
Stability Indicators in Network Reconstruction
Michele Filosi1,2., Roberto Visintainer1., Samantha Riccadonna3, Giuseppe Jurman1*, Cesare Furlanello1

1 MPBA/Center for Information and Communication Technology, Fondazione Bruno Kessler, Trento, Italy, 2 CIBIO, University of Trento, Trento, Italy, 3 Department of

Computational Biology, Research and Innovation Centre, Fondazione Edmund Mach (FEM), San Michele all’Adige, Italy

Abstract

The number of available algorithms to infer a biological network from a dataset of high-throughput measurements is
overwhelming and keeps growing. However, evaluating their performance is unfeasible unless a ‘gold standard’ is available
to measure how close the reconstructed network is to the ground truth. One measure of this is the stability of these
predictions to data resampling approaches. We introduce NetSI, a family of Network Stability Indicators, to assess
quantitatively the stability of a reconstructed network in terms of inference variability due to data subsampling. In order to
evaluate network stability, the main NetSI methods use a global/local network metric in combination with a resampling
(bootstrap or cross-validation) procedure. In addition, we provide two normalized variability scores over data resampling to
measure edge weight stability and node degree stability, and then introduce a stability ranking for edges and nodes. A
complete implementation of the NetSI indicators, including the Hamming-Ipsen-Mikhailov (HIM) network distance adopted
in this paper is available with the R package nettools. We demonstrate the use of the NetSI family by measuring network
stability on four datasets against alternative network reconstruction methods. First, the effect of sample size on stability of
inferred networks is studied in a gold standard framework on yeast-like data from the Gene Net Weaver simulator. We also
consider the impact of varying modularity on a set of structurally different networks (50 nodes, from 2 to 10 modules), and
then of complex feature covariance structure, showing the different behaviours of standard reconstruction methods based
on Pearson correlation, Maximum Information Coefficient (MIC) and False Discovery Rate (FDR) strategy. Finally, we
demonstrate a strong combined effect of different reconstruction methods and phenotype subgroups on a hepatocellular
carcinoma miRNA microarray dataset (240 subjects), and we validate the analysis on a second dataset (166 subjects) with
good reproducibility.
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Introduction

The problem of inferring a biological network structure given a

set of high-throughput measurements, e.g. gene expression arrays,

has been addressed by a large number of different methods

published in the last fifteen years (see [1,2] for two recent

comparative reviews). Solutions range from general purpose

algorithms (such as correlation [3] or relevance networks [4]) to

methods tailored ad hoc for specific data types. Recent examples

include SeqSpider [5] for Next Generation Sequencing data, or

Sparsity-aware Maximum Likelihood [6] for cis-expression quan-

titative trait loci (cis-eQTL).

However, network reconstruction is an underdetermined

problem, since the number of interactions is significantly larger

than the number of independent measurements [7]. Thus, all

algorithms must aim to find a compromise between reconstruction

accuracy and feasibility: simplifications inevitably detract from the

precision of the final outcome by including a relevant number of

false positive links [8], which should be discarded e.g., by

identifying and removing unwanted indirect relations [9]. More-

over, inference accuracy is strongly dependent on the assumptions

used to choose the best hypothetical model of experimental

observations [10].

These issues make the inference problem ‘‘a daunting task’’ [11]

not only in terms of devising an effective algorithm, but also in

terms of quantitatively interpreting the results obtained. In

general, reconstruction accuracy is far from optimal in many

situations and several pitfalls may occur [12], related to both the

methods and the data [13]. In extreme cases, many link

predictions are statistically equivalent to random guesses [14]. In

particular, it is now widely acknowledged that the size and quality

of the data play a critical role in the inference process [15-18]. All

these considerations support the opinion that network reconstruc-

tion should still be regarded as an unsolved problem [19].

Given the growing list of available algorithms, efforts have been

made to develop methods for the objective comparison of network

inference methods including the identification of current limita-

tions [20,21] and their relative strengths and disadvantages [7,22].

The most systematic effort is probably the international DREAM

challenge [23]: from DREAM 2012 emerged a consensus

advocating the integration of predictions from multiple inference

methods as an effective strategy to enhance performance [24].

