion of the

39 terminal end of the gag coding region the entire PR coding

region and a small section of the 59 coding region of the RT

coding region. The fourth pol data set is 977 bp long (2250–3326

relative to HXB2) and encompassed a small portion of the 39
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terminal end of the gag coding region the entire PR coding region

and a large part of the 59 coding region of the RT coding region.

Multiple alignments were used to infer phylogenies with the use

of both Maximum likelihood (ML) [26] and Bayesian tree

construction methods as implemented in phyML v 3.0 (http://

www.atgc-montpellier.fr/phyml/) and MrBayes v 2.0 (http://

mrbayes.sourceforge.net/download.php) [27] respectively. For

each data set phylogenies were inferred under the ‘‘best fitting’’

model of nucleotide substitution, which was calculated in

ModelTest v 2.0 [28,29] and the use of the Akaike Information

Criterion (AIC). For each data set the best fitting model was used

to infer evolutionary relationships. For the ML tree topologies a

Figure 1. Map of the Western Cape region of South Africa, with the origin of the patients indicated. A total of 84 patient samples were
obtained from the Cape Town Metropole: (Bellville, n = 15; Durbanville, n = 4; Khayelitsha, n = 35; Kraaifontein, n = 1; Mfuleni, n = 24; and Parow, n = 1).
One patient came from the Paarl region and two patients came from the Stellenbosch region (Figure 1).
doi:10.1371/journal.pone.0090845.g001
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total of 1000 bootstrap replicates were performed for each data set

[30]. Bayesian phylogenetic trees were inferred following 10 mil-

lion chains in the Markov Chain with four independent runs being

performed. Inferred tree topologies were visually inspected in

FigTree v 1.3.1 (http://tree.bio.ed.ac.uk/software/figtree/).

Drug Resistance analysis
Both the PR and RT fragments were submitted to the South

African mirror of the Stanford University HIV Drug Resistance

database [31] for analysis with HIVdb, the genotypic resistance

interpretation algorithm version 6.1.1 (http://hivdb.stanford.edu/

). The Calibrated Population Resistance (CPR) Tool Version 6

(http://cpr.stanford.edu/cpr.cgi ) was used to analyze our dataset

for proportions with surveillance drug resistance mutations

(SDRMs). Drug resistance mutations were scored as either major

or minor mutations.

Results

Patient demographics
The patient demographics and clinical laboratory results are

summarized in Table S1. Briefly, the cohort consisted of 84

female participants mostly from the Cape Town Metropole

(Bellville, Durbanville, Khayelitsha, Kraaifontein, Mfuleni and

Parow). One patient came from the Paarl and two patients came

from the Stellenbosch district regions (Figure 1).

The majority (96.42%) of participants were African, with 3

participants (3.57%) of mixed race origin. The mean age of the

cohort was 32.15 years (SD = 6.53) and ranged from 21 to 50

years. The CD4 lymphocyte count ranged from 35 to 1529, with a

mean of 375.29 (SD = 267.02). The HIV viral load ranged from

below the detectable limit to 3200000, with a mean of 111513.03

(SD = 416654.5).

Figure 2. Phylogenetic analysis of gag p24 gene fragment.
Evolutionary relationships were inferred with the use of the GTR model
of nucleotide substitution and an estimated Gamma shape parameter.
The alignment contained 203 taxa, including 68 of our own patient
sequences, with an length of 441 bp (1264–1704 relative to HXB2). Two
different methods of tree inference were used: a Maximum Likelihood
(A) and a Bayesian approach (B). The Maximum Likelihood tree
topology was inferred in PhyML v 3.0 with 1000 bootstrap replicates.
The Bayesian tree topology was inferred in MrBayes v 2.0 with a total of
10 million steps in the Markov Chain and four independent runs.
Inferred trees were visually inspected in FigTree v 1.3.1. The most
relavent bootstrap or posterior support values are indicated on the tree
topology.
doi:10.1371/journal.pone.0090845.g002

