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Abstract

The inference of biological networks is an active research area in the field of systems biology. The number of network
inference algorithms has grown tremendously in the last decade, underlining the importance of a fair assessment and
comparison among these methods. Current assessments of the performance of an inference method typically involve the
application of the algorithm to benchmark datasets and the comparison of the network predictions against the gold
standard or reference networks. While the network inference problem is often deemed underdetermined, implying that the
inference problem does not have a (unique) solution, the consequences of such an attribute have not been rigorously taken
into consideration. Here, we propose a new procedure for assessing the performance of gene regulatory network (GRN)
inference methods. The procedure takes into account the underdetermined nature of the inference problem, in which gene
regulatory interactions that are inferable or non-inferable are determined based on causal inference. The assessment relies
on a new definition of the confusion matrix, which excludes errors associated with non-inferable gene regulations. For
demonstration purposes, the proposed assessment procedure is applied to the DREAM 4 In Silico Network Challenge. The
results show a marked change in the ranking of participating methods when taking network inferability into account.
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Introduction

The construction of biological interaction networks with the

goal of uncovering causal relationships between genotype and

phenotype constitutes a major research topic in systems biology

[1]. The inference of GRNs from gene expression data is part of

research activities in this area. At the time of writing, a search of

the keywords ‘‘gene’’ and ‘‘network inference’’ on the pubmed

literature database (excluding review articles) returned more than

200 results since the year 2000. Because of the rapid increase in

the number of methods created for GRN inference, each with

distinct advantages and disadvantages, a fair assessment of the

effectiveness of the methods in practice is indispensable.

A rigorous methodology for an objective assessment of

biological network reconstruction algorithms has been presented

within the Dialogue on Reverse Engineering Assessment and

Methods (DREAM) project [2–6]. Community-wide challenges on

biological network inference are organized on an annual basis,

where the inference of GRNs has been a recurring topic. In the

past GRN inference challenges, participants applied a network

inference method of their choice to datasets provided by the

organizers, and submitted an ordered list of gene regulatory

interactions according to the likelihood of their existence. The

assessment of network predictions involved a comparison with the

reference or gold standard network, by evaluating the confusion

matrix (i.e. the numbers of true positives/negatives and false

positives/negatives) [3,5,6]. The submissions were then scored and

ranked using the area under the curves of the receiver operating

characteristics (ROC) or precision-recall, denoted by AUROC

and AUPR, respectively [3,5–10]. It is important to note that this

assessment procedure relied on the implicit assumption that the

GRN could be uniquely inferred from the data.

A network inference problem is underdetermined when the

experimental data do not contain the necessary information for

reconstructing the complete network. In such a case, the network

is deemed non-inferable. The inference of GRNs from the typical

gene expression data (e.g. from knock-out, knock-down experi-

ments) has often been stated to be underdetermined [6,11,12],

but this claim has not yet been investigated rigorously. There

exist many factors that could lead to an underdetermined

inference problem, such as errors during the experiments, noise

in the data, and the number and types of network gene

perturbation experiments. As a consequence, some gene interac-

tions cannot be inferred and more than one network can agree

with the data.

In the present work, we emphasize the importance of network

inferability in assessing the performance of GRN inference

methods. We present an assessment procedure that incorporates

the inferability of gene regulatory interactions by redefining the

confusion matrix. The novelty in the new assessment is that

inference methods are not penalized for mis-identifying non-

inferable interactions. As a demonstration, we apply the new

performance assessment to the submissions of the DREAM 4 In

Silico Network Challenge and compare the outcome with the

original performance scores.
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Materials and Methods

DREAM 4 In Silico Network Challenge
Challenge description. The DREAM project is an interna-

tional initiative with the aim to better understand the strengths and

weaknesses of methodologies for reverse-engineering of biological

networks and to foster improvements in this research area.

Challenges in the area of biomolecular network inference and

quantitative modeling in systems biology are organized on a yearly

basis, in which participants are provided with experimental data

and invited to submit predictions of network structures (or

parameters) using an inference algorithm of their choice. These

submissions are subsequently scored and ranked based on how

well the predictions agree with the gold standard or reference

network.