However, algorithm uncertainty has so far been assessed only in

terms of performance, i.e., the distance of the reconstructing

network from the ground truth, whenever available, while the

stability of the methods has been neglected. When no gold
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standard is available for a given problem, there is no chance to

evaluate algorithm accuracy. In such cases we can consider

stability as a rule of thumb for judging the reliability of the

resulting network. Obviously, the performance of a network

reconstruction algorithm and the stability/reliability of the

resulting network inferred from a specific dataset are two distinct

and equally crucial aspects of the network inference process. The

best way to optimize both aspects would be to adopt only network

reconstruction algorithms with well characterized performance,

i.e., evaluated in cases where the ground truth is known, and with

stability always checked on specific data. It is also worthwhile

noting that the evaluation of inference stability is not related to the

(chemical or physical) ‘‘stability’’ of the represented process.

Figure 1. HIM distance: contribution of H and IM. (A) An example on three 5-node networks mutually differing by two links. (B) An example on
network G4 , as defined in Subsection Stability is modularity invariant. Gred : network G4 without the four red links. Ggreen: network G4 without green
links. Gblue: network G4 without blue links. (C) The mutual differences between the pairs of networks in (A), (NA,NB) and (NA,NC). (D) (G4,Gred ),
(G4,Ggreen), (G4,Gblue). In both cases they have the same Hamming distance but different spectral structure, thus resulting in different Ipsen-Mikhailov
distances.
doi:10.1371/journal.pone.0089815.g001

Figure 2. An example of HIM distance. Representation of the HIM distance in the Ipsen-Mikhailov (IM axis) and Hamming (H axis) distance space
between networks A versus B, E and F, where E is the empty network and F is the fully connected one.
doi:10.1371/journal.pone.0089815.g002
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We propose to tackle the stability issue by quantifying inference

variability with respect to data perturbation, and, in particular,

data subsampling. If a portion of data is randomly removed before

inferring the network, the resulting graph is likely to be different

from the one reconstructed from the whole dataset and, in general,

different subsets of data would give rise to different networks.

Thus, in the spirit of applying reproducibility principles to this

field, one has to accept the compromise that the inferred/non

inferred links are just an estimation, lying within a reasonable

probability interval. Here we introduce the Network Stability

Indicators (NetSI) family, a set of four indicators allowing the

researcher to quantitatively evaluate the reproducibility of the

reconstruction process. We propose to quantitatively assess, for a

given ratio of removed data and for a given amount of (bootstrap

Figure 3. Definition of the NetSI family.
doi:10.1371/journal.pone.0089815.g003

Figure 4. Graphical description of the pipeline in Fig. 3. Using the inference algorithmA, the network ND is first reconstructed from the whole
dataset D with s samples and p features (nodes). Given two integers n,r, a set of r datasets Di is generated by choosing for each i a subset of n

samples from D, and the corresponding networks NDi
are inferred by A. Finally, the four indicators Sd(n,r), SI

d(n,r), Sw(n,r,h,k) and Sd (n,r,h) are
computed according to their definition.
doi:10.1371/journal.pone.0089815.g004
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[25] or cross-validation) resampling, the mutual distances among

all inferred networks and their distances to the network generated

by the whole dataset, with the idea that, the smaller the average

distance, the more stable the inferred network. Similarly, we

propose two indicators for the distribution of variability of the link

weight and node degree across the generated networks, providing

a ranked list of the most stable links and nodes, the least variable

being the top ranked. The described framework for evaluating the

stability of the whole network obviously relies on a network

distance, but it is independent from the chosen metric. As network

distance we use the Hamming-Ipsen-Mikhailov (HIM) distance

[26], or its components for demonstration purposes, because it

represents a good compromise between local (link-based)

and global (structure-based) measures of network comparison.

Figure 5. Synthetic network with m modules, where m ranges from 2 to 10 from top left to bottom right.
doi:10.1371/journal.pone.0089815.g005
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Figure 6. Gm networks: Stability of synthetic networks for different modularity levels.
doi:10.1371/journal.pone.0089815.g006

Table 2. Gm networks: range of Sd for different
reconstruction algorithms and d~fHIM,H,IMg.