Figure 3. Phylogenetic analysis of the pol alignment (Dataset
1). The alignment contained 164 taxa, including nine sequences from
our own data set, and with a total length of 385 bp (2250–2634 relative
to HXB2). Evolutionary relationships were inferred with the use of the
GTR model of nucleotide substitution and an estimated Gamma shape
parameter. Two different methods of tree inference were used: a
Maximum Likelihood (A) and a Bayesian approach (B). The Maximum
Likelihood tree topology was inferred in PhyML v 3.0 with 1000
bootstrap replicates. The Bayesian tree topology was inferred in
MrBayes v 2.0 with a total of 10 million steps in the Markov Chain
and four independent runs. Inferred trees were visually inspected in
FigTree v 1.3.1. The most relavent bootstrap or posterior support values
are indicated on the tree topology.
doi:10.1371/journal.pone.0090845.g003
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PCR amplification
PCR amplification and sequencing of the gag p24 region from

the patient RNA of 84 patient samples yielded 67 (79.76%)

positive samples, In addition 65 (75.58%) samples were also

amplified and used for sequence analyses of the pol PR and RT

fragments. In total 73 (86.9%) of cohort samples were successfully

amplified for at least one region. The majority of patients from

whom PCR products could not be amplified, had low viral loads

(Table S2).

Subtyping using REGA, jpHMM, RIP, COMET and SCUEAL
online subtyping tools

In total, 67 sequences were used for the gag subtype assignment.

The average size of the gag sequences were 433 bp. Using REGA

3.0 classification rules, 61 sequences (91.04%) were classified as

subtype C. Six sequences (PM003-08, CS006-08, FG023-08,

LM081-09, AQ123-10 and ZN124-10) were assigned with ‘‘check

the report’’. Analysis of the reports showed that 2 of the sequences

(PM003-08, FG023-08) were assigned as subtype C, clustering

within the pure subtype cluster with bootstrap support (. 70%).

The other 4 sequences (CS006-08, LM081-09, AQ123-10 and

ZN124-10) were also assigned as subtype C with bootstrap support

(.70%); however they clustered outside the subtype C reference

dataset (Table S3). RIP 3.0 could not characterize CD0777-08

and FG023-08, while the jpHMM program classified PT049-09

gag p24 as subtype D, but with a low posterior probability (0.6).

With COMET all sequences were classified as subtype C.

With the 65 pol sequences analysed, with an average length of

917 bp (ranging from 391 to 1199 bp), 61 (93.85%) were classified

as HIV-1 subtype C, whereas 3 (4.62%) sequences were

characterized as subtype B. One sequence (TB089-09) was clearly

Figure 4. Phylogenetic analysis of the pol alignment (Dataset
2). Evolutionary relationships were inferred with the use of the GTR
model of nucleotide substitution and an estimated Gamma shape
parameter. The alignment contained 164 taxa, including 12 of our own
patient sequences, with an length of 769 bp (2532–3300 relative to
HXB2). Two different methods of tree inference were used: a Maximum
Likelihood (A) and a Bayesian approach (B). The Maximum Likelihood
tree topology was inferred in PhyML v 3.0 with 1000 bootstrap
replicates. The Bayesian tree topology was inferred in MrBayes v 2.0
with a total of 10 million steps in the Markov Chain and four
independent runs. Inferred trees were visually inspected in FigTree v
1.3.1. The most relavent bootstrap or posterior support values are
indicated on the tree topology.
doi:10.1371/journal.pone.0090845.g004

Figure 5. Phylogenetic analysis of the pol alignment (Dataset
3). Evolutionary relationships were inferred with the use of the GTR
model of nucleotide substitution and an estimated Gamma shape
parameter. The alignment contained 166 taxa, including 11 of our own
patient sequences, with an length of 549 bp (2244–2792 relative to
HXB2). Two different methods of tree inference were used: a Maximum
Likelihood (A) and a Bayesian approach (B). The Maximum Likelihood
tree topology was inferred in PhyML v 3.0 with 1000 bootstrap
replicates. The Bayesian tree topology was inferred in MrBayes v 2.0
with a total of 10 million steps in the Markov Chain and four
independent runs. Inferred trees were visually inspected in FigTree v
1.3.1. The most relavent bootstrap or posterior support values are
indicated on the tree topology.
doi:10.1371/journal.pone.0090845.g005
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identified as a possible BC recombinant using REGA 3.0,

jpHMM, COMET, SCUEAL and RIP 3.0 analysis. In addition,

two of the subtype B pol sequences (PM014-08 and MN091-09)

had corresponding subtype C gag p24 sequences, subsequently

identifying these strains as BC recombinants, however without

detecting breakpoints in the pol region.