In the DREAM 4 In Silico Network Challenge [13], the main

task consisted of inferring GRN structures from simulated steady-

state and time-series gene expression data. In the first and second

subchallenges, data of steady-state mRNA levels were provided for

wild-type and for gene knock-out (KO) and gene knock-down

(KD) experiments, for five 10-gene and five 100-gene GRNs. For

wild-type, time-series mRNA expressions were also provided. In

addition, for the 10-gene subchallenge, expression data from

multifactorial gene perturbation experiments were made available.

Participants submitted a ranked list of gene interactions, ordered

according to the confidence in their existence. A total of 29

predictions were submitted to the first (10-gene) subchallenge and

19 predictions to the second (100-gene) subchallenge.

Gold standard networks and datasets. The gold standard

networks were constructed by extracting subnetworks from

transcriptional regulatory networks of Escherichia coli and Saccharo-

myces cerevisiae using GeneNetWeaver (GNW, version 2.0) [14].

While cycles represented a motif of interest, auto-regulatory

interactions were omitted from the gold standard networks. A

detailed kinetic model in the form of stochastic differential

equations (SDEs) was created for the generation of synthetic gene

expression data. Measurement noise was added to the simulated

data using a noise model of microarray data, resembling a mixture

of normal and lognormal noise distribution [14]. While the kinetic

model described the dynamics of mRNA and protein concentra-

tions, the participants received only mRNA expression levels.

Simulations of the SDE model provided the expression data of

the wild-type network (unperturbed network). Single-gene KO

experiments involved setting the mRNA transcription rate of a

particular gene to zero. Similarly, single-gene KD data were

simulated by halving the transcription rate of a gene. Participants

were also provided with multifactorial perturbation (10-gene

subchallenge only) and time-series data, in which the basal

activations of all or a third of the genes, respectively, were

perturbed by random amounts. For more details concerning the

datasets in this challenge, we refer to [13].

DREAM assessment procedure. The scoring of submis-

sions in the DREAM network inference challenges has been

described in detail elsewhere [3,5,6]. Briefly, for each submission,

a series of network structures of increasing size is generated by

sequentially adding entries from the list of gene interactions, one at

a time. The k-th network of this series thus includes the first k gene

interactions in the submitted list. Subsequently, for each network

structure, a confusion matrix is computed with respect to the gold

standard network, providing the numbers of true positives (TP(k)),

true negatives (TN(k)), false positives (FP(k)) and false negatives

(FN(k)). A TP describes a correct prediction of an edge in the gold

standard network, while a FP occurs when a predicted edge does

not belong to the gold standard network. Furthermore, a TN

refers to an edge that neither belongs to the prediction nor to the

gold standard network, while a FN corresponds to any edge in the

gold standard that is missing in the predicted network. The scoring

of teams is based on the confusion matrices and the performance

metrics in Equation (1). P corresponds to the number of gene

regulatory interactions in the gold standard network, while N is the

number of gene interactions that are possible, but not in the gold

standard network. Participants are finally ranked according to how

well their predictions agree with the gold standard networks when

compared to random network predictions, using the AUROC and

AUPR [3,5].

prec(k) :~
TP(k)

TP(k)zFP(k)
rec(k) : ~

TP(k)

P

tpr(k) :~
TP(k)

P
fpr(k) : ~

FP(k)

N

ð1Þ

New assessment procedure incorporating GRN
inferability

Basics of graph theory. In the following, we introduce the

necessary graph theoretical nomenclatures, which will be used to

develop the new assessment procedure. A graph is an ordered pair

(V ,E), where V is the set of n nodes and E is the set of m edges.

An edge e [ E is defined by the pair of nodes (i,j), which in turn

are incident to the edge e. A directed edge is defined by the ordered

pair i,jð Þ, describing an edge from node i pointing to node j. A

directed graph (digraph) is a graph in which all of its edges are

directed. Accordingly, a directed path consists of a sequence of nodes

such that there exists a directed edge from one node to the next. If

there exists a directed path from node i to node j, then j is said to

be accessible from i. A directed cycle is a directed path in which the

starting and ending nodes are the same. Finally, a directed acyclic

graph (DAG) is a digraph without any directed cycle.