Sd variation range

algorithm d~HIM d~IM d~H

WGCNA 0.01 0.01 0.00

WGCNAFDR 0.02 0.03 0.00

cor 0.02 0.03 0.00

MIC 0.01 0.02 0.00

MICFDR 0.04 0.06 0.00

ARACNE 0.02 0.03 0.01

bicor 0.02 0.03 0.00

TOM 0.01 0.01 0.00

CLR 0.03 0.05 0.01

doi:10.1371/journal.pone.0089815.t002

Table 1. Modularity and density values for 50-nodes
networks (Gi) for an increasing number of modules m.

m Modularity Density

1 0.00 1.00

2 0.50 0.49

3 0.66 0.32

4 0.73 0.24

5 0.78 0.19

6 0.80 0.16

7 0.81 0.13

8 0.82 0.11

9 0.81 0.10

10 0.81 0.09

doi:10.1371/journal.pone.0089815.t001
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Moreover, the HIM distance can be easily included in pipelines

for network analysis [27].

We first show the effect of network modularity and the dataset

sample size on both the stability and the accuracy of the network

inference process. For this purpose, we create two synthetic

datasets with a known gold standard. The results are demonstrated

for several inference algorithm, such as the Algorithm for the

Reconstruction of Accurate Cellular Networks (ARACNE),

developed for the reconstruction of gene regulatory networks

[28], the Context Likelihood of Relatedness (CLR) approach [29]

and the Weighted Gene Correlation Network Analysis (WGCNA)

[30]. Then the NetSI indicators are computed on correlation

networks developed on another ad hoc synthetic dataset. We

highlight the difference in terms of stability due to the choice of the

inference algorithm: two basic correlation measures and the

impact of a permutation-based False Discovery Rate (FDR) filter.

Finally, we show the use of NetSI measures in a typical

application, comparing the stability of relevance networks inferred

on a miRNA microarray dataset with paired tissues extracted from

a cohort of 241 hepatocellular carcinoma patients [31,32]. The

data exhibit two phenotypes, one related to disease (tumoral or

non-tumoral tissues) and one to patient gender (male or female);

we show that four different networks are obtained, each of

different stability, and that the reconstruction method is a serious

source of variability with the smaller data subgroups. Finally we

validate the analysis on a second hepatacellular carcinoma dataset

(166 subjects) with good reproducibility.

All the methods (HIM distance and NetSI indicators) have been

implemented in the open source R package nettools for the CRAN

archives, as well as on GitHub at the address https://github.com/

MPBA/nettools.git. For computing efficiency, the software can be

used on multicore workstations and on high performance

computing (HPC) clusters. Further technical details and prelim-

inary experiments with nettools are available in [33].

Methods

Before defining the NetSI family we briefly summarize the

main definitions and properties of the HIM network distance.

Figure 7. Gm networks: distance between gold standard (HIM) and inferred synthetic networks for different modularity levels.
doi:10.1371/journal.pone.0089815.g007
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Moreover, at the end of this section, we provide a short description

of the network inference approaches used in the following

experiments.

HIM network distance
The HIM distance [26] is a metric for network comparison

combining an edit distance (Hamming [34,35]) and a spectral one

(Ipsen-Mikhailov [36]). As discussed in [37], edit distances are

local, i.e. they focus only on the portions of the network interested

by the differences in the presence/absence of matching links.

Spectral distances evaluate instead the global structure of the

compared topologies, but they cannot distinguish isomorphic or

isospectral graphs, which can correspond to quite different

conditions within the biological context. Their combination into

the HIM distance represents an effective solution to the

quantitative evaluation of network differences.

Let N 1 and N 2 be two simple networks on N nodes, described

by the corresponding adjacency matrices A(1) and A(2), with

a
(1)
ij ,a

(2)
ij [F, where F~F2~f0,1g for unweighted graphs and

F~½0,1� for weighted networks. Denote then by N the identity

N|N matrix N~

1 0 � � � 0
0 1 � � � 0

� � �
0 0 � � � 1

0
BB@

1
CCA, by N the unitary N|N

matrix with all entries equal to one and by N the null N|N

matrix with all entries equal to zero. Finally, denote by EN the

empty network with nodes and no links (with adjacency matrix

N ) and by FN the undirected full network with N nodes and all

possible N(N{1) links (whose adjacency matrix is N{ ).N

The definition of the Hamming distance is the following:

Figure 8. Yeast-like simulated data: effect of increasing sample size on network reconstruction stability SHIM. Different network
inference algorithms are compared.
doi:10.1371/journal.pone.0089815.g008
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Hamming(N 1,N 2)~
X