There were 5 pol sequences (NM026-08, TB037-09, SN055-09,

BM-07209, and ZN124-10) which could not be characterized by

REGA 3.0. These sequences were short sequences (average of 688

bp) classified as ‘‘check the report’’, which suggests that the user

check the results before assignment. Once the results were

checked, all of these sequences could be classified as subtype C

with an average bootstrap of 97%. With the jpHMM tool, PM003-

08 (C/F2 subtype) and SB067-09 (A2/B/C subtype) could not be

clearly subtyped. The RIP 3.0 software was also unable to subtype

the MN091-09 pol sequence. The Stanford database also gave

discrepancies with the pol subtyping with samples HN113-10 (K, C

subtype) and NN140-10 (A, C subtype).

With SCUEAL analysis for the 65 pol sequences (Table S4), 8

sequences (12.31%) could be characterized as having B, C

recombinant sequences. An additional 8 subtype C sequences

also showed intra-subtype recombinant breakpoints. Furthermore,

2 sequences (NK032-08 and NN140-10) had C, F1 inter-subtype

breakpoints, while 2 other sequences (SB067-09 and ZN124-10)

had C, G breakpoints. One sequence (1.54%) each of subtype

recombinants A2, C and C, H were also identified by the

SCUEAL report. However, for 9 of the 22 (40.91%) recombinant

samples identified by SCUEAL, the confidence assignment for the

interpretation was low. These results should be further analyzed

using longer sequences and/or more gene fragments.

In summary, 3 unique BC recombinant strains (PM014-08,

TB089-09 and MN091-09), comprising 4.62% of our data set,

were identified with the online subtyping tools.

Phylogenetic analysis and subtyping of the gag gene
Maximum Likelihood (ML) and Bayesian tree topologies were

inferred from the gag p24 sequence alignment. The sequence

length was 441 bp long and phylogenies were inferred with the

GTR model of nucleotide substitution, as was determined by the

AIC analyses in ModelTest, and with an estimated Gamma shape

parameter.

Both ML and Bayesian gag trees gave similar topology and

branching patterns. Branches with a bootstrap value of 70% or

greater were considered reliable, while in the Bayesian tree

topology branches with a posterior support greater than 0.9 were

considered trustworthy. The result of the ML and Bayesian

phylogenetic analysis of the partial gag gene is shown in Figure 2.
All the gag sequences clustered within the subtype C clade in

both the ML and Bayesian tree topologies. Only a single isolate

did not cluster within the main subtype C clade, but clustered as

an outlier to the subtype C clade in both the ML and Bayesian tree

topologies. In the ML-tree topology isolate MH020-08 clustered as

an outlier to the main subtype C clade with a bootstrap support

value of 69%. The posterior support value for the interior branch

connecting MH020-08 to the subtype C clade in the correspond-

ing Bayesian tree topology was 1.0.

It should also be noted that two of the newly sequenced isolates

in the gag data set clustered closely with one another with a small

measure of genetic distance separating them. This is normally

indicative of sequence contamination. However, these isolates

were independently re-characterized in order to prevent for any

potential sequence contamination. We were unable to amplify the

pol fragment for both these sequences.

Phylogenetic analysis and subtyping of the pol gene
datasets

Four different pol sequence alignments (pol.dataset.1– pol.data-

set.4) were used to infer Maximum Likelihood and Bayesian tree

topologies. This was done in order to conserve sequence length in

each alignment because of the varying fragment lengths of the

newly sequenced isolates. ML and Bayesian phylogenies for all of

the pol sequence alignments were inferred also with the use of the

GTR model of nucleotide substitution and an estimated Gamma

shape parameter.

Once again the results of the ML and Bayesian phylogenetic

analyses of the partial pol gene gave similar tree topologies and

branching patterns. All of the newly sequenced isolates were

identified as subtype C isolates with the exception of four isolates.

Bootstrap and probability values were supportive for all subtype C

isolates, with the exception of the Bootstrap values in the ML-tree

Figure 6. Phylogenetic analysis of the pol alignment (Dataset
4). Evolutionary relationships were inferred with the use of the GTR
model of nucleotide substitution and an estimated Gamma shape
parameter. The alignment contained 188 taxa, including 33 of our own
patient sequences, with an length of 977 bp (2250–3226 relative to
HXB2). Two different methods of tree inference were used: a Maximum
Likelihood (A) and a Bayesian approach (B). The Maximum Likelihood
tree topology was inferred in PhyML v 3.0 with 1000 bootstrap
replicates. The Bayesian tree topology was inferred in MrBayes v 2.0
with a total of 10 million steps in the Markov Chain and four
independent runs. Inferred trees were visually inspected in FigTree v
1.3.1. The most relavent bootstrap or posterior support values are
indicated on the tree topology.
doi:10.1371/journal.pone.0090845.g006
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Figure 7. Subtyping analysis of PM003-08 using jpHMM and manual phylogenetic analysis. A). jpHMM result: A breakpoint is located at
position 2594+/249 (HXB2 numbering). B). Posterior probabilities of the subtypes at each sequence position (original sequence positions) calculated
by jpHMM. Posterior probability values are indicated on the y axis and nucleotide positions in the alignment are shown on the x axis. C) and D).
Phylogenetic analysis (NJ trees) of two fragments identified by the jpHMM breakpoint. C is a NJ tree of the unclassified fragment whose subtype
classification was unresolved by posterior probability analysis and clustered with none of the HIV-1 reference subtypes from the Los Alamos HIV
Sequence Database. D is a NJ tree of the subtype C region. Scale corresponds to nucleotide substitutions per site.
doi:10.1371/journal.pone.0090845.g007
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Figure 8. Subtyping analysis of SB067-09 using jpHMM and manual phylogenetic analysis. A). jpHMM result: A breakpoint is located at
position 2820+/2 14 (HXB2 numbering). B). Posterior probabilities of the subtypes at each sequence position (original sequence positions) calculated
by jpHMM. Posterior probability values are indicated on the y axis and nucleotide positions in the alignment are shown on the x axis. C) and D).
Phylogenetic analysis (NJ trees) of two fragments identified by the jpHMM breakpoint.
doi:10.1371/journal.pone.0090845.g008
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Figure 9. Subtyping analysis of TB089-89, a BC recombinant strain using jpHMM and manual phylogenetic analysis. A). jpHMM result:
A breakpoint is located at position 2598+/237 (HXB2 numbering). B). Posterior probabilities of the subtypes at each sequence position (original
sequence positions) calculated by jpHMM. Posterior probability values are indicated on the y axis and nucleotide positions in the alignment are
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topology for the shorter pol data set. However, this may be a result

due to the shorter fragment length of this alignment (385 bp).

Close examination of the various tree topologies that was

inferred from the pol.dataset.1 alignment revealed that three

isolates (PM014-08, AS050-09, and MN091-09) clustered within

the subtype B clades for both the ML and Bayesian tree topologies

(Figure 3). The branch support for this clustering however were

below the accepted confidence levels in the ML-tree topology with

an bootstrap support of only 38%, while the interior branch of the

larger subtype B clade only had a branch support of 12%.

However, in the corresponding Bayesian tree topologies the

branch support for the internal branch of these three isolates were

1.0, while the posterior support for the internal branch of the

larger subtype B clade that this cluster is nested in is 0.81.

Inspection of the ML- and Bayesian tree topologies (Figure 4)

that was inferred from the pol.dataset.2 alignment (769 bp)

identified all of the 12 isolates as belonging to HIV-1 subtype C.

However, it should also be noted that in the Bayesian inference

from one of the pol data set (Figure 4b) coding in the reverse

transcriptase region of HIV-1, all of the 12 isolates clustered along

with one other South African subtype C reference strain as an

outlier to the main subtype C clade. The posterior support for the

internal branch of this cluster is 0.67, while the posterior for the

internal branch of the larger subtype C clade is 1.0. However, in

the corresponding ML-tree topology (Figure 4a) this clade

clustered within the main subtype C clade with a bootstrap

support of 99% for the internal branch of the larger clade. We can

therefore conclude with confidence that our twelve isolates that

were contained within this alignment belong to HIV-1 subtype C.

Furthermore, inspection of the ML- and Bayesian tree

topologies that was inferred from the pol.dataset.3 alignment

(Figure 5) identified all eleven of our patient samples as belonging

to HIV-1 subtype C for this region of the genome with high

bootstrap (99%) and posterior support (0.99).

Inspection of the ML- and Bayesian tree topologies that was

inferred from the pol.dataset.4 alignment (Figure 6) identified all

of the 33 isolates as subtype C with the exception of one patient

sample TB089-09. The bootstrap support for the larger subtype C

clade was 53% (Figure 6a), while the posterior support was 0.98

(Figure 6b). The clustering of TB089-09 as an outlier to the main

subtype C clade with long branch lengths may be indicative of

some recombination event, which must be further characterized

using additional methods.

Therefore, the results of the online subtyping methods must be

used in conjunction with the phylogenetic results in order to

classify this isolate.

Further Identification of possible recombinants
The jpHMM analysis was used to indicate the breakpoints of

possible pol recombinants and these partial sequences were then

used in NJ phylogenetic analysis for PM003-08, SB067-09 and

TB089-09.

PM003-08 (Figure 7) segment 1 was unclassified and segment

2 clustered with subtype C with 100% bootstrap support. SB067-

09 (Figure 8) segment 1 clustered with subtype C with 100%

bootstrap support, while segment 2 was an outlier to subtype C.

TB089-09 (Figure 9) segment 1 clustered with subtype B with

high bootstrap support of 86% and segment 2 clustered with

subtype C with 100% bootstrap support. This sequence was also

clearly identified as a possible BC recombinant using REGA 3.0,

jpHMM, SCUEAL and RIP 3.0 analysis.

In addition SCUEAL identified 10 possible BC recombinants:

NM026-08, TP029-09, NK032-08, NJ035-08, SN055-09, TB089-

09, MN91-09, TM098-09, BD112-10, and ZN122-10. These

results should be further analyzed using longer sequences and/or

more gene fragments. SCUEAL uses a reference alignment,

containing a larger number of reference strains per subtype, and

are therefore more sensitive to uncover recombination break-

shown on the x axis. C) and D). Phylogenetic analysis (NJ trees) of two fragments identified by the jpHMM breakpoint. The breakpoint identified the
majority of the PR as subtype B (HXB2 nucleotide 2148–2597) and the remaining RT as subtype C (HXB2 nucleotide 2597–3274).
doi:10.1371/journal.pone.0090845.g009

Table 1. Agreement between automated HIV-1 subtyping tools and manual phylogenetic analysis.

Agreement
pol gene

REGA-
check RIP jpHMM SCUEAL Stanford Manual

REGA V3 92,31% 89,23% 89,23% 76,92% 87,69% 90,77%

REGA-
check

96,92% 96,92% 80,00% 95,38% 98,46%

RIP 95,38% 78,46% 93,85% 95,38%

jpHMM 80,00% 95,38% 95,38%

SCUEAL 78,46% 78,46%

Stanford 93,85%

Agreement
gag gene

REGA-
check

RIP jpHMM Manual

REGA V3 92,54% 91,04% 91,04% 92,54%

REGA
-check

97,01% 95,52% 97,01%

RIP 95,52% 97,01%

jpHMM 98,51%

RegaV3 results were presented in two formats, the first included only the automated results and the second (check) include checking the report for the result as
suggested by the tool.
doi:10.1371/journal.pone.0090845.t001
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points. Due to the small fragment length of some of our pol

fragments it may be that other automated and manual methods

that relies on reference alignments, may have missed small

recombination events.

Results of the subtyping agreement
The results of the subtyping agreement analyses between the

various methods of subtyping and the manual phylogenetic

analyses gave very compelling results (Table 1). From these

results it would seem that manual phylogenetic inference to assign

subtype still perform better when compared with most of the

available online automated methods. Therefore, manual phyloge-

netic inference should still be regarded as the ‘‘gold standard’’ to

assign HIV-1 subtypes. Furthermore, it would appear that there

are broad agreement between REGA v 3.0, RIP3.0, Stanford, and

jpHMM methods (Table 1 and 2). From the agreement analyses

it would appear that SCUEAL performed the worst.

HIV-1 drug resistance
The majority (n = 58; 69.05%) of women were ART naı̈ve, with

26 (30.95%) receiving treatment at the time of sample collection.

We detected resistance-associated mutations (RAMs) in 6 of the 65

(9.23%) pol sequences analysed (Table S5). These include 3

samples (HN113-10, ND036-08 and ZN119-10) with the V82F PI

mutation. The V82F mutation reduces susceptibility to most of the

currently used PIs. One sample (NN140-10) had multiple RAMs,

which include the NRTI mutation M184I and the well

characterized NNRTI mutations K103N and Y181C. K103N

was also found in sample NM026-08, while Y181C was also

present in sample ZN122-10. M184I/V causes high-level resis-

tance to lamivudine (3TC) and emtricitabine (FTC), while K103N

causes high-level resistance to nevirapine (NVP) and efavirenz

(EFV). Y181C also causes high-level resistance to NVP. Y181C

also decreases susceptibility to etravirine (ETR), although in

combination with other RAMs. Three patients (HN113-10,

NN140-10 and NM026-08) were not on ART during the course

of this study, thus transmitted resistance was present in 4.62% of

the study population.

Discussion

In this study we analysed the HIV-1 gag p24 as well as the pol PR

and pol RT regions for sequence diversity within our study cohort.

The pol region especially has become important for monitoring

HIV-1 drug surveillance studies around the world [31]. However,

pol analyses alone can not predict HIV-1 recombination accurate-

ly, therefore we also included the gag p24 analyses during our

studies. The majority of our isolates were assigned to belong to

HIV-1 subtype C. We detected 4 isolates, one subtype B isolates

(AS052-09), and 3 BC recombinants (PM014-08, TB089-09 and

MN091-09). Due to the inclusion of another subgenomic region

into our analyses we were able to more accurately identify

recombination within our data set, but only complete genome

sequencing of each strain would give accurate results of the true

number of recombinants present.

HIV-1 diversity in South Africa
The early South African epidemic in the 1980’s mirrored that of

the epidemic in the industrialized world with HIV-1 subtype B

circulating in the high risk groups of men who have sex with men

(MSM) [9]. A minor subtype D epidemic was also present in the

1980’s [9,14]. However, since the early 1990’s heterosexual

transmission with HIV-1 subtype C has been the major route of

HIV-1 transmission in the country [32].

In a previous study we showed that HIV-1 subtype C,

predominantly spread via heterosexual transmission, accounts for

approximately 95% of all infections in the Cape Town area [8].

South Africa has been dominated by the HIV-1 subtype C

epidemic in the heterosexual population, with a minor subtype B

epidemic found in the homosexual population [8,9]. However, we

have also lately seen an increase in the number of subtype B cases

spread through heterosexual and mother-to-child transmission [8].

In this study, for the first time we show the crossover of the two

epidemics with the emergence of new BC intersubtype recombi-

nant strains, different to the strains circulating elsewhere, such as

the CRF07 and CRF08 found in China [33]. BC Recombinant

strains are also frequently found in Brazil where subtypes B, C and

F1 are prevalent [34]. It is well known that the HIV-1 subtype C

epidemic in Africa does not show a founder effect, but rather

indicates that the subtype was introduced multiple times through

mulitple lineages on the continent [35,36]. It is therefore not

surprising that recombination events between different HIV-1

strains are becoming more frequent. The high frequency of

tourism and migration occurring could explain the rise of in the

number of recombinant strains that have been identified.

Wilkinson et al also previously highlighted the rise of the number

of non-C strains that were being detected in Cape Town, South

Africa [10].

Online HIV-1 subtyping tools and phylogenetic analysis
With online tools becoming better models of prediction of

recombination, it is easier to search for recombination breakpoints

within our population and study cohorts. Phylogenetic analysis

alone can not predict inter and intra-subtype breakpoints and has

made online subtyping tools extremely useful within our popula-

tion and study cohorts. There are a wide variety of online tools

available, often using different algorithms to distinguish between

the different HIV subtypes. However, we have noticed discre-

pencies between the various online subtyping tools that we have

used in the study. The question that should be asked is how

accurate are online subtyping tools and how long should a

sequence segment be to give reliable information about that

particular sequence. It has previously been reported that rapid

subtyping tools often have low agreement in comparison with

phylogenetic analysis, especially regarding non-B subtypes and

HIV-1 recombinant forms [20,21,37]. SCUEAL has for example

been shown to accurately type HIV strains not easily characterized

by REGA version 2 [24]. Thus although online subtyping tools

can be used as a quick guide for genotyping sequences, this should

always be followed up with more accurate phylogenetic analyses.

ART and drug resistance in South Africa
With 5.6 million people currently infected in South Africa,

ART is steadily increasing. In this study and in previous studies we

have shown that the rate of transmitted resistance is approximately

5% [38]. Therefore, it is a growing concern about the influence of

resistance variants and other minor recombinant strains will have

on treatment regimens. It is important to report only true

resistance mutations and not to count sequence polymorpisms or

minor mutations when reporting transmitted drug resistance. It is

still unclear what role HIV-1 diversity will have on the impact of

long term treatment [39]. In recent years newer strategies for

vaccine development and ART have become more focussed on

finding solutions against all major HIV-1 variants. Monitoring

HIV-1 transmission patterns and genetic diversity across the world

remains and important endeavour in our fight against HIV/AIDS.
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Sequence Data
The sequences analysed during the study have been deposited

into GenBank and are available under the following accession

numbers: pol sequences KF793121 to KF793185, gag sequences

KF793054 to KF793120.

Supporting Information

Table S1 Patient demographic information of study
cohort. The cohort consisted of 84 female participants from

different clinics in Cape Town, South Africa. The majority

(n = 81; 96.42%) of participants were African, with 3 participants

(3.57%) of mixed race origin. The mean age of the cohort was 31.5

years (SD = 6.53) and ranged from 21 to 50 years. The CD4

lymphocyte count ranged from 35 to 1529, with a mean of 630.48.

The HIV viral load ranged from below the detectable limit to

3200000, with a mean of 101512.74.

(PDF)

Table S2 Viral load of negative PCR patient samples.
There were 11 samples which could not be amplified with either

the gag or pol fragments. Nine of theses samples had vary low viral

loads, ranging from LDL to below 3000 copies/ml. The non-

amplification of the 2 samples with higher viral loads, NG083-09

(19000) and AN141-10 (260000) is most likely due to the high

variation between sequences of HIV-1.

(PDF)

Table S3 Summary of gag p24 and pol PR and RT
subtyping analysis. We used the jpHMM, RIP 3.0, and REGA

3.0 online HIV subtyping tools to subtype our cohort sequences.

In addition we also used SCUEAL analysis, currently only

available for the pol region, to identify inter and intra subtype

recombinant sequences. Phylogenetic analysis was done with

MEGA 5.0. The summary indicates that the majority of samples

were identified as HIV-1 subtype C, but a large number of

recombinants were also identified, especially with SCUEAL

analysis.

(PDF)

Table S4 SCUEAL analysis of Unique Recombinant
Forms (URFs). With SCUEAL analysis as much as 22

(33.85%) of the 65 pol sequences were identified as having either

inter or intra-subtype recombinant breakpoints. These include 8

(12.31%) subtype C sequences with intra-subtype recombination

as well as 8 sequences (12.31%) with inter B, C recombinant

sequences. Other recombinants identified by SCUEAL includes 2

(3.08%) sequences each of C, F1 and C, G recombinants as well as

1 (1.54%) sequence each of C, H and A2, C. However, 9 (40.91%)

of these sequences had a confidence assignment of below 70%.

(PDF)

Table S5 Sequences identified with SDRMs. We identified

RAMs in 6 (9.1%) of patient sequences. This includes resistance to

3TC, FTC, NVP and EFV.

(PDF)
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