A strongly connected component or strong component of a digraph

G is a maximal subset of nodes in G, where any two nodes in the

subset are mutually accessible. All nodes of a directed cycle belong

to the same strong component, while each node that is not part of

any cycle, is a strong component of its own. The condensation of a

digraph G is the DAG of the strong components of G, which can

be constructed by lumping nodes together that belong to the same

cycle [15].

The transitive closure of a digraph G, denoted by GT , is the

digraph which possesses the edge (i,j), whenever node j is

accessible from node i. In general, more than one digraph can

share the same transitive closure, and the set of such digraphs is

denoted by S GTð Þ~ Gi : GT
i ~GT

� �
. Meanwhile, the transitive

reduction of GT , denoted by Gt, is defined as the most parsimonious

member of S GTð Þ (i.e. the graph with the fewest edges). The

transitive reduction of a DAG is unique and given by

Gt~
T

Gi[S GTð Þ Gi [16]. For DAGs, the transitive reduction can

be obtained by recursively pruning any directed edge (i,j),
whenever a directed path from i to j exists that does not include

(i,j) [15]. In contrast to DAGs, the transitive reduction of a

digraph may not be unique.
Inferability of GRNs. A GRN describes the causal relation-

ships among genes, which are often represented using a digraph. A

directed edge from gene i to gene j (denoted i?j) implies that the

expression of gene i influences the expression of gene j. The

inference of GRNs thus involves more than finding associations

among genes. Such a problem is inherently related to causal

inference [17]. To date, the inference of causal connections in a
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biological network remains an unsolved problem due to its

underdetermined nature, implying that the network structure

cannot be uniquely inferred.

In the following, a GRN is deemed inferable, when a unique

digraph exists that agrees with the provided experimental data. An

underdetermined inference problem immediately implies that the

network is not completely inferable. Note that network inferability

depends on the available information contained in the data, but

not on the inference method. Data informativeness is affected by

several factors, including experimental conditions, experimental

errors, and data noise. The study of causal inference has shown

that causality can only be inferred from observations of

perturbation experiments (interventions) in which the perturba-

tions are known [17]. In the DREAM 4 In Silico Network

Challenge, single-gene KO and KD are examples of such

intervention experiments, and thus the data possess relevant

information for establishing causal relationships among genes.

Meanwhile, the causal information in multifactorial and time-

series data is difficult to determine, and the extraction of this

information depends on additional background knowledge and

assumptions. In this study, we consider only the KO/KD

experiments in determining the inferability of causal edges.

The data from multifactorial perturbations in the DREAM 4

challenge can be classified as observational data. Inferring the true

causal graph with observational data is typically underdetermined,

even when simplifying assumptions, such as the causal Markov

assumption and the causal faithfulness assumption, are satisfied

and the observed variables are causally sufficient [18]. Corre-

spondingly, there exists not one, but a set of graphs that are

consistent with the data and the assumptions. A possible approach

to determine such a set of graphs may be based on the concept of

Markov equivalence class [19]. Nevertheless, in certain scenarios

where sufficient background domain knowledge exists and the

number of variables is small, causal inference from observational

data may be possible.

On the other hand, time-series data are particularly relevant for

inference methods where the GRN is modeled as a dynamical

system. The complete description of such a model requires not

only the structure (topology) of the GRN, but also the kinetic

functions of the gene-gene interactions. The identification of

network structure from time-series data is usually formulated as an

optimization problem to minimize model prediction errors.

However, even when the data are ideal (noise-free and complete),

the experimental conditions are given, and the kinetic equations

are known, the optimization above is challenging and often

produce multiple, indistinguishable solutions[20,21]. The distin-

guishability issue is equivalent to network (non-)inferability

described above, which can be alleviated by enforcing additional

assumptions or constraints regarding the GRN [21].

One domain that is strongly affected by network (non-

)inferability is the performance assessment of inference methods.

When a network or part of a network is not inferable, no algorithm

will be able to accurately infer the full network structure.

Therefore, a fair assessment should not penalize any incorrect

prediction of non-inferable parts of the network. While the

underdetermined nature has been widely recognized as a

stumbling block in the inference of GRNs, the issue related to

network inferability has not been explicitly taken into consider-

ation in existing assessments.

Assessment of GRN inference methods: Coping with an

underdetermined problem. In order to cope with the under-

determined nature of GRN inference in assessing the performance

of network inference methods, we propose a new definition of the

confusion matrix as depicted in the Venn diagram in Figure 1 and

described in Equation (2). The set of all possible edges is denoted

by T and the set of edges in the gold standard network is denoted

by GGold . Given a dataset of differential gene expression profiles,

the set GL contains edges in GGold whose existence can in principle

be confirmed. Meanwhile, the set GU is defined such that (GU )c

(i.e. the complement of GU ) consists of edges that can be validated

by the data to be an element of (GGold )c. Here, the non-inferable

edges GNI are defined as edges whose existence can neither be

confirmed nor refuted by the data. Thus, we have the simple

relationship GNI~GU{GL. The set GPred denotes the set of

edges in the predicted network structure. The basic idea of the new

assessment is to exclude edges that belong to GNI from the

calculation of the confusion matrix. Below, we describe a

procedure for determining the sets GL and GU for the DREAM

4 network inference challenge. The algorithm for constructing GL

and GU in a more general setting is currently in progress (SMM

Ud-Dean and R. Gunawan, unpublished).

TP0 : ~GL\GPred FP0 :~GPred\(GU )c

TN 0 : ~T\(GU|GPred ) FN 0 :~GL
\GPred

ð2Þ

Following the arguments from causal inference described above,

the inferability of GRNs in the two DREAM 4 subchallenges is

determined based on single-gene KO/KD experiments. In an

ideal scenario, knocking-out or knocking-down a gene should lead

to (steady-state) differential expression among all genes that are

either directly or indirectly regulated by the perturbed gene.

Unfortunately, it is not possible to discriminate direct and indirect

regulations from steady-state data [15]. Since the datasets in the

network inference subchallenges include all single-gene KO/KD

experiments, the transitive closures of the gold standard networks

(i.e. GGold
� �T

) can be constructed in the ideal case, but not the true

network structure. In reality, even the transitive closures will have

errors due to factors such as data noise and gene compensatory

effects.

The transitive closure GGold
� �T

represents the largest network

structure, as measured by the number of edges, that is consistent

with the gene expression data considered above. In fact, any

digraph belonging to the set S GGold
� �T
� �

is also in agreement

with the data. Thus, the set S GGold
� �T
� �

describes the ensemble

of networks that cannot be discriminated using steady-state single-

gene KO/KD data. Here, we set the upper bound of the ensemble

Figure 1. Venn diagram of confusion matrix incorporating
network inferability. T denotes the set of all possible (directed)
edges among nodes in the network. FN = false negative. FP = false
positive. TP = true positive. TN = true negative. GNI = non-inferable
edges.
doi:10.1371/journal.pone.0090481.g001

Assessment of Network Inference Methods

PLOS ONE | www.plosone.org 3 March 2014 | Volume 9 | Issue 3 | e90481



GU as the smallest digraph that contains S GGold
� �T
� �

, and the

lower bound of the ensemble GL as the largest digraph whose

edges are present in every member of S GGold
� �T
� �

. Consequent-

ly, the difference between GU and GL are edges that can neither

be rejected nor confirmed from the data. Note that when GU and

GL are the same, the GRN is inferable.

From the definition of S GGold
� �T
� �

, GU can be set to

GGold
� �T

. If the GRN can be represented as a DAG, then GL is

given by the transitive reduction of GGold
� �T

. However, the gold

standard networks in these subchallenges contain directed cycles.

Therefore, GL is constructed based on a modified version of the

pruning algorithm for transitive reduction described in [15].

Specifically, GU is first condensed to produce a DAG of the strong

components. Then, the pruning algorithm is applied to the

condensed graph to remove any edge (i,j) for which a directed

path exists from i to j that does not involve (i,j). In addition, we

also prune edges incident to any strong component associated with

a directed cycle. Finally, the strong elements are expanded and

edges incident to nodes involved in cycles of more than two nodes

are further removed, because the causal relationships among these

nodes cannot be inferred from single-gene KO/KD data. The

network structure produced by this procedure is set as GL.

In Figure 2, we summarize the differences between the

assessment based on the redefined confusion matrix and the

original assessment of the DREAM 4 challenge. In the new

assessment, FPs and FNs associated with direct/indirect regula-

tions, often referred to as cascade and FFL (feed-forward loop)

errors, are omitted in the scoring of submissions. Indeed, cascade

and FFL motifs have been identified as one of the important

systematic prediction errors in the DREAM network inference

challenges [6,22]. In addition, edges incident to any strong

element and those among nodes in directed cycles with more than

two nodes are non-inferable from single-gene KO/KD experi-

ments, and thus are not considered in the new assessment.

Scoring of network submissions. For each network sub-

mission, the AUROC and AUPR were computed based on the

redefined confusion matrix in Equation (2). Accordingly, the

formulas of precision, recall, true positive rate and false positive

rate were adapted (see Equation (3)).

rec0(k) :~
TP0(k)

TP0(k)zFP0(k)
rec0(k) : ~

TP0(k)

GL

tpr0(k) :~
TP0(k)

GL
fpr0(k) : ~

FP0(k)

N 0

ð3Þ

Following the scoring procedure in DREAM 4, a set of 1009000

random predictions were generated for each gold standard

network in the subchallenge. For each random prediction, the

AUROC and AUPR were computed using the performance

metrics in Equation (3). Subsequently, the area under the curve

(AUC) corresponding to a prescribed acceptable p-value (e.g.

10{3) was determined from the random predictions. In this work,

the value for AUCp~10{3 was taken as the 99:9-th percentile of the

AUC in each set of random networks. Finally, the score for each

submitted network was computed based on Equation (4), where

the AUC was either AUROC or AUPR. Correspondingly, any

submission with an AUROC or AUPR below the acceptable p-

value would have a score less than 1 and could be considered as

not performing better than random. Using the scoring presented

in Equation (4), we avoided fitting a probability density function

over the AUROCs and AUPRs of random predictions and

estimating (extremely small) p-values of the submissions from such

a density function. The final ranking of the participating groups

was based on the overall score (see Equation (6)) that incorporated

the mean scores for AUROC and AUPR (see Equation (5)), where

nnetwork was the number of networks in the evaluation (nnetwork~5
in 10-gene and 100-gene subchallenges). The scoring procedure

was implemented in MATLAB (File S1) and more detail of the

implementation is provided in the supporting information (Figure

S1).

Figure 2. Inferability of network motifs from single-gene KO/KD experiments. The new assessment procedure omits edges that are not
inferable from single-gene KO/KD experiments, from the scoring of submissions. Compared to the assessment in the DREAM 4 challenge, FPs and FNs
associated with cycles, cascades and FFLs are considered in the new assessment.
doi:10.1371/journal.pone.0090481.g002
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sAUC : ~
AUCmethod

AUC
p~10{3

ð4Þ

�ssAUC : ~
1

nnetwork

Xnnetwork

i~1

sAUC
i ð5Þ

soverall : ~
1

2
(�ssAUROCz�ssAUPR) ð6Þ

Results and Discussion

We applied the new assessment procedure to the network

predictions submitted to the 10-gene and the 100-gene subchal-

lenges of the DREAM 4 In Silico Network Challenge (D. Marbach

and G. Stolovitzky, private communication, June 2012). One

submission to the 10-gene subchallenge was omitted in the

comparison below, as the team only provided predictions for 4 out

of the 5 networks. The sets GL and GU were constructed from the

gold standard networks as described above. Table 1 gives the sizes

(numbers of edges) of the gold standard networks, the lower and

upper bound of the network ensembles, and the number of non-

inferable edges. Figure 3 shows the comparison between the team

rankings using the new and the original DREAM 4 assessment for

the 10-gene and 100-gene subchallenges (for comparison of the

performance scores, see Figure S2 and Tables S1-S2). The

performance scores in the DREAM 4 assessment were re-

computed using a previously published procedure[2].

The Spearman’s rank correlations between the rankings of the

DREAM assessment and the new assessment in both subchal-

lenges, given in Table 2, show a significant linear relationship.

Indeed, methods that ranked in the top half in the DREAM

assessment mostly stayed among the top half in the new

assessment. In particular, the best and the worst teams were the

same in the two assessments. Nevertheless, the rankings of many

teams changed prominently when using the new assessment. For

example, in the 10-gene network subchallenge, the second best

team in the new ranking was previously ranked 6-th, and the 7-th

and 9-th best teams in the original ranking were now among the

worst performers (20-th and 25-th, respectively). The two

assessments were more consistent with each other in the 100-

gene than in the 10-gene network subchallenge, since the 100-gene

networks were more sparse than the 10-gene networks. Conse-

quently, the lower bound GL of the 100-gene networks approx-

imated the gold standard networks much better than that of the

10-gene networks. According to Figure 1, the numbers of TP and

FN would therefore differ relatively little between the original and

new assessments among the 100-gene networks. Similar observa-

tions could also be made by comparing the overall team scores (see

Figure S2).

In order to ascertain the extent to which the errors of each

inference method could be explained by interactions that were

non-inferable, we determined the fractions of FP and FN edges

that were non-inferable. Specifically, we created a GRN prediction

Gpred by including edges from each submission list up to the size of

the respective gold standard network, and compared the network

prediction with the gold standard. The mean fractions of non-

inferable FPs and FNs and the standard deviation over the five

Table 1. Network Sizes in the DREAM 4 In Silico Network
Challenge.

Size Network GGold GL GU GNI

10 1 15 5 21 16

2 16 2 47 45

3 15 1 59 58

4 13 3 40 37

5 12 5 33 28

100 1 176 93 639 546

2 249 60 667 607

3 195 35 2375 2340

4 211 38 2316 2278

5 193 60 953 893

doi:10.1371/journal.pone.0090481.t001

Table 2. Spearman’s rank correlation, two-sided.

Challenge r p-value

DREAM 4 size 10 0.69 8|10{5

DREAM 4 size 100 0.92 10{6

doi:10.1371/journal.pone.0090481.t002

Figure 3. Comparison of the team rankings between the new and the original assessment. The two assessment procedures are applied to
the 10-gene subchallenge (left) and the 100-gene subchallenge (right) of the DREAM 4 In Silico Network Challenge.
doi:10.1371/journal.pone.0090481.g003
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100-gene networks are shown in Figure 4 (for individual team

fractions, see Tables S3–S4). The mean fractions of non-inferable

FNs were quite consistent for all inference methods, lying between

70% and 80%, which was in line with the mean fraction of non-

inferable edges within the reference network (71.2%). Interesting-

ly, the mean fraction of non-inferable FPs could segregate good

and bad performing methods. As shown in Figure 4, a high

fraction of non-inferable FPs (w60%) was representative of better

performing methods, while a low fraction (v20%) of non-

inferable FPs was commonly observed among poorer inference

algorithms. Hence, errors (FPs and FNs) of good performing

methods could be explained to a great extent by the non-inferable

part of the GRN.

In several DREAM network inference challenges, a consensus

network constructed from submissions to the challenge has been

shown to reliably outperform any individual method [5,6,22]. This

community strategy takes advantage of the wisdom of crowds by

incorporating complementary information extracted by different

inference methods, thereby mitigating weaknesses of any partic-

ular method [22]. However, as network inferability is independent

of the method used in the inference, the consensus network will

still be affected by errors associated with non-inferable edges. For

illustration purposes, we again used network structures Gpred from

the submissions to the 100-gene subchallenge as before, and

identified FNs that were common among all these network

predictions. Table 3 reports the number of common FNs for each

reference network in the subchallenge and the percentage of these

FNs that were deemed non-inferable (i.e. belonging to GNI ). The

results indicated that a high fraction of these common errors were

associated with non-inferable edges in the gold standard networks.

These common errors would naturally appear in the consensus

network. Thus, no method, the community strategy included, is

expected to be able to predict these edges accurately.

Certain network motifs appeared to be more difficult to infer

than others [6,22]. The inference of some of these motifs,

particularly cascade and FFL, involved discriminating direct and

indirect regulations. As explained earlier, considering the gene

perturbation experiments in the DREAM network inference

challenges, the participants did not have the necessary information

for such discrimination. Therefore, the systematic errors associated

with cascade and FFL motifs should be expected. A fair and

relevant assessment of network inference methods would therefore

need to incorporate not only network inferability, but also a design

of experiments for generating the appropriate datasets. In case of

an ideal design of experiments, the performance of inference

methods could be assessed without considering network infer-

ability. In practice, network inference methods should carefully

consider the limitations in inferring causal interactions from

experiments, and data should be treated differently according to

the kind of experiment performed.

In the construction of GNI , several factors that affect the

inferability of gene regulation have not been accounted for. For

example, data noise could render the identification of edges

difficult, which in turn would increase the number of non-inferable

edges. Unfortunately, the particular edges that would become non-

inferable due to noise, could not be identified a priori. Still, the

increase in FP and FN rates could be estimated if the probability

distribution of the noise was known. As a good inference method

should handle data noise adequately, the exclusion of the impact of

noise in determining GNI seemed reasonable.

In addition to noise, multifactorial perturbation and time-series

experiments were not taken into consideration in constructing

GNI . As discussed earlier, data from such experiments could only

reveal associations among genes, not causal relationships. Never-

theless, gene associations could still be used for confirming or

rejecting edges, even though the direction of the edges cannot be

determined. Furthermore, the nature of the gene regulations, i.e.

whether a gene activates or inhibits the expression of another gene,

has been ignored. Certain regulatory motifs, such as coherent and

incoherent FFLs, might therefore be more difficult to infer from

from single gene KO/KD experiments [23]. Also, gene compen-

satory effects, where the effects of perturbing a gene could be

masked by other regulator genes, would add further complications,

namely in the inference of the fan-in motifs. While all of these

factors would certainly enlarge the non-inferability part of the

GRN, the GNI described above should provide a reasonable, albeit

pessimistic, approximation of the non-inferable edges that need to

be excluded from the assessment.

Figure 4. Fractions of FPs (left) and FNs (right) that are non-inferable from single-gene KO/KD experiments. Error bars show standard
deviation over five 100-gene networks.
doi:10.1371/journal.pone.0090481.g004

Table 3. Common FNs among 100-gene network predictions.

Net 1 Net 2 Net 3 Net 4 Net 5

Number of common FNs 32 78 50 61 65

Fraction of FNs that are
non-inferable

56.3% 83.3% 86.0% 75.4% 58.5%

doi:10.1371/journal.pone.0090481.t003
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Conclusion

In this study, we presented a new performance assessment for

GRN inference methods. The rationale of the proposed assess-

ment was that the performance of an inference algorithm should

only be evaluated based on parts of the network that were

inferable from the experiments performed. The inferability of

GRNs was analyzed based on the causal information that could be

extracted from gene perturbation experiments. The DREAM 4 In

Silico Network Inference Challenge, particularly the 10-gene and

100-gene subchallenges, has been used to illustrate the determi-

nation of gene regulations that were non-inferable from single-

gene KO/KD experiments. A new performance score was

introduced based on a redefinition of the confusion matrix, by

taking into consideration non-inferable gene regulations. While

the new assessment identified the same best performing teams as in

the DREAM 4 inference challenge, the overall team rankings

showed a prominent change from the original scoring. Further-

more, we showed that the majority of FP and FN errors among

good performing inference methods could be explained to a great

extent by the non-inferable part of the GRN. We also

demonstrated that non-inferable regulations constituted the

majority of common FNs among submissions in the 100-gene

subchallenge. Therefore, it is crucial to consider network

inferability in a fair and relevant assessment of network inference

algorithms.
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