1ƒi jƒN

jA(1)
ij {A

(2)
ij j :

To guarantee independence from the network dimension

(number of nodes), we normalize the above function by the factor

g~Hamming(EN ,FN )~N(N{1):

H(N 1,N 2)~
1

N(N{1)

X
jA(1)

ij {A
(2)
ij j : ð1Þ

When N 1 and N 2 are unweighted networks, H(N 1,N 2) is just

the fraction of different matching links (over the total number

N(N{1) of possible links) between the two graphs. In all cases,

H(N 1,N 2)[½0,1�, where the lower bound 0 is attained only for

identical networks A(1)~A(2) and the upper bound 1 is reached

whenever the two networks are complementary

A(1)zA(2)~ N{ N~

0 1 � � � 1

1 0 � � � 1

� � �
1 1 � � � 0

0
BB@

1
CCA.

Among spectral distances, we consider the Ipsen-Mikhailov

distance IM which has been proven to be the most robust in a wide

range of situations [37,38]. Originally introduced in [36] as a tool

for network reconstruction from its Laplacian spectrum, the

definition of the Ipsen-Mikhailov metric follows the dynamical

interpretation of a N–nodes network as a N–atoms molecule

connected by identical elastic strings, where the pattern of

connections is defined by the adjacency matrix of the correspond-

ing network. In particular the connections between nodes in the

Figure 9. Yeast-like simulated data: effect of increasing sample size on network reconstruction internal stability SI
HIM. Different

network inference algorithms are compared.
doi:10.1371/journal.pone.0089815.g009
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network correspond to the bonds between atoms in the dynamical

system and the adjacency matrix is its topological description.

We summarize here the mathematical details of the IM

definition [36]. The dynamical properties of the oscillatory system

are described by the set of N differential equations

€xxiz
XN

j~1

Aij(xi{xj)~0 for i~0, � � � ,N{1 , ð2Þ

where xi are the coordinates of the physical molecules. Since the

adjacency matrix A depends on the node labeling, we consider

instead the Laplacian matrix L, which for an undirected network

is defined as the difference between the degree matrix D (the

diagonal matrix with vertex degrees as entries) and A: L~D{A.

L is positive semidefinite and singular [39–42], and its set of

eigenvalues 0~l0ƒl1ƒ � � �ƒlN{1, i.e. the spectra of the

associated graph, provide the natural vibrational frequencies vi

for the system modeled in Eq. 2: li~v2
i , with l0~v0~0. The

spectral density r for a graph can be written as the sum of Lorentz

distributions

r(v,c)~K
XN{1

i~1

c

(v{vi)
2zc2

,

where c is the common width and K is the normalization

constant defined as

K~
1

c
PN{1

i~1

Ð?
0

dv

(v{vi )
2zc2

,

so that

ð?
0

r(v,c)dv~1. The scale parameter c specifies the

half-width at half-maximum, which is equal to half the inter-

quartile range. From the above definitions, the spectral distance c

Figure 11. Construction of an FDR-corrected correlation network.
doi:10.1371/journal.pone.0089815.g011

Figure 10. Yeast-like simulated data: effect of increasing sample size on network reconstruction accuracy measured as HIM
distance and its components Hamming (H) and Ipsen-Mikhailov (IM) with respect to the gold standard. Different network inference
algorithms are compared.
doi:10.1371/journal.pone.0089815.g010
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between two graphs G and H with densities rG(v,c) and rH (v,c)
can then be defined as

c(G,H)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið?
0

rG(v,c){rH (v,c)½ �2dv

s
:

The highest value of c is reached, for a given number of nodes

N , when evaluating the distance between N and FN . Defining c
as the (unique [26]) solution of

c( N ,FN )~1

we can now define the normalized Ipsen-Mikahilov distance IM

as

IM(G,H)~ c(G,H)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið?
0

rG(v,c){rH (v,c)½ �2dv

s
,

so that IM(G,H)[½0,1� with the upper bound attained only for

(G,H)~(EN ,FN ).
Finally, the generalized HIM distance is defined by the one-

parameter family of product metrics linearly combining with a

factor j[½0,z?) the normalized Hamming distance H and the

normalized Ipsen-Mikhailov IM distance, further normalized by

the factor
ffiffiffiffiffiffiffiffiffiffi
1zj

p
to set its upper bound to 1:

HIMj(N1,N2)~
1ffiffiffiffiffiffiffiffiffiffi

1zj
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H(N1,N2)2zj:IM(N1,N2)2

q
:

Obviously, HIM0~H and lim
j?z?

HIMj~IM. For example,

the flexibility introduced by j can be used to focus attention more

on structure than on local editing changes when HIMj is used to

generate a kernel function for classification tasks (e.g. on brain

networks).

In what follows we will mostly deal with the case j~1, and omit

the subscript j for brevity. The relative effect of the two

components is exemplified in Fig. 1A-D. The three small size

networks (5 nodes) NA,NB, and NC in Fig. 1A differ from each

other in only two edges but NA and NC are isomorphic and

diverse from NB, as correctly picked up by the HIM distance (see

table in Fig. 1C). Similarly, HIM, H and IM provide different

values when four edges are cut from on the larger (50 nodes) G4

network, at different levels of the graph structure. Larger effects

are caused by the elimination of the four red edges connecting the

four submodules with differences up to 10 times larger for IM with

respect to H (see table in Fig. 1D).

The HIM distance can be represented in the ½0,1�|½0,1�
Hamming/Ipsen-Mikhailov space, where a point P(x,y) repre-

sents the distance between two networks N1 and N2 whose

coordinates are x~H(N1,N2) and y~IM(N1,N2) and the norm

of P is
ffiffiffiffiffiffiffiffiffiffi
1zj

p
times the HIM distance HIM(N1,N2). The same

holds for weighted networks, provided that the weights range over

½0,1�. In Fig. 2 we provide an example of this representation by

evaluating the HIM distance between networks of four nodes,

namely networks A, B, E (empty) and F (full) in the left panel of

Fig. 2. If the Hamming/Ipsen-Mikhailov space is roughly split into

four quadrants I, II, III, and IV, then two networks whose distance

is mapped in quadrant I are close both in terms of matching links

and of structure, while those falling in quadrant III differ with

respect to both characteristics. Networks corresponding to a point

in quadrant II have many common links, but different structures,

while a point in quadrant IV indicates two networks with few

common links, but with similar structure.

Full mathematical details about the HIM distance and its two

components H and IM can be found in [26].

The Network Stability Indicators (NetSI)
The mathematical and operational definition of the four NetSI

indicators are introduced in Fig. 3. The first two are the stability

indicators Sd and the internal stability indicator SI
d, which concern

the stability of the whole reconstructed network. The former

measures the distances between the network inferred on the whole

dataset against the networks inferred from the resampled subsets.

The latter measures all the mutual distances within the networks

inferred from the resampled subsets. The other two indicators, the

edge weight stability indicator Sw and the node degree stability

indicator Sd , concern instead the stability of the single links and

nodes, in terms of mutual variability of their respective weight and

degree. In all cases, smaller indicator values correspond to more

stable objects.

We adopt d~HIM, except for the first experiment where we

show also the stability for d~H and d~IM. As the HIM distance

is defined also on directed networks, the extension of the NetSI

family to the directed case is straightforward. A graphical

representation of the procedure is provided in Fig. 4. For all

experiments reported in this paper, we used n~s{1, r~1 (leave-

one-out stability, LOO for short), and 20 different instances of k-

fold cross validation (discarding the test portion) for k~2,4,10 (k2,

k4 and k10), and thus n~
s(k{1)

k
and r~20k.

Stability of network inference algorithms
As a first application, we test the difference in stability of the

reconstruction process for a set of alternative network co-

expression inference algorithms.

Figure 12. The correlation matrix MT used to generate the
synthetic dataset T .
doi:10.1371/journal.pone.0089815.g012
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The most famous representative of the correlation-based

approaches is surely the Weighted Gene Correlation Network

Analysis (WGCNA) [30,43]. In this case the co-expression

similarity is defined as a function of the absolute correlation. We

adopt as similarity score: (i) the simple absolute Pearson

correlation (labelled as ‘‘cor’’), (ii) a more sophisticated version

with soft-thresholding, i.e., the similarity is defined as a power of

the absolute correlation (we adopt the default value six as in the

WGCNA R package), or (iii) the biweight midcorrelation (‘‘bicor’’

for short) [30,44], which is more robust to outliers than the

Pearson correlation, and (iv) the Maximal Information Coefficient

(labeled as MIC). MIC is a recent association measure based on

mutual information and belongs to the Maximal Information-

based Nonparametric Exploration (MINE) statistics [44–48]. In all

cases we obtain a weighted network with link strength ranging

from 0 to 1.

The Topological Overlap Measure (TOM) replaces the original

co-expression similarity with a measure of interconnectedness

(between pairs of nodes) based on shared neighbors [30,43]. TOM

can be seen as a filter for cutting away weak connections, thus

leading to more robust networks than WGCNA.

The Context Likelihood of Relatedness (CLR) approach [29]

scores the interactions by using the mutual information between

the corresponding gene expression levels, coupled with an adaptive

background correction step. Although suboptimal if the number of

nodes is much larger than the number of variables, it was observed

that CLR performs well in terms of prediction accuracy and some

CLR predictions in literature were recently validated experimen-

tally [49].

The Algorithm for the Reconstruction of Accurate Cellular

Networks (ARACNE) is another approach relying on mutual

information, which was originally developed for inferring regula-

tory networks of mammalian cells [28]. It starts with a graph

where each pair of nodes are connected if their association is above

a chosen threshold. In order to avoid the false positive problem,

Figure 13. Synthetic dataset T : correlation networks inferred by using (A) WGCNA [W], (B) (absolute) Pearson with FDR correction

at p-value 10{4 [C(10{4)] and (C) MIC [M]. Node label i corresponds to feature fi , node size is proportional to node degree and link colors identify
different classes of link weights.
doi:10.1371/journal.pone.0089815.g013
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that usually affects co-expression networks, we then apply the Data

Processing Inequality (DPI) procedure for removing the weakest

edge of each triplet, thus pruning the majority of undirected links.

A unique interface to all the mentioned algorithms is integrated

in the stability analysis tools in the nettools package, based on their

Bioconductor and CRAN implementations: minet for ARACNE

and CLR, WGCNA for WGCNA, TOM and bicor, and minerva for

MIC.

Results and Discussion

Stability is modularity invariant
We demonstrate the invariance of the NetSI family with respect

to network modularity in a controlled situation. We show that the

proposed stability evaluation framework is not affected by various

network structures for nine reconstruction algorithms. Moreover,

we demonstrate that this property is maintained both if we adopt

the HIM metric for the Sd indicator computation and we use the

two components H and IM separately.

Data generation. We created a set of networks Gm with 50

nodes each with m (where m ranges from 1 to 10) fully connected

subgroups, which are linked to each other with a single edge. For

m~1 we obtain a fully connected network (without loops), while

the resulting networks for mw1 are displayed in Fig. 5. For each

network Gm we report its modularity value and density in Tab. 1.

The simulated gene expression values corresponding to the

networks Gm are generated loading the corresponding adjacency

matrices in the Gene Net Weaver (GNW) simulator [50].

Specifically, the tool is used to create of simulated transcription

datasets after a random initialization of each network’s regulatory

dynamics through a pre-loaded kinetic model [23]. Moreover it is

possible to generate a steady-state dataset or a set of time series,

which describes the network response to a perturbation, followed

by perturbation removal until the steady state is reached. Thus, we

chose to generate in one shot 50 time-series (one for each sample)

with default parameter settings and to consider only the initial time

point, since t~0 corresponds to the wild-type steady state.

Summarizing, we generated 10 synthetic datasets having a

simulated expression level for 50 ‘‘genes’’ and 50 ‘‘samples’’.

Results. We inferred networks from the 10 datasets with nine

algorithms: ARACNE, CLR, cor, TOM, bicor, WGCNA and

MIC, where the last two were also used with a permutation-based

FDR filter (for details, see Subsection ‘‘FDR control effect on

correlation networks’’).

The stability analysis with three possible network metrics (HIM,

H and IM) on networks inferred with the nine mentioned

approaches is reported in Fig. 6. In all cases, the stability Sd varies

less than 0.06 across different modularity values, as detailed in

Tab. 2. Hence, the stability indicator is not affected by different

modular structures. However, reconstruction accuracy depends on

modularity (or density), as shown by a comparison with the gold

standard (Fig. 7), in which a lower distance from the gold standard

is found for sparser networks for all methods.

Inference on synthetic yeast-like networks
We investigated the behavior of the NetSI stability indicators for

different sample sizes on a yeast-like dataset, again simulated by

GNW.

Data Description. We considered a subnetwork of the Yeast

transcriptional regulatory network available in GNW, namely the

Table 3. Synthetic dataset T : stability (SHIM and SI
HIM) on networks inferred by MIC, WGCNA, and CORFDR(2).

A k SHIM CI (min; max) Range (min; max) SI
HIM CI (min; max) Range (min; max)

MIC LOO 0.008 (0.007; 0.008) (0.004; 0.011) 0.008 (0.008; 0.008) (0.003; 0.014)

MIC k10 0.052 (0.051; 0.052) (0.041; 0.067) 0.021 (0.021; 0.021) (0.014; 0.036)

MIC k4 0.055 (0.054; 0.057) (0.040; 0.071) 0.031 (0.031; 0.031) (0.022; 0.045)

MIC k2 0.139 (0.134; 0.142) (0.112; 0.158) 0.047 (0.047; 0.048) (0.035; 0.067)

WGCNA LOO 0.005 (0.005; 0.006) (0.001; 0.015) 0.008 (0.008; 0.008) (0.002; 0.023)

WGCNA k10 0.021 (0.020; 0.022) (0.011; 0.040) 0.028 (0.028; 0.028) (0.012; 0.064)

WGCNA k4 0.039 (0.037; 0.041) (0.020; 0.062) 0.046 (0.046; 0.047) (0.025; 0.088)

WGCNA k2 0.070 (0.065; 0.076) (0.037; 0.108) 0.070 (0.069; 0.071) (0.042; 0.117)

CORFDR(10{2) LOO 0.015 (0.013; 0.016) (0.005; 0.035) 0.017 (0.017; 0.017) (0.001; 0.047)

CORFDR(10{2) k10 0.023 (0.022; 0.025) (0.007; 0.074) 0.028 (0.027; 0.028) (0.002; 0.102)

CORFDR(10{2) k4 0.031 (0.028; 0.034) (0.010; 0.069) 0.034 (0.034; 0.035) (0.006; 0.096)

CORFDR(10{2) k2 0.045 (0.039; 0.054) (0.014; 0.107) 0.050 (0.048; 0.051) (0.006; 0.152)

CORFDR(5:10{3) LOO 0.029 (0.028; 0.031) (0.003; 0.048) 0.018 (0.018; 0.018) (0.000; 0.054)

CORFDR(5:10{3) k10 0.025 (0.024; 0.027) (0.004; 0.054) 0.024 (0.024; 0.024) (0.001; 0.083)

CORFDR(5:10{3) k4 0.025 (0.023; 0.028) (0.006; 0.056) 0.032 (0.032; 0.033) (0.004; 0.099)

CORFDR(5:10{3) k2 0.033 (0.028; 0.038) (0.008; 0.070) 0.044 (0.042; 0.045) (0.002; 0.121)

CORFDR(10{4) LOO 0.010 (0.008; 0.013) (0.000; 0.044) 0.013 (0.013; 0.014) (0.000; 0.045)

CORFDR(10{4) k10 0.010 (0.009; 0.012) (0.000; 0.053) 0.014 (0.014; 0.015) (0.000; 0.055)

CORFDR(10{4) k4 0.009 (0.007; 0.012) (0.001; 0.049) 0.014 (0.014; 0.014) (0.001; 0.054)

CORFDR(10{4) k2 0.009 (0.007; 0.013) (0.001; 0.031) 0.014 (0.013; 0.015) (0.001; 0.040)

Indicators SHIM and SI
HIM , 95% Student bootstrap confidence intervals and range for different instances of the MIC, WGCNA and CORFDR(2) networks for different

values of data subsampling.
doi:10.1371/journal.pone.0089815.t003
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InSilicoSize100-Yeast2 dataset with 100 nodes, originally a

DREAM3 benchmark, generating 100 samples with default

parameter configuration, including noise level, for wild-type

steady state (the synthetic dataset Y ).

Results. We randomly extracted 10 subsets of different

sample size N in f10,20,30,40,50,60,70,80,90,100g, replicating

the subset extraction procedure 50 times for each N. For each

combination of N resampling, we inferred the network with the

same nine algorithms used in the previous experiment.

As a general trend, stability decreases for larger sample size (see

Fig. 8). The SHIM stability curves for the two popular methