
CaSPIAN: A Causal Compressive Sensing Algorithm for
Discovering Directed Interactions in Gene Networks
Amin Emad*, Olgica Milenkovic

Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America

Abstract

We introduce a novel algorithm for inference of causal gene interactions, termed CaSPIAN (Causal Subspace Pursuit for
Inference and Analysis of Networks), which is based on coupling compressive sensing and Granger causality techniques. The
core of the approach is to discover sparse linear dependencies between shifted time series of gene expressions using a
sequential list-version of the subspace pursuit reconstruction algorithm and to estimate the direction of gene interactions
via Granger-type elimination. The method is conceptually simple and computationally efficient, and it allows for dealing
with noisy measurements. Its performance as a stand-alone platform without biological side-information was tested on
simulated networks, on the synthetic IRMA network in Saccharomyces cerevisiae, and on data pertaining to the human HeLa
cell network and the SOS network in E. coli. The results produced by CaSPIAN are compared to the results of several related
algorithms, demonstrating significant improvements in inference accuracy of documented interactions. These findings
highlight the importance of Granger causality techniques for reducing the number of false-positives, as well as the influence
of noise and sampling period on the accuracy of the estimates. In addition, the performance of the method was tested in
conjunction with biological side information of the form of sparse ‘‘scaffold networks’’, to which new edges were added
using available RNA-seq or microarray data. These biological priors aid in increasing the sensitivity and precision of the
algorithm in the small sample regime.

Citation: Emad A, Milenkovic O (2014) CaSPIAN: A Causal Compressive Sensing Algorithm for Discovering Directed Interactions in Gene Networks. PLoS ONE 9(3):
e90781. doi:10.1371/journal.pone.0090781

Editor: Daniele Marinazzo, Universiteit Gent, Belgium

Received December 4, 2013; Accepted February 5, 2014; Published March 12, 2014

Copyright: � 2014 Emad, Milenkovic. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported in part by an NSERC graduate fellowship, and NSF grants CCF 0809895, CCF 1218764 and the Emerging Frontiers for Science
of Information Center, CCF 0939370. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: emad2@illinois.edu

Introduction

One of the unresolved open problems in systems biology is

discovering causal relationships among different components of

biological systems. Gene regulatory networks, protein-protein

interaction networks, chemical signaling and metabolic networks

are all governed by causal relationships between their agents that

determine their functional roles. Discovering causal relationships

through experiments is a daunting task due to the technical

precision and output volumes required from the experiments and

due to the large number of interconnected and dynamically

varying components of the system. It is therefore of great

importance to develop a precise analytical framework for

quantifying causal connections between genes in order to elucidate

the gene interactome based on limited and noisy experimental

data. Statistically inferred interactions may be used to guide the

experimental design process, helping with further refinement of

the modeling framework [1,2]. Unfortunately, to date most reverse

engineering algorithms have offered very few reliable outcomes for

even moderately sized networks and were hardly ever experimen-

tally tested – these and other shortcomings of existing inference

techniques and models were described in detail in [3]. Conse-

quently, algorithmic developments are focusing on small network

components of prokaryotic or simple eukaryotic cell lines and on the

more conservative – yet reliable – task of identifying a small

number of highly accurate causal links.

One way to detect if a gene causally influences another gene is

to monitor if changes in the expression of the potential regulator

gene affect the expression of the target gene in the presence of at

least one additional network component [4,5]. This type of

analysis is frequently used in combination with expression

clustering and classification techniques [6]. A number of authors

also suggested the use of Bayesian networks [7–11], Boolean

networks [12,13], differential equations [13,14], stochastic net-

works [15,16], finite state linear models [17] and other machine

learning tools for network inference. Algebraic techniques were

described in [18,19], while different information-theoretic ap-

proaches were proposed in [20–27]. For an overview of a variety

of other methods for reverse engineering of gene regulatory

networks, the interested reader is referred to [28–35].

Sparsity of gene regulatory networks was exploited in a number

of different inference frameworks, including transcription factor

interaction analysis [2,36–38]. Most of the proposed methods

integrate sparsity priors through a form of Lasso penalty [39]. The

algorithms reduce to an optimization problem that in its simplest

form tries to minimize an objective function consisting of two

terms: the first term is the ‘2 norm of the reconstruction error,

while the second term is a regularization term, equal to the ‘1

norm of the sought solution. The main difficulties associated with

the Lasso framework are solving a high-dimensional optimization

problem and properly choosing the coefficient of the regulariza-

tion term(s). In most cases, the regularization coefficient is either

PLOS ONE | www.plosone.org 1 March 2014 | Volume 9 | Issue 3 | e90781

http://creativecommons.org/licenses/by/4.0/

chosen heuristically or using an optimization procedure which

increases the complexity of the algorithm without providing

provable performance guarantees. Parameter tuning issues also

make the comparison of results generated by Lasso for different

objective functions hard to accomplish in a fair manner.

An alternative to the Lasso approach is a greedy compressive

sensing framework, which overcomes some of the shortcomings of

Lasso while still utilizing the sparsity of the network. Compressive

sensing (CS) is a dimensionality reduction technique with

widespread applications in signal processing and optimization

theory [40], [41]. CS allows for inferring sparse structures given a

small number of linear measurements, usually generated in a

random fashion. As such, it naturally lends itself for use in

biological inference problems involving sparse interaction net-

works.

Motivated by recent advances in CS theory and its application

in practice, we introduce the concept of causal compressive sensing and

design new greedy list-reconstruction algorithms for inference of

causal gene interactions; as part of the process, we generate two

sparse models for each potential interaction pattern and infer

causality by comparing the residual errors of the models using

statistical methods. Furthermore, in CS, the most difficult task

consists of finding the support (i.e. the nonzero entries) of a sparse

signal. This is accomplished by inferring the subspace in which the

vector of observation lies. As a result, the complicated process of

choosing the regularization coefficient in Lasso is substituted by

the more natural task of choosing a ‘‘consistency’’ level between

the vector of observations and its representation in the estimated

subspace.

The CS approach has not been widely used for gene regulatory

network inference; to the best of the author’s knowledge, only the

methods in [42] and [43] described compressive sensing

algorithms for linear models. Both papers deal with non-causal

inference. In our work, we propose a method for identifying causal

gene interactions based on a combination of two ideas: greedy CS

reconstruction and Granger causality, or elimination analysis. The

CS model is motivated by a technique for face recognition used in

computer vision, first described in [44]. The crux of the approach

is to efficiently find a sparse linear representation of an image of

one individual in terms of images of that and other individuals,

taken under many different conditions. One component of the

setup is reminiscent to the method described in [43], where

expression levels of genes taken under different experimental

conditions (or under different gene knockout scenarios) are

represented as vectors for which a sparse representation is sought.

However, the results in [43] are based on an ‘1 optimization

method and only infer non-causal interaction among the genes. In

addition, CS was used only as a preprocessing step; the obtained

CS results were combined with extensive prior biological

information, and the gene interactions were inferred through

supervised learning performed by AdaBoost. It is worth mention-

ing that AdaBoost and similar boosters are highly susceptible to

random classification noise, thereby limiting their applications in

biological data analysis [45].

In this manuscript, we propose two causal CS inference

approaches. In order to infer causality, we apply these approaches

to two different combinations of gene expression profiles shifted in

time, one of which contains a potential regulator and another,

which does not contain a potential regulator. Each dataset gives

rise to a certain representation error, and one may infer the level

of influence of genes on each other based on the differences in the

representation errors and by using the F-test [46]. The first

method is an unsupervised learning scheme and therefore has the

advantage that it does not need to be combined with learning steps

involving biological side-information in order to produce good

predictions. In the second method, in order to incorporate

biological priors into the subspace pursuit process, we propose

using an experimentally verified ‘‘scaffold network’’. This network

consists of a small number of highly reliable edges, chosen based

on the number of times they were reported in the literature, the

number of different experimental methods used to verify them and

similar considerations. The use of a scaffold network may resolve

some ambiguities in the subspace selection process, which often

lead to inference errors and hence improve the overall

performance of causal CS methods.

At the core of our computational method is the subspace pursuit

(SP) algorithm, which we described in [47]. We adapt this greedy

approach into an algorithm termed list-SP. List-SP sequentially

scans subspaces of measurements with different dimensions and

creates an output that consists of the union of basis vectors for all

identified subspaces. An advantage of the proposed algorithms is

that one can take advantage of the prior information on the

sparsity of the network, i.e. the in-degree of the nodes. If such

information is not available, a rough estimate or an upper bound

on the in-degree of the nodes is sufficient. In particular, the upper

bound can be chosen large enough to ensure that it exceeds the

largest in-degree of the network, and then the false-positives can be

rejected throughout the F-test step of the inference algorithm.

The main finding of our analysis indicates that causal

compressive sensing can infer a relatively large fraction of causal

gene interactions with very small false-positive rates when applied

to small and moderate size networks. This finding is supported by

simulated data, synthetic data from the IRMA network in

Saccharomyces cerevisiae [48], and biological data from the human

HeLa cell network and the SOS network of E. coli [49]. The

success probability is, as expected, highly influenced by the noise

variance of the experiment and by the sampling time of the

expressions. Our analysis of these phenomena adds to the

understanding of the limitations of causal inference under

imperfect measurement conditions, as well as the role of biological

side information in reducing inference error rates. It also explains

why available methods may not result in an improved detection

probability upon adding as many time-shifted expression profiles

as available, since gene expressions are usually measured at too

widely separated times and have different time periods between

the measurements.

Methods

Compressive Sensing
Compressive sensing (CS) is a technique for sampling and

reconstructing sparse signals, i.e. signals that can be represented by

k%n significant coefficients over an n-dimensional basis. What

distinguishes CS from other dimensionality reduction techniques is

that it operates with a small number of measurements [40], [41]

that allow for polynomial-time reconstruction of the sparse signal.

Assume that one is interested in finding a vector ~xx [Rn using a

(noisy) observation y [Rm obtained according to y~W~xxzn, for a

known sensing matrix W [Rm|n, with mvn; here, n denotes the

noise vector. In general, the problem cannot be solved uniquely.

However, if ~xx is k-sparse, i.e., if it has up to k nonzero entries, one

may recover ~xx uniquely if m is large enough. This can be achieved

by finding the sparsest signal consistent with the vector of

measurements [40], i.e.

x̂x~arg min
x[Rn

DDxDD0 subject to DDy{WxDD22ƒE, ð1Þ

Causal Compressive Sensing to Infer Gene Networks

PLOS ONE | www.plosone.org 2 March 2014 | Volume 9 | Issue 3 | e90781

where DDxDD0 denotes the ‘0 norm of x (i.e., the number of non-zero

entries of x), while E denotes a parameter that depends on the level

of measurement noise. It can be shown that the ‘0 minimization

method can exactly reconstruct the original signal in the absence

of noise using a properly chosen sensing matrix W whenever

m§2k. However, ‘0 minimization is a computationally hard

combinatorial problem and cannot be performed efficiently.

On the other hand, it is known that an ‘1 convex relaxation of

(1) can accurately approximate the signal ~xx in polynomial time if

W satisfies the so-called restricted isometry property (RIP) and

provided that m~O(k log(n=k)) [40], [41]. This optimization

problem may be stated as

x̂x~arg min
x[Rn

DDxDD1 subject to DDy{WxDD22ƒE, ð2Þ

where, as before, E depends on the noise variance. One should

note that the ‘1 minimization in Equation (2) is closely related to

the previously mentioned Lasso problem [39]

x̂x~arg min
x[Rn

1

2
DDy{WxDD22zlDDxDD1, ð3Þ

where l is a regularization parameter. If E and l in Equations (2)

and (3) satisfy some special conditions, the two problems are

equivalent; however, characterizing the relationships between E
and l is difficult, except for the special case of orthogonal sensing

matrices W [54]. In most other cases, it is easier and more natural

to find an appropriate value of E than l [51], since E is proportional

to the noise variance. As a result, the CS framework eliminates the

computational issues of Lasso regarding parameter selection.

Although the ‘1 relaxation can be reformulated as a linear

program (LP), for high-dimensional vectors it is desirable to use

greedy algorithms as they offer significant reductions in compu-

tational complexity while ensuring performance comparable to

that of LP methods. Another advantage of greedy methods is the

ease of adding constraints and adapting the method to the

problem at hand. For an in-depth discussion of one such greedy

algorithm, Subspace Pursuit (SP), the interested reader is referred

to [47].

The List-SP algorithm
We next introduce the List-SP method, a modification of the SP

algorithm [47] that is designed to increase the number of true

positives found using SP while preserving the benefits of SP

(including low complexity, ability to incorporate side information

on the in-degree of the nodes, etc.).

Assume that for a vector y, a sensing matrix W, and a fixed

value of E, one is interested in finding a k-sparse estimate of ~xx,

denoted by x̂x, such that DDy{Wx̂xDD22ƒE. The main challenge is to

find the support of x̂x, or the columns of W indexed by x̂x; given the

support, the values of the non-zero entries may be obtained via

pseudo-inversion [52]. List-SP is an iterative algorithm for solving

this problem in k iterations. In the kth iteration, 1ƒkƒk, a set of

k columns of W is identified, such that the linear combination of

these columns represents y with smallest possible error. The union

of the sets of columns found during these k iterations forms a

subspace that with high probability contains the subspace spanned

by the columns of W indexed by x̂x. In order to find the set of

columns in the kth iteration, SP first finds a set of k columns of the

sensing matrix with highest correlation with y; then, iteratively, the

SP algorithm tests groups of columns in a greedy manner to

augment the existing set of k columns of W with k additional

columns that together most likely span the subspace in which y

lies. Upon finding such a set, SP updates the list of columns by

discarding the k ‘‘least reliable’’ of them. The procedure continues

until a desired accuracy is achieved [47]. Note that the reason for

forming the union of subspaces in list-SP is that it may happen that

some of the recovered columns for sparsity level k{1 are not

present among the recovered columns for sparsity level k. By

combining the results obtained using SP for different values of k,

we reduce the chance of missing an important column of W, given

that we do not know the sparsity level. In the context of gene

interaction inference, we effectively reduce the probability of false-

negatives. This significantly improves the performance of the List-

SP compared to SP with respect to false-negatives, as we

demonstrate in the results section. Note that the computational

complexity of List-SP algorithm is O(mnk2), compared to the

complexity of the classical SP, which equals O(mnk) [47].

Granger Causality
Only a few algorithms using signal sparsity were successfully

integrated into causal inference models [2,36]. One such causality

testing scheme, originally proposed in econometrics, is Granger

causality [53]. In its original incarnation, Granger causality was

presented as a heuristic statistical concept based on prediction.

The method has the goal to determine if a time series of past

observations of a process helps to predict the future values of

another process. Granger causality only considers two stochastic

stationary processes, in addition to an auxiliary process required as

a ‘‘causal reference’’ [5]. An extension of this definition to more

than two stationary processes, dubbed conditional Granger

causality, was introduced in [54]. In the context of linear

regression, this causal model may be described as follows. Assume

that the value of the process Y at time t can be predicted using the

values of the processes Y and Z at d past time-points through the

coefficients ai and ci, 1ƒiƒd. The restricted model takes the form

Y (1)(t)~
Xd

i~1

aiY (t{iT)z
Xd

i~1

ciZ(t{iT)zr(1),

where Z is the reference process, and r(1) represents the

approximation residual. Augmenting this model with the d past

values of X yields the unrestricted model

Y (2)(t)~
Xd

i~1

a’iY (t{iT)z
Xd

i~1

b’iX (t{iT)z
Xd

i~1

c’iZ(t{iT)zr(2),

where a’i, b’i, and c’i, 1ƒiƒd , are model coefficients, and r(2)

represents the approximation residual. If the variance of r(2) is

‘‘significantly’’ smaller than the variance of r(1) in a suitable

statistical framework, then X Granger-causes Y conditioned on Z,

which we denote by X {{?
G

Y DZ.

In most cases, causality and co-integration are assessed via

Augmented Dickey Fuller (ADF) tests or F-tests on the residual. In

a nutshell, these tests determine the significance of the change in

the value of the variance of the residuals [46]. Assume that one is

given different realizations of the processes X , Y , and Z. These

realizations can be used to form vector time-series models of the

restricted and unrestricted models. To determine if X {{?
G

Y DZ,

we assume the null hypothesis that b’1~b’2~ . . . ~b’d~0. The F-

statistic for this null hypothesis is

Causal Compressive Sensing to Infer Gene Networks

PLOS ONE | www.plosone.org 3 March 2014 | Volume 9 | Issue 3 | e90781

F~
DDr1DD2{DDr2DD2
� �

=(n2{n1)

DDr2DD2=(m{n2)
, ð4Þ

where DDr1DD2 and DDr2DD2 are the squared norms of the residuals in

the restricted model and the unrestricted model, respectively; n1

and n2 are the total number of parameters in the restricted and

unrestricted model, respectively, and m is the total number of

realizations of the processes at each time point. Under the null

hypothesis, the F-statistic follows an F-distribution with

(n2{n1,m{n2) degrees of freedom [46]. The null hypothesis is

rejected if the F-statistic is greater than a critical value, calculated

using the F-distribution for a desired significance level, PF .

In what follows, the CS-Granger causality approach is applied

on gene expression data sampled at a small number of time

instances. There are two main issues to be addressed in this

context: how to discover linear relationships between expression

profiles that may be (and usually are) correlated with each other

and how to adapt the sensing matrix W to perform meaningful

Granger-type tests. The processes of interest, X , Y and Z
represent the regulated gene, the regulator gene and a collection of

candidate genes, which contain both genes that causally influence X
(excluding Y) and genes that do not causally influence X . In other

words, Z is a vector random process (Z1, . . . ,Zs), where s denotes

the number of candidate genes.

The CaSPIAN algorithm for gene network inference
In order to combine CS techniques, in particular List-SP, with

Granger causality, we assume that the gene expressions may be

modeled via a linear regression. In addition, we assume that

different realizations of the model are available through different

experiments. These realizations are used to form a vector

regression model for the gene expressions. More precisely, assume

that one is interested in finding the directed graph corresponding

to causal relationships of n genes, denoted by G~fg1,g2, . . . ,gng,
using gene expression levels obtained under different experimental

conditions. If the structure of the gene regulatory network does not

change significantly under these conditions, one should be able to

form expression profiles for each gene by concatenating the

expression levels in different experiments. In particular, conditions

that do not affect a subnetwork of the gene regulatory network can

be used to infer the causal relationships among the genes of the

subnetwork of interest. The procedure of forming the gene

expression profiles is described in more detail at the end of this

section.

Let m denote the number of experiments and assume that in

each experiment the expression level of each gene is given for d
time points. Let fwj,lg denote the set of expression profiles of

genes, where j [f1,2, . . . ,ng and l [f0,1, . . . ,d{1g; wj,l is a

column-vector denoting the expression profile of gj corresponding

to time t~t0{lT , where t0 is the latest available time-point and T
is the sampling period between the time-points. Assume that one is

interested in finding the genes causally affecting a gene of interest,

gi, dubbed the target gene; in this case, we set y~wi,0, the expression

profile of gi corresponding to time t~t0. The idea is to relate the

linear regression model governing the dynamics of gene expression

level of gi to Equation (1) and use CS techniques to infer ~xx; the

support of ~xx can then be used to identify the genes affecting gi. In

addition, the sign of the nonzero entries of ~xx and their values can

be used to infer if a gene positively or negatively regulates another

gene.

The sensing matrix is formed using the expression profiles of all

the genes other than gi, at all past time points, according to the

formula:

WG\fgig~½w1,1,w1,2, . . . ,wi{1,d{1,wiz1,1, . . . ,wn,d{1�: ð5Þ

Note that in forming the matrix WG\fgig, we did not use the

expression profiles corresponding to time t~t0. The reason

behind this is that we assume that the profile of a gene at time

t~t0 depends on the profile of other genes at previous time-points.

In addition, we did not include the expression profiles of gi

corresponding to past time-points. This is justified by the fact that

even if wi,0 can be written as a linear combination of wi,j ,

1ƒjƒd{1, which is the case in most scenarios, it does not imply

that the gene self-regulates; as a result, including such columns in

the sensing matrix and treating them in the same way as profiles of

other genes will result in false-positives and will also mask the effect

of the true regulators of the target gene. One should also note that

the sensing matrix formed in this way may not satisfy some of the

properties reported in CS literature for analytical performance

guarantees. For example, there is no guarantee that the matrix will

satisfy an RIP-like condition; the RIP is a sufficient condition for

recovery and may not be necessary for the algorithm to work. Our

results, similar to the results pertaining to face recognition [44]

show that many interactions can be inferred using this approach

despite the fact that the sensing matrices may not satisfy the RIP.

List-SP infers gene interactions based on y and WG\fgig, as

summarized in Algorithm 1 (Table 1). This algorithm identifies

genes that accurately ‘‘explain’’ the behavior of the target gene,

which include, but are not restricted to, genes causally influencing

the target gene. Hence, the set Ri may contain false-positives.

In order to identify which genes in the set Ri causally influence

gi, we perform an F-test for each gj [Ri, for a given significance

level, PF . For this purpose, we need to calculate the vector of

residuals in the unrestricted regression model and restricted

regression model. Let WT i
be a matrix formed using the columns

in T (k)
i recovered by Algorithm 1. The residual vector of

representing y as a linear combination of the columns in T k
i (i.e.

the residual vector of unrestricted model), is calculated according

to ri~y{WT i
W{
T i

y, where ‘‘{’’ denotes the Moore-Penrose

pseudo-inverse [52]. For each gj [Ri, we form WT i,j
by removing

the columns of WT i
corresponding to gj . The vector of residuals

for each gj in the restricted model is computed according to

ri,j~y{WT i,j
W{
T i,j

y. These residual vectors are used in Equation

(4), the result of which is subsequently used to reject or accept the

hypothesis that gj is conditionally Granger-causal for gi, for

significance level PF . The main steps of the procedure are

Table 1. Algorithm 1: List-SP.

Input: i[f1,2, . . . ,ng, fwj,lg, and k[N

Output: Ri5G

Initialization: y~wi,0 , S(0)
i ~1, T (0)

i ~1; form WG\fgig

For k~1,2, . . . ,k do

. Run SP for vector y, sensing matrix WG\fgig , and sparsity k

. Form T (k)
i ~T (k{1)

i |f columns of WG\fgigrecovered usingSPg

End

Return Ri~ the set of genes corresponding to columns in T (k)
i

The pseudocode corresponding to the List-SP algorithm.
doi:10.1371/journal.pone.0090781.t001

Causal Compressive Sensing to Infer Gene Networks

PLOS ONE | www.plosone.org 4 March 2014 | Volume 9 | Issue 3 | e90781

k

summarized in Algorithm 2 (Table 2), and the method is termed

Causal Subspace Pursuit for Inference and Analysis of Networks

(CaSPIAN).

CaSPIAN with prior subnetwork knowledge
In many practical situations, some directed edges in the network

are known in advance, due to extensive experimental confirma-

tions of their existence. In such cases, one can leverage this side-

information to improve the performance of CaSPIAN, especially

when the number of time points available for inference is small.

For any i [f1,2, . . . ,ng, let Ai5G be the set of genes in the

known subnetwork that causally influence gi. The idea is to first

remove the influence of the set of genes in Ai from wi,0, and then

to run CaSPIAN on the residual vector. Let WAi
be a matrix

formed by setting the profiles of genes in Ai as its columns. Using

standard least square methods, the best representation of wi,0 as a

linear combination of the columns of WAi
is equal to WAi

W{
Ai

wi,0,

where ‘‘{’’, as before, denotes the Moore-Penrose pseudo-inverse.

As a result, we set y~wi,0{WAi
W{
Ai

wi,0, and run CaSPIAN for

this choice of y and the sensing matrix formed by all the profiles of

genes in G\(Ai|fgig). The steps of this method are presented in

Algorithm 3 (Table 3).

Note that this approach of including the given side-information

may not be optimal: one may try to include the information of

existing edges into the subspace selection process of the SP method

directly, at each of its iteration. Unfortunately, this approach may

be computationally more demanding than using pseudo-inversion

followed by List-SP and will not be discussed in this paper.

Forming gene expression profiles
The gene expression profiles wi,j , 1ƒiƒn and 0ƒjƒd{1, can

be formed in different ways. If a large number of experiments (m)

is provided, and each experiment includes exactly d time-points,

one can form wi,j as a vector of length m including all the

expression levels of gene gi at time t0{jT . This method was used

in [2]. There are two main issues associated with forming wi,j this

way. First, WG\fgig is a matrix of size m|(n{1)(d{1); since the

number of genes is usually much larger than the number of

experiments in a dataset, i.e. n&m, the number of rows in the

sensing matrix is much smaller than the number of columns,

which significantly deteriorates the performance of any CS-based

(or Lasso-based) algorithm. This is due to the fact that the number

of columns of WG\fgig is equal to the number of unknown variables

(i.e. length of ~xx), and the number of its rows is equal to the number

of known observations (i.e. length of y). Second, in cases where the

number of time-points varies from experiment to experiment, one

may not be able to use the additional time-points available in some

experiments; the number of ‘‘useful’’ time-points is limited to the

minimum number of available time-points over all experiments.

In order to overcome these problems, we use a different method

to form fwi,jg. Assume that we want to test if the expression level

of a gene gi at a given time t is influenced by the expression levels

of other genes at past time-points, considering a time-lag up to

(D{1)T , with D§2. Let ED denote the set of experiments for

which at least D time-points are available, where D§Dz1. We

denote by mD the number of these experiments, i.e. mD~DEDD.
Also, let dl , 1ƒlƒmD, denote the number of time-points available

for the lth experiment in ED. We form wi,j , 0ƒjƒD{1 by

concatenating the expression levels of gi corresponding to a subset

of the time-points available in each experiment; the time points we

use from the lth experiment are the expression levels from time

t0{(dl{D{j)T to t0{jT , which significantly increases the

length of y and uses all the available information in the expression

data. This results in expression profile vectors of lengthPmD

l~1 dl{(D{1)mD§2mD. Consequently, the sensing matrix is

of size (
PmD

l~1 dl{(D{1)mD)|(n{1)(D{1).

Normalization of expression data
Two normalizations are performed on the vectors of gene

expressions prior to running the algorithms. Given an expression

profile, wi,j , we first subtract the average expression level of this

vector from each of its entries. Hence, the normalized profile

contains both positive and negative entries. After this step, we

normalize the values such that the ‘2 norm of each profile is equal

to one. The reason for these normalizations are to reduce the bias

and non-uniformities in the expression level of different genes and

ensure proper conditions for the operation of the list-SP method.

In addition to normalization, we also add an all-one column to the

sensing matrix. This step allows us to capture the effect of steady-

state values of the profile of the target gene.

Choosing the parameters of CaSPIAN
CaSPIAN has two input parameters, PF and k. The value of PF

depends on the application at hand. As the parameter PF is used

as a threshold in the F-test to infer Granger-causality, if PF is very

small, the number of false-positives is very low. This increases the

precision of the algorithm. In return, the sensitivity of the

algorithm reduces as well. A well accepted range of values for

PF is 0:01ƒPF ƒ0:05 which provides a balance between the

sensitivity and precision. On the other hand, in applications where

finding true positives is more important than finding all the edges,

a significantly smaller value for the parameter may be chosen. We

defer an in-depth discussion of this issue to the next section, where

we compare results for three different choices of PF values.

On the other hand, the choice for k depends on the available

information regarding the network and its degree distribution. The

compressive sensing SP algorithm [47] assumes that k is given a

Table 2. Algorithm 2: CaSPIAN.

Input: i[f1,2, . . . ,ng, fwj,lg, k[N, and PF

Output: Si5G

Initialization: y~wi,0 , S(0)
i ~1, T (0)

i ~1; form WG\fgig

For k~1,2, . . . ,k do

. Run SP for vector y, sensing matrix WG\fgig , and sparsity k

. Form T (k)
i ~T (k{1)

i |f columns of WG\fgigrecovered usingSPg

End

. Form Ri~fgi1 ,gi2 , . . .g

. Form WT i
using T (k)

i and set ri~y{WT i
W{
T i

y

For j~1,2, . . . , Rij j do

. Form WT i,j
and calculate ri,j~y{WT i,j

W{
T i,j

y

. Form the F-statistic using DDri DD and DDri,j DD

If the F-statistic is greater than critical value corresponding to PF

Then set S(j)
i ~S(j{1)

i |fgij g

Else set S(j)
i ~S(j{1)

i

End

Return Si~S(DRi D)
i

The pseudocode corresponding to the CaSPIAN algorithm.
doi:10.1371/journal.pone.0090781.t002

Causal Compressive Sensing to Infer Gene Networks

PLOS ONE | www.plosone.org 5 March 2014 | Volume 9 | Issue 3 | e90781

k

priori. In the context of gene network inference, this is equivalent

to knowing the in-degree of each gene in the network. However,

by adapting this compressive sensing algorithm to gene network

inference applications, the resulting List-SP and CaSPIAN do not

require the knowledge of all in-degrees of nodes in the network.

Instead, a somewhat tight upper bound suffices, which may be

chosen to be the largest reported degree of a hub gene. Hubs in

GRNs and protein-protein interactions may have degrees ranging

between 5 and 20, as discussed in [55]. If the value of k is chosen

slightly smaller than the maximum in-degree, the performance of

CaSPIAN does not deteriorate noticeably. On the other hand, a

highly overestimated value of k increases the number of false-

positives in the list-SP algorithm; however, the F-test embedded in

CaSPIAN reduces the number of false-positives. The effect of

different choices of k compared to the maximum in-degree of the

network is discussed in the next section as well as in the supporting

information.

Results and Discussion

We evaluated the performance of the proposed algorithms with

respect to the choice of different parameters such as the sparsity

level k, the significance value PF , the topology of network, the

noise level, and the time-point sampling method. In addition, we

compared the performance of these algorithms with that of other

causal inference algorithms.

In order to evaluate the effect of different parameters on the

performance of the algorithms, we employed synthetic (simulated)

networks. Synthetic networks have tightly controlled design

parameters, such as the maximum and minimum degree, degree

distribution, gene expressions’ dynamics, noise level, and sampling

frequency. Hence, they allow for accurate assessment of the effect

of different parameters on the performance of reverse engineering

methods.

On the other hand, synthetic network models usually lack a

number of complex features of biological networks that may be

hard to model or unknown to the designer. As a result, a fair

comparison of different reverse engineering methods require using

biological networks. Consequently, we used the IRMA network in

Saccharomyces cerevisiae [48], the human HeLa cell network, and the

SOS network of E. coli [49]) to compare CaSPIAN with other

known reverse engineering algorithms.

We also used IRMA and human HeLa cell networks to discuss

the effect of side-information on the performance of Algorithm 3.

In particular, we addressed the effect of employing a known correct

subnetwork on the performance of CaSPIAN. In addition, we

addressed the effect of using an incorrect subnetwork on the

performance of this algorithm.

In our comparisons, we used four standard evaluation measures,

‘‘sensitivity’’ (recall), ‘‘precision’’, ‘‘F -measure’’ (F -score, not to be

confused with the Granger F statistics) and ‘‘accuracy’’. These

measures are defined as P~
TP

TPzFP
, S~

TP

TPzFN
, F~2

P|S

PzS

and A~
TPzTN

TPzTNzFPzFN
, respectively; ‘‘TP’’ stands for the

number of true-positives, ‘‘FP’’ stands for the number of false-

positives, ‘‘TN’’ stands for the number of true-negatives, and

‘‘FN’’ stands for the number of false-negatives.

Influence of different parameters on the performance of
the algorithms

As described earlier, we used synthetic networks to evaluate the

performance of CaSPIAN with respect to different parameters.

The constructed synthetic networks follow a model representing a

modification of the Erdös-Rényi model with controlled degree

distributions and with additional features that allow its dynamics to

converge to a steady-state. A detailed description of the model,

which we subsequently refer to as the synthetic network, is given in

the supporting information.

Table 3. Algorithm 3: CaSPIAN given a known subnetwork.

Input: i[f1,2, . . . ,ng, Ai5G, fwj,lg, k[N, and PF

Output: Si5G

Initialization: Form WAi
and WG\(Ai|fgig) ; set y~wi,0{WAi

W{
Ai

wi,0 , S(0)
i ~1, and T (0)

i ~1

For k~1,2, . . . ,k do

. Run SP for vector y, sensing matrix WG\(Ai|fgig) , and sparsity k

. Form T (k)
i ~T (k{1)

i |f columns of WG\(Ai|fgig)recovered usingSPg

End

. Form Ri~fgi1 ,gi2 , . . .g

. Form WT i
using T (k)

i and set ri~y{WT i
W{
T i

y

For j~1,2, . . . , Rij j do

. Form WT i,j
and calculate ri,j~y{WT i,j

W{
T i,j

y

. Form the F-statistic using DDri DD and DDri,j DD

If the F-statistic is greater than the critical value corresponding to PF

Then set S(j)
i ~S(j{1)

i |fgij g

Else set S(j)
i ~S(j{1)

i

End

Return Si~S(DRi D)
i |Ai

The pseudocode corresponding to the CaSPIAN algorithm given a known subnetwork.
doi:10.1371/journal.pone.0090781.t003

Causal Compressive Sensing to Infer Gene Networks

PLOS ONE | www.plosone.org 6 March 2014 | Volume 9 | Issue 3 | e90781

k

The over-sampled regime with noise-free

expressions. We start by evaluating the performance of SP,

List-SP, and CaSPIAN for different values of PF , when the

number of time-points is larger than the number of genes in the

network. We randomly generated 200 synthetic networks com-

prising n~10 genes that are described with the accompanying

performance plots. We selected these parameters given that all the

biological networks analyzed in the subsequent sections will have a

number of nodes of this order. In addition, given that the number

of available time points for analysis of regulatory networks usually

does not exceed a dozen, larger networks are unlikely to be

inferred with any of the existing methods.

Figures S1 and S5 in Appendix S1 illustrate the average

sensitivity of different algorithms with respect to m (the length of

the gene time-series profiles), for different values of k and for two

different distributions used for forming the gene expressions (as

detailed in the supporting information). We ran CaSPIAN with

D~2 (one time unit lag) and for three significance values:

PF ~10{2, PF ~10{9, and PF ~10{16. These widely different

significance values allow us to evaluate the effect of PF on the

performance of the method. As can be seen, the sensitivity of List-

SP is higher than SP and CaSPIAN. This is a consequence of the

fact that List-SP is specifically designed to increase the TP rate of

SP, which consequently increases sensitivity. On the other hand,

CaSPIAN uses an F-test to reduce the false-positive rate of List-SP,

which may in turn reduce the sensitivity due to an increase in the

false-negative rate. The sensitivity of CaSPIAN improves given

more time-points (i.e., larger m), as expected. Another important

observation is that the sensitivity of List-SP improves when

increasing k. This is due to the iterative structure of List-SP: for

any K§2, the output of List-SP for k~K is included in the output

of List-SP for k~Kz1. When m is sufficiently large (roughly

m§14) and kwdmax, the sensitivity of CaSPIAN is not

significantly affected by the choice of k. Therefore, one can

choose k based on a rough estimate of the largest in-degree of the

network.

Figures S2 and S6 in Appendix S1 illustrate the average

precision of our algorithms with respect to m. The precision of

CaSPIAN is significantly better than the precision of List-SP and

SP, even when a relatively large value of PF ~10{2 is chosen. The

precision of CaSPIAN increases as PF decreases, which is to be

expected as a smaller value of PF implies a stricter condition for

the F-test. However, choosing a very small value for PF decreases

the sensitivity of CaSPIAN. Similar to the case of sensitivity

analysis, it may be observed that for sufficiently large values of m
(e.g., m§14) the precision of CaSPIAN is not significantly affected

by the choice of k.

Figures S3 and S7 in Appendix S1 illustrate the average

accuracy, while Figures S4 and S8 in Appendix S1 show the

average F -measure of our algorithms with respect to m. The

accuracy and F -measure of CaSPIAN are significantly better than

those of SP and List-SP, and the accuracy and F -measure of

CaSPIAN are not significantly affected by the choice of k provided

that m is sufficiently large.

The under-sampled regime with noise-free

expressions. We also evaluated the performance of the

CaSPIAN algorithm when the number of genes is larger than

the number of available time-points. Since CaSPIAN is based on a

compressive sensing approach, in principle one may use this

method when the number of genes is significantly larger than the

number of measurements. The impediment of direct use of

CaSPIAN on large biological networks is associated with noise in

the measurements and the sampling irregularities of experimental

data.

We evaluated CaSPIAN and related algorithms on 500
randomly generated networks comprising n~100 genes, and with

expression profiles of size m~75, as described in the supporting

information. Figures S9 and S11 in Appendix S1 show the average

sensitivity, precision, accuracy and F -measure of SP, List-SP and

CaSPIAN versus the sparsity level k, each corresponding to a

different degree distribution. The standard deviations correspond-

ing to these measures are provided in separate plots, as shown in

Figures S10 and S12 in Appendix S1.

From Figure S9 in Appendix S1, we see that in the absence of

noise, List-SP and CaSPIAN outperform SP; in particular, for k§5,

the sensitivity of List-SP and CaSPIAN is at least 85%, and it grows

with k. The high sensitivities of these two algorithms imply that at

least 85% of the directed edges in the network were detected for

k§5. Note that the maximum in-degree of the simulated network

was set to dmax~5. As k increases beyond k~dmax, the number of

false-negatives decreases, and consequently the sensitivity increases.

One can see that both SP and List-SP have low precision when

compared to the CaSPIAN algorithm, as the latter applies a

Granger-causality test that significantly reduces the number of false-

positives. One measure that can capture the joint effects of

sensitivity and precision is the F -measure, which we analyzed in

addition to sensitivity and precision. As for the case of the

oversampled regime, a rough estimate of dmax can be used as a

bound on k even in the under-sampled regime without significantly

affecting the F -measure of CaSPIAN. Similar results are shown in

Figure S11 in Appendix S1. In particular, all values of k [f4,5,6,7g
result in nearly identical F -measures for the CaSPIAN algorithm in

the under-sampled regime. Note that the networks randomly

generated in Figure S11 in Appendix S1 have a maximum in-degree

of dmax~6.

The results discussed up to this point were based on uniform

sampling strategies for the synthetic network, i.e., on datasets

obtained by measuring gene expressions at uniformly spaced

times. Since in some available datasets measurements were

generated using non-uniformly spaced time-points, we examined

how the performance of our greedy algorithms is affected by the

sampling strategy. For this purpose, 500 networks of n~100 genes

were generated randomly as described in the supporting informa-

tion section. For each network, 225 time-points were generated;

subsequently, for each network, 75 measurements out of the

existing 225 measurements were chosen uniformly at random.

This is equivalent to a nonuniform sampling of the original time-

points with an average rate of 1=3. Figures S13 and S14 in

Appendix S1 show the effect of nonuniform sampling. As can be

seen in these figures, the performance of all the algorithms

significantly deteriorates, which suggests that uniform sampling

should be practiced in place of nonuniform sampling whenever

possible, given that in the model delays are assumed to be regular.

The under-sampled and over-sampled regimes with noisy

expressions. In order to evaluate the performance of the

proposed algorithms in the presence of noise, we considered 200
randomly generated networks of n~100 genes. White Gaussian

noise with a variance equal to 5% of the average signal power was

added to all gene expression profiles. The construction of the

underlying networks is discussed in Appendix S1.

Figures S15–S22 in Appendix S1 illustrate the mean and

standard deviation of the proposed algorithms for different values

of k [f4,5,6,7g versus the number of time points m; a range of

20ƒmƒ180 was considered for the number of time points to

include both the under-sampled and over-sampled regimes. As can

be seen in these figures, List-SP has a higher sensitivity compared

to that of the other algorithms; however, CaSPIAN with

PF ~10{2 closely follows the sensitivity of List-SP. On the other

Causal Compressive Sensing to Infer Gene Networks

PLOS ONE | www.plosone.org 7 March 2014 | Volume 9 | Issue 3 | e90781

hand, CaSPIAN with PF ~10{9 and PF ~10{16 has much

smaller sensitivity compared to List-SP.

The opposite behavior can be observed with respect to the

precision of these algorithms: the precision of CaSPIAN with

PF ~10{9 and PF ~10{16 is significantly better than the

precision of CaSPIAN with PF ~10{2, SP, and List-SP. Figures

S15–S22 in Appendix S1 show that CaSPIAN has a high

accuracy, and the accuracy is not significantly affected by the

choice of PF . In addition, it can be observed that CaSPIAN with

PF ~10{2 outperforms SP and List-SP with regards to the F -

measure in both the under-sampled (i.e. mv100) and the over-

sampled (mw100) regimes. On the other hand, for PF ~10{9 and

PF ~10{16, the F -measure increases significantly as m increases.

Next, we focus on the performance of these algorithms in the

under-sampled regime in the presence of white Gaussian noise.

Figures S23 and S24 in Appendix S1 demonstrate the mean and

standard deviation of the sensitivity, precision, accuracy and F -

measure of SP, List-SP, and CaSPIAN as a function of the ratio of

the noise variance and the average signal power. As expected, the

presence of noise deteriorates the performance of all the

algorithms; in particular, since CaSPIAN rejects some recovered

genes through an F-test, in the presence of noise this may cause

some correctly identified edges recovered by List-SP to be rejected.

This effect is more prominent for smaller values of PF . Although

the presence of noise increases the number of false-negatives in

CaSPIAN, it is important to note that the precision of CaSPIAN

remains high. In particular, for PF ~10{9 and PF ~10{16, a

precision higher than 90% can be maintained for the chosen noise

energy.

These findings demonstrate that changing the significance value

PF results in a trade-off between sensitivity and precision when

noise is present in the system: higher sensitivity may be achieved

by choosing a larger value for PF – this is of importance for

applications where reducing the false-negative rate is more

important than reducing the false-positive rate. On the other

hand, by choosing small values for PF , one may be able to detect

true-positives with very high reliability, while missing some existing

edges; such choices of PF are particularly useful when finding

correct edges is more important than finding all edges. On the other

hand, when both sensitivity and precision are equally important,

one should use the F -measure to evaluate the performance. In this

case, PF ~10{2 outperforms other choices of PF , which confirms

that a range 0:01ƒPF ƒ0:05 is the most appropriate choice in

noisy scenarios, as previously suggested in the literature.

One can also take advantage of the edges recovered using

different values of PF by assigning a confidence level to each edge

depending on the PF value used to recover that edge. For

example, when using the three values chosen for PF in this section,

the edges recovered using PF ~10{16 have the highest confidence

level; on the other hand, the edges that were recovered for the first

time using PF ~10{9 (i.e. they were not present among the edges

recovered using PF ~10{16) have the second highest confidence

level, while the edges recovered for the first time using PF ~10{2

have the lowest confidence level among the others.

Comparison of CaSPIAN with other reverse-engineering
algorithms

As discussed at the beginning of this section, we used in vivo

networks to compare the performance of CaSPIAN with other

reverse-engineering algorithms. The results are discussed in what

follows.

The IRMA network in Saccharomyces cerevisiae. We

focus next on a network model that we believe to be a benchmark

standard, given that it shares many features of synthetic networks –

such as precise design parameters and controllability – while being

part of a biological network in a living organism. The network in

question is the IRMA (in vivo reverse-engineering and modeling

assessment) network, a synthetic network of five genes, CBF1,

GAL4, SWI5, GAL80, ASH1, embedded in Saccharomyces cerevisiae

(yeast). The IRMA network has a fixed topology, and is

constructed in such a way that its constituent genes are not

regulated by other yeast genes. This network was introduced in

[48].

For our analysis, we used the time-series gene expressions of

‘‘switch-on’’ experiments (shifting cells from glucose to galactose),

measured via quantitative real-time PCR (q-PCR) every 20
minutes for up to 5 hours, within five experiments. The

performance of two additional algorithms utilizing sparsity and

causality, TSNI [56] and BANJO [57], were evaluated in [8] using

the same dataset. TSNI is an algorithm based on modeling

networks via ordinary differential equations (ODE), while BANJO

is an algorithm based on Bayesian networks. The reconstructed

networks corresponding to these algorithms are depicted in

Figure 1.

We first ran CaSPIAN (with PF ~0:05, D~2, k~3) on the

time-series dataset, which consisted of the average of the gene

expressions of the five experiments. As can be seen in Figure 1,

CaSPIAN (P~0:67, S~0:5, F~0:57) outperforms BANJO

(P~0:3, S~0:25, 0:27); however, its precision and F -measure

are not as good as that of the ODE-based algorithm: TSNI

(P~0:8, S~0:5, F~0:62). We next ran CaSPIAN using the

combination of the gene expressions of the five experiments,

employing the method described in the section ‘‘Forming gene

expression profiles’’. As can be seen in Figure 1, CaSPIAN with

D~2 and k~3 matches the performance of TSNI, while it

outperforms TSNI with D~3 and k~3 (P~0:83, S~0:625,

F~0:71). This shows that using data averaged over different

experiments causes a significant loss in the available information

and deteriorates the performance of CaSPIAN. On the other

hand, if one uses all the expressions to form profiles as previously

described, the performance of CaSPIAN significantly improves.

Note that CaSPIAN outperforms TSNI, in spite of the fact that

TSNI uses a cumbersome and complicated procedure including a

cubic smoothing spline filter and Principle Component Analysis

(PCA) for dimensionality reduction.

As a concluding remark, we point out the interesting fact that

the union of edges discovered by CaSPIAN and TSNI includes 7
out of 8 correct edges of the IRMA network and two false

positives. This suggests an approach that we believe to be

important for future investigation: fusing the outputs of a number

of methods tuned to operate under different modeling assump-

tions. The topic of network fusion is beyond the scope of this

paper.

A HeLa cell line network. In order to compare the

performance of CaSPIAN with that of other algorithms on

experimental biological data, we used a network consisting of 9
HeLa cell genes. The network corresponding to this set of genes

was reported in [58] and was used in the literature as a benchmark

for evaluating the performance of different algorithms such as

CNET [58], Group Lasso (grpLasso) [59] and truncating adaptive

Lasso (TAlasso) [2]. CNET is an algorithm for reverse engineering

of causal gene interactions using microarray time series data; this

algorithm tries to find the ‘‘best’’ directed graph among all the

possible graphs, where the quality of a candidate graph is

determined using a specific scoring function. On the other hand,

grpLasso and TAlasso are penalty-based algorithms that rely on ‘1

minimization. The grpLasso algorithm infers causal interactions

Causal Compressive Sensing to Infer Gene Networks

PLOS ONE | www.plosone.org 8 March 2014 | Volume 9 | Issue 3 | e90781

by evaluating the effect of different gene expressions averaged over

different time-lags and therefore does not take advantage of all the

information available in the time-series data. On the other hand,

TAlasso does not suffer from the loss of information in grpLasso

and employs an additional truncation method to simplify the

model. However, as discussed in earlier sections, it suffers from the

shortcomings intrinsic to ‘1 minimization based Lasso approaches.

We used the expression data of HeLa cells from the third

experiment performed in [60], consisting of 47 time-points. For

each algorithm, we used the reconstructed graphs reported in the

corresponding papers (as pointed out in Footnote 1 of [2], there

appear to be some errors in the reported results of [59]; therefore,

we used the corrected results of [2]). Since in [2] three time lags

were used for TAlasso, we also used three time-lags in CaSPIAN

(or equivalently, we set D~4). Since the true in-degree of the

network is 5, we used k~7 as a rough upper bound. In addition,

we set PF ~0:05 as a widely accepted significance value for F -

tests. The results are shown in Figure 2, along with the precision,

sensitivity and accuracy for each algorithm.

As can be seen in this figure, CaSPIAN outperforms all the

other algorithms with respect to all three parameters: precision,

sensitivity and F -measure. Note that this is in spite of the fact that

CNET is a search-based algorithm and performs an extensive

search to find the best graph. As a result, not only does CaSPIAN

provide higher efficiency than the other algorithms, but it also

outperforms them in terms of recovering the gene regulatory

network. It is again interesting to point out that CaSPIAN and

CNET tend to discover almost disjoint sets of true-positives, which

suggests combining the methods as described for the IRMA

network.

The SOS genes in E. coli. Our analysis of the IRMA and

HeLA networks illustrated the performance of CaSPIAN and

other causal inference algorithms for the case when the number of

time-points was larger than the number of genes (corresponding to

the over-sampled regime). As CaSPIAN is based on compressive

sensing methods which allow for inference in the under-sampled

regime, and as most inference problems operate in the under-

sampled regime, it is instructive to test the performance of the

method on a larger network. The performance of CaSPIAN is

contrasted to that of the Lasso and truncating Lasso (Tlasso) [2].

We used the gene expression data of E. coli from the Many

Microbe Microarrays Database (M3D) [61]. To evaluate the

performance of CaSPIAN, we focused on the SOS subnetwork.

The main documented genes in this subnetwork are dinI, lexA, recA,

recF, rpoD, rpoH, rpoS, ssb, umuC/D, as described in [49]. We denote

these genes by GSOS . The known links in the SOS network of E.

coli are available in Table S4 of [22]; for completeness, and as a

reference for our comparisons, we provided this information in

Appendix S2. The M3D database contained the expression levels

of 4292 genes from mD~22 experiments with at least D~3 time-

points. The number of time-points in these 22 experiments was at

least 3 and at most 5. Using the method for forming gene

expression lists outlined in the previous section, we combined the

data of the 22 experiments producing profiles of length m~72. In

order to evaluate the performance of these algorithms in the under-

sampled regime, we randomly selected a set of 90 genes from the

4283 genes other than GSOS and formed a set of n~100 genes as

Figure 1. The gene regulatory network corresponding to the IRMA network, obtained using different algorithms. Solid arrows denote
true-positives and dashed arrows denote false-positives. True-negatives and false-negatives are not depicted in the figures in order to avoid
cluttering; however, they can be easily obtained by comparing the true regulatory network and the inferred networks. Precision is denoted by P,
sensitivity by S, accuracy by A, and the F -measure by F .
doi:10.1371/journal.pone.0090781.g001

Figure 2. A gene regulatory network of HeLa cell genes, reconstructed using different causal inference algorithms. Solid arrows
denote true-positives and dashed arrows denote false-positives. True-negatives and false-negatives are not depicted in the figures to avoid cluttering;
however, they can be easily obtained by comparing the known regulatory network and the inferred network. Precision is denoted by P, sensitivity by
S, accuracy by A and the F -measure by F .
doi:10.1371/journal.pone.0090781.g002

Causal Compressive Sensing to Infer Gene Networks

PLOS ONE | www.plosone.org 9 March 2014 | Volume 9 | Issue 3 | e90781

the union of this set and GSOS . We repeated this procedure 10
times: we ran List-SP, CaSPIAN, Lasso, and TLasso on 10 sets,

each containing n~100 genes, formed as the union of GSOS and a

set of 90 other genes chosen independently and uniformly at

random. Executing each algorithm more than once was motivated

by the idea of introducing the multiplicity ratio (MR) as a measure

of confidence for the recovered links. MR represents the number

of runs of the algorithm that produced a given correct edge,

divided by the total number of runs of the algorithm.

We ran List-SP (Algorithm 1) for k~4,5,6 using the gene

expression profiles formed according to the method of the previous

section, and with D~2. Appendix S2 provides the tables of MRs

for the recovered directed edges corresponding to k~4, k~5, and

k~6. Figure 3 shows the network reconstructed using List-SP

(with k~5 and MR at least 0:2). Comparing this figure with the

results in [49] reveals that List-SP is capable of correctly

identifying 19 edges in the SOS network (note that there exists a

number of feedback loops between two vertices that are counted as

two separate edges). However, List-SP misses some edges in the

network due to the choice of k and noise in the expression data.

Using a larger value of k for List-SP allows us to find more existing

links in the network, but the number of false-positives increases as

well, which is expected (see tables in Appendix S2). We ran

CaSPIAN for 5 different values of PF on the generated 10 sets of

genes. The corresponding MR values of the links found using

CaSPIAN are shown in tables in Appendix S2. The reconstructed

network for PF ~10{2 is shown in Figure 3. It is important to note

that all the links found using CaSPIAN are correct links (i.e., the

regulatory relationships have been reported in the literature).

We ran Lasso and Tlasso on the same set of genes, both of

which are combinations of Granger causality with different

versions of a Lasso penalty (the codes for these algorithms are

available at http://www.biostat.washington.edu/,ashojaie). We

used the error based method for choosing the regularization

coefficient. In [2], the parameter a was chosen between 0:05
and 0:2, and it was stated that different values of a do not affect the

performance of the algorithm significantly. As a result, we picked

a~0:1 (the default value in the algorithm) and a~0:2. For a

detailed description of the error based method and the definition

of a, see the original paper [2]. Default values were used for all

other parameters in these two algorithms. Lasso was unable to find

even a single correct link between the SOS genes; similarly, Tlasso

failed to find any links among the genes for a~0:1. On the other

hand, for a~0:2, it correctly identified a link from umuC/D to lexA

with MR equal to 0:9; however, no other link was found using this

method. Comparing these results with List-SP and CaSPIAN

reveals that both of these algorithms outperform Lasso and Tlasso

in the undersampled regime. As another illustrative example,

CaSPIAN with PF ~10{2 found 13 true positives and 0 false-

positives, while Tlasso only found one true positive.

CaSPIAN with scaffolding subnetworks
We examined the performance of CaSPIAN assuming that

some directed edges in the network are known in advance

(Algorithm 3). In particular, we evaluated the improvement/

change in the performance of CaSPIAN given that a correct

subnetwork is known. In addition, we assessed the degradation/

change in the performance of CaSPIAN given that an incorrect

subnetwork is assumed. Since the exact regulatory network of

IRMA is known, in our study we mainly focus on the IRMA

network.

Application to the IRMA network. In order to evaluate the

performance of Algorithm 3, we used the averaged expressions of

the genes in the IRMA network corresponding to the ‘‘switch-on’’

experiments. We applied Algorithm 3 with parameters D~2 and

k~3 to different known subnetworks consisting of 1, 2, and 3
correct edges. Note that we used averaged data and suboptimal

CaSPIAN parameters, as the optimal performance of CaSPIAN

may not be further improved for the IRMA network given prior

information. The results are illustrated in Figure 4. As can be seen

in this figure, knowing even one correct edge can improve the

performance of CaSPIAN significantly, although in these and most

other tests we performed, the number of false positives remained

unchanged. As an illustrative example, CaSPIAN without side-

information recovers a false-positive edge from SWI5 to GAL4.

However, if the information that an edge exists from CBF1 to

GAL4 is provided a priori, CaSPIAN correctly concludes that no

edge exists from SWI5 to GAL4.

In order to address the second question, we considered 9
different incorrect edges as a given subnetwork, and applied

Algorithm 3 (D~2 and k~3) to averaged IRMA expressions. As

before, we used suboptimal performance parameters in order to be

able to compare the drawbacks/advantages of using incorrect/

correct side information, as compared to using no side informa-

tion, given one and the same dataset. The results are shown in

Figure 5. When an incorrect subnetwork is provided, Algorithm 3

forces CaSPIAN to build a network around this structure. Still,

when the wrong side-information represents an edge outside the

true network, most correctly identified edges remain accurate, but

a large number of new false-positives arise.

Figure 3. The SOS network reconstructed using Lasso, TLasso, Algorithm 1 (List-SP) and CaSPIAN. Black solid arrows correspond to true
positives and red dashed arrows correspond to false-positives. The numbers above edges describe their multiplicity ratios (MRs); in order to avoid
cluttering, we did not plot the MRs for the results of Algorithm 1. Note that only links with MR at least 0:2 are shown. Precision is denoted by P,
sensitivity by S, accuracy by A and the F -measure by F .
doi:10.1371/journal.pone.0090781.g003

Causal Compressive Sensing to Infer Gene Networks

PLOS ONE | www.plosone.org 10 March 2014 | Volume 9 | Issue 3 | e90781

Figure 4. The network corresponding to IRMA obtained by applying Algorithm 3 to various subnetworks. Parameters of this algorithm
were chosen as D~2 and k~3 and average gene expressions were used. Solid arrows denote true-positives and dashed arrows denote false-
positives. Precision is denoted by P, sensitivity by S, accuracy by A, and the F -measure by F .
doi:10.1371/journal.pone.0090781.g004

Figure 5. The network corresponding to IRMA obtained by applying Algorithm 3 to various incorrect subnetworks. Parameters of this
algorithm were chosen as D~2 and k~3 and average gene expressions were used. Solid arrows denote true-positives and dashed arrows denote
false-positives. Green solid arrows correspond to the incorrect edges in the subnetwork. Precision is denoted by P, sensitivity is denoted by S,
accuracy by A, and the F -measure by F .
doi:10.1371/journal.pone.0090781.g005

Causal Compressive Sensing to Infer Gene Networks

PLOS ONE | www.plosone.org 11 March 2014 | Volume 9 | Issue 3 | e90781

Application to HeLa cell genes. Since the exact regulatory

network of HeLa is not completely known, we only address the first

question raised in the introduction of the section.

Figure 6 shows the results of Algorithm 3 applied to different

known subnetworks consisting of 1, 2, 3, and 4 edges. As can be

seen, knowing a subnetwork consisting of 4 edges suffices to

achieve sensitivity equal to S~1. Also, it is important to note that

the number of false-positive edges corresponding to the genes

claimed to influence CDKN3 cannot be reduced, since the in-

degree of this gene in the known regulatory network is 0.

Therefore, the edges found using CaSPIAN for this target gene do

not change given the different subnetworks.

Conclusions

The CaSPIAN approach for network inference represents a new

attempt to connect the fields of compressive sensing, causal

inference and bioinformatics. Compressive sensing (CS) is a

technique for sampling and recovering sparse signals using

optimization and/or greedy approaches. In spite of its widespread

applications in different areas such as signal processing, image and

video processing, communications, etc., its utility has not yet been

fully explored in the field of bioinformatics and gene network

inference. Although [42] and [43] employ the CS framework to

infer gene networks, there are crucial differences between

CaSPIAN and the algorithms discussed in these papers. First,

unlike CaSPIAN, none of these algorithms are capable of inferring

causal (i.e. directed) edges in the gene network. Second, CaSPIAN

is an unsupervised learning algorithm that uses CS as the core of

its approach; however, [43] introduced an approach which

employs CS only as a preprocessing step and combines the

obtained results with extensive prior biological information to infer

gene networks using a supervised learning algorithm performed by

Adaboost. However, due to the susceptibility of Adaboost to

random classification noise [45], application of such booster

algorithms in biological network inference is limited. Finally,

CaSPIAN employs a low-complexity greedy CS approach, which

significantly reduces its computational complexity compared to the

‘1 minimization approach used in [43].

Another line of work explored in the literature integrates the

sparsity of gene networks using some version of the LASSO

penalty [2,36–38]. There are two main difficulties associated with

the LASSO approach. First, such methods require performing

high dimensional ‘1 optimization, which has a high computational

complexity compared to greedy CS-based algorithms such as

CaSPIAN. In addition, in order to enforce the sparsity criterion,

these approaches require a proper choice for the coefficient of the

regularization term. Unlike CaSPIAN, in which the parameter k is

directly related to the sparsity of the network (i.e. the in degree of

the nodes), the regularization coefficient in the LASSO penalty

does not directly correspond to the sparsity of the network and

therefore is usually chosen using some heuristics or by performing

optimization, which increase the complexity of these algorithms

without providing provable performance guarantees. On the other

hand, by using CaSPIAN, one is able to directly employ

information about the degree of the nodes in the network; as we

showed in the results, if such information is not available, in most

cases an upper bound on the in-degree is sufficient.

CaSPIAN is a reverse engineering algorithm that is based on the

list-SP algorithm: a low-complexity greedy search method, which

scans the expression profiles for low-dimensional subspaces.

Although the computational advantage of the method may not

be of great relevance for current small network inference

problems, with the ever-increasing volumes of data, this issue will

become important in the near future. Furthermore, CaSPIAN

does not require fine parameter tuning or supervised learning

methods as was shown using both synthetic and real biological

data. In addition, in Algorithm 3 we provided a version of

CaSPIAN that incorporates biological side-information in the

form of scaffolding subnetworks of accurate edges. Our analysis

shows that correct edges may significantly improve the perfor-

mance of CaSPIAN. Given that wrong side-information may

severely deteriorate the performance of the inference methods, it

may be advisable to use prior information with caution - for

example, only if the links were experimentally verified using

different techniques by at least several different research labs.

Figure 6. The HeLA network inferred by CaSPIAN with D = 4 and k = 7. Solid arrows denote true-positives and dashed arrows denote false-
positives. Precision is denoted by P, sensitivity is denoted by S, accuracy by A, and the F -measure by F .
doi:10.1371/journal.pone.0090781.g006

Causal Compressive Sensing to Infer Gene Networks

PLOS ONE | www.plosone.org 12 March 2014 | Volume 9 | Issue 3 | e90781

We also evaluated the influence of different parameters such as

network topology, degree distribution, size, number of measure-

ments, sampling method, noise, and the value of k and PF on the

performance of the proposed algorithms using synthetic (simulat-

ed) networks. In particular, we showed that there exists a tradeoff

between the sensitivity and precision of CaSPIAN that is mainly

controlled by the choice of PF . As a result, in applications in which

finding a few highly reliable edges is of main interest, one can

choose the value of PF to be small; however, in applications where

both precision and sensitivity are of interest, a value of PF between

0:05 and 0:01 is more appropriate. Another approach to take

advantage of this tradeoff is to assign a reliability score to each

edge based on the smallest value of PF for which CaSPIAN

recovered that edge.

In addition, we compared the performance of CaSPIAN with

that of other algorithms using real biological (in vivo) networks and

showed that in many cases CaSPIAN outperforms other

algorithms in spite of their extensive use of resources and side-

information and their high complexity. Although we provided

extensive comparisons with other models and illustrated that

under almost all performance criteria used by the reverse

engineering community, CaSPIAN outperforms these methods,

we cannot argue that there exists one ‘‘optimal approach’’ for all

problems. As an example, we did not test the performance criteria

used in the DREAM2 challenge, where teams were asked to

provide rank-ordered list of edges believed to exist in the network,

according to their reliability. Those lists were truncated to top-T
candidates, for different values of T , and tested for accuracy and

precision. In a different approach, precision and accuracy were

calculated at the point of the n-th correct prediction. Each

performance criteria is bound to give slightly, if not vastly different

answers. It would therefore be of interest to investigate optimal

fusion strategies of different methods based on different evaluation

criteria in order to recognize the strengths and weaknesses of

current methods and fully utilize them in the reverse engineering

process. For example, combining CaSPIAN with reverse engi-

neering algorithms based on a completely different framework,

such as Bayesian networks or differential equations, may result in a

method that can outperform each individual algorithm in a noisy,

non uniformly under-sampled regime.

Availability
The implementation of these algorithms in Matlab will be

offered upon request. Please contact the following email address:

emad2@illinois.edu.

Supporting Information

Appendix S1 CaSPIAN applied to synthetic networks.

(PDF)

Appendix S2 Tables of multiplicity ratios (MRs) for the
E. coli SOS network.

(PDF)

Acknowledgments

The authors would like to thank Mo Deng for his contribution to the initial

development of some of the ideas and running some preliminary

simulations. Those preliminary results were presented at the Statistical

Signal Processing (SSP) Workshop, Ann Arbor, 2012 [62].

Author Contributions

Conceived and designed the experiments: AE OM. Performed the

experiments: AE. Analyzed the data: AE OM. Contributed reagents/

materials/analysis tools: AE. Wrote the paper: AE OM.

References

1. Rao A, Hero AO, States DJ, Engel JD (2008) Using directed information to

build biologically relevant inuence networks. J Bioinfo Comput Biol 6: 493–519.

2. Shojaie A, Michailidis G (2010) Discovering graphical granger causality using

the truncating lasso penalty. Bioinformatics 26: i517–i523.

3. Stolovitzky G, Prill RJ, Califano A (2009) Lessons from the dream2 challenges.

Annals of the New York Academy of Sciences 1158: 159–195.

4. Sima C, Hua J, Jung S (2009) Inference of gene regulatory networks using time-

series data: a survey. Curr Genomics 10: 416–429.

5. Pearl J (2000) Causality: models, reasoning and inference, volume 29.

Cambridge Univ Press.

6. Xu M, Zhu M, Zhang LX (2008) A stable iterative method for refining

discriminative gene clusters. BMC Genomics 9(Suppl 2): S18.

7. Friedman N, Linial M, Nachman I, Peer D (2000) Using bayesian network to

analyze expression data. J Comput Biol 7: 601–620.

8. de Jong H (2002) Modeling and simulation of genetic regulatory systems: a

literature review. J Comput Biol 9: 67–103.

9. Husmeier D (2003) Sensitivity and specificity of inferring genetic regulatory

interactions from microarray experiments with dynamic bayesian networks.
Bioinformatics 19: 2271–2282.

10. Perrin BE, Ralaivola L, Mazurie A, Bottani S, Mallet J, et al. (2003) Gene
networks inference using dynamic bayesian networks. Bioinformatics 19: ii138–

ii148.

11. Zou M, Conzen SD (2005) A new dynamic bayesian network (dbn) approach for

identifying gene regulatory networks from time course microarray data.

Bioinformatics 21: 71–79.

12. Kauffman S (1969) Homeostasis and differentiation in random genetic control
networks. Nature 224: 177–178.

13. Liu W, Lähdesmäk H, Dougherty E, Shmulevich I (2008) Inference of boolean
networks using sensitivity regularization. EURASIP J Bioinform Syst Biol 2008:

780541.

14. Chen T, He HL, Church GM (1999) Modeling gene expression with differential

equations. Pac Symp Biocomput 4: 29–40.

15. Samad HE, Khammash M, Petzold L, Gillespie D (2005) Stochastic modelling

of gene regulatory networks. Int J Robust Nonlinear Control 15: 691–711.

16. Chen BS, Chang CH, Wang YC, Wu CH, Lee HC (2011) Robust model

matching design methodology for a stochastic synthetic gene network. Math

Biosci 230: 23–36.

17. Ruklisa D, Brazma A, Viksna J (2005) Reconstruction of gene regulatory

networks under the finite state linear model. Genome inform 16: 225–236.

18. Laubenbacher R, Stigler B (2004) A computational algebra approach to the

reverse engineering of gene regulatory networks. J Theor Biol 229: 523–537.

19. Dingel J, Milenkovic O (2009) List-decoding methods for inferring polynomials

in finite dynamical gene network models. Bioinformatics 25: 1686–1693.

20. Butte A, Kohane I (2000) Mutual information relevance networks: functional

genomic clustering using pairwise entropy measurements. Pac Symp Biocomp 5:

415–426.

21. Margolin A, Nemenman I, Basso K, Wiggins C, Stolovitzky G, et al. (2006)

Aracne: an algorithm for the reconstruction of gene regulatory networks in a

mammalian cellular context. BMC Bioinformatics 7: S7.

22. Dougherty J, Tabus I, Astola J (2008) Inference of gene regulatory networks

based on a universal minimum description length. EURASIP J Bioinform Syst

Biol 8: 1–11.

23. Meyer PE, Lafitte F, Bontempi G (2008) minet: A r/bioconductor package for

inferring large transcriptional networks using mutual information. BMC

Bioinformatics 9: 461.

24. Liang K, Wang X (2008) Gene regulatory network reconstruction using

conditional mutual information. EURASIP J Bioinform Syst Biol 2008: 253894.

25. Zhao W, Serpendin E, R DE (2008) Inferring connectivity of genetic regulatory

networks using information-theoretic criteria. IEEE/ACM Trans Comput Biol

Bioinform 5: 262–274.

26. Watkinson J, Liang KC, Wang X, Zheng T, Anastassiou D (2009) Inference of

regulatory gene interactions from expression data using three-way mutual

information. Ann N Y Acad Sci 1158: 302–313.

27. Altay G, Emmert-Streib F (2011) Structural inuence of gene networks on their

inference: analysis of c3net. Biol Direct 6: 31.

28. Werhli A, Grzegorczyk M, Husmeier D (2006) Comparative evaluation of

reverse engineering gene regulatory networks with relevance networks, graphical

gaussian models and bayesian networks. Bioinformatics 22: 2523–2531.

29. Bansal M, Belcastro V, Ambesi-Impiombato A, di Bernardo D (2007) How to

infer gene networks from expression profiles. Mol Syst Biol 3: 78.

30. Margolin A, Califano A (2007) Theory and limitations of genetic network

inference from microarray data. Ann N Y Acad Sci 1115: 51–72.

Causal Compressive Sensing to Infer Gene Networks

PLOS ONE | www.plosone.org 13 March 2014 | Volume 9 | Issue 3 | e90781

emad2@illinois.edu

31. Olsen C, Meyer P, Bontempi G (2009) On the impact of entropy estimator in

transcriptional regulatory network inference. EURASIP J Bioinform Syst Biol
2009: 308959.

32. de Smet K Rand Marchal (2010) Advantages and limitations of current network

inference methods. Nat Rev Microbiol 8: 717–729.
33. Penfold CA, Wild DL (2011) How to infer gene networks from expression

profiles, revisited. Interface Focus 1: 857–870.
34. Emmert-Streib F, Glazko G, Gökmen A, De Matos Simoes R (2012) Statistical

inference and reverse engineering of gene regulatory networks from observa-

tional expression data. Front Genet 3.
35. Marbach D, Costello JC, Kuffner R, Vega NM, Prill RJ, et al. (2012) Wisdom of

crowds for robust gene network inference. Nature Methods 9: 796–804.
36. Fujita A, Sato JR, Garay-Malpartida HM, Yamaguchi R, Miyano S, et al. (2007)

Modeling gene expression regulatory networks with the sparse vector
autoregressive model. BMC Systems Biol 1: 39.

37. Mukhopadhyay N, Chatterjee S (2007) Causality and pathway search in

microarray time series experiment. Bioinformatics 23: 442–449.
38. Cai X, Bazerque JA, Giannakis GB (2013) Inference of gene regulatory networks

with sparse structural equation models exploiting genetic perturbations. PLOS
Computational Biology 9: e1003068.

39. Tibshirani R (1996) Regression shrinkage and selection via the lasso. J R Statist

Soc B 58: 267–288.
40. Donoho DL (2006) Compressed sensing. IEEE Trans Inf Theory 52: 1289–

1306.
41. Candès EJ, Wakin MB (2008) An introduction to compressive sampling. IEEE

Signal Process Magazine 25: 21–30.
42. Hang X, Dai W, Wu FX (2009) Subspace pursuit for gene profile classification.

In: IEEE Int. Workshop on Genomic Signal Processing and Statistics

(GENSIPS). pp. 1–4.
43. Prat Y, Fromer M, Linial N, Linial M (2007) Recovering key biological

constituents through sparse representation of gene expression. Bioinformatics 27:
655–661.

44. Wright J, Ma Y, Mairal J, Sapiro G, Huang T, et al. (2010) Sparse

representations for computer vision and pattern recognition. Proc IEEE 98:
1031–1044.

45. Long PM, Servedio RA (2010) Random classification noise defeats all convex
potential boosters. Mach Learn 78: 287–304.

46. Ewens WJ, Grant GR (2004) Statistical Methods in Bioinformatics: An
Introduction (Statistics for Biology and Health). New York: Springer Science

press, 2nd edition.

47. Dai W, Milenkovic O (2009) Subspace pursuit for compressive sensing signal

reconstruction. IEEE Trans Inf Theory 55: 2230–2249.
48. Cantone I, Marucci L, Iorio F, Ricci MA, Belcastro V, et al. (2009) A yeast

synthetic network for in vivo assessment of reverse-engineering and modeling

approaches. Cell 137: 172–181.
49. Gardner TS, di Bernardo D, Lorenz D, Collins JJ (2003) Inferring genetic

networks and identifying compound mode of action via expression profiling.
Science 301: 102–105.

50. Van Den Berg E, Friedlander MP (2008) Probing the pareto frontier for basis

pursuit solutions. SIAM J Sci Comput 31: 890–912.
51. Becker S, Bobin J, Candès E (2011) Nesta: A fast and accurate first-order

method for sparse recovery. SIAM J Imaging Sci 4: 1–39.
52. Penrose R (1955) A generalized inverse for matrices. Math Proc Cambridge

Philos Soc 51: 406–413.
53. Granger CWJ (1969) Investigating causal relations by econometric models and

cross-spectral methods. Econometrica 37: 424–438.

54. Geweke JF (2003) Measures of conditional linear dependence and feedback
between time series. J Am Stat Assoc 79: 907–915.

55. Vallabhajosyula RR, Chakravarti D, Lutfeali S, Ray A, Raval A (2009)
Identifying hubs in protein interaction networks. PLoS One 4: e5344.

56. Della Gatta G, Bansal M, Ambesi-Impiombato A, Antonini D, Missero C, et al.

(2008) Direct targets of the trp63 transcription factor revealed by a combination
of gene expression profiling and reverse engineering. Genome Res 18: 939–948.

57. Yu J, Smith VA, Wang PP, Hartemink AJ, Jarvis ED (2004) Advances to
bayesian network inference for generating causal networks from observational

biological data. Proc IEEE 20: 3594–3603.
58. Sambo F, Camillo BD, Toffolo G. Cnet: an algorithm for reverse engineering of

causal gene networks. NETTAB2008, Varenna, Italy 2008.

59. Lozano AC, Abe N, Liu Y, Rosset S (2009) Grouped graphical granger
modeling for gene expression regulatory networks discovery. Bioinformatics 25:

i110.
60. Whitfield ML, Sherlock G, Saldanha AJ, Murray JI, Ball CA, et al. (2002)

Identification of genes periodically expressed in the human cell cycle and their

expression in tumors. Mol Biol Cell 13: 1977–2000.
61. Faith JJ, Driscoll ME, Fusaro VA, Cosgrove EJ, Hayete B, et al. (2008) Many

microbe microarrays database: uniformly normalized affymetrix compendia
with structured experimental metadata. Nucleic Acids Res 36: D866–D870.

62. Deng M, Emad A, Milenkovic O (2012) Casual compressive sensing for gene
network inference. Proceedings of IEEE Statistical Signal Processing Workshop :

696–6999.

Causal Compressive Sensing to Infer Gene Networks

PLOS ONE | www.plosone.org 14 March 2014 | Volume 9 | Issue 3 | e90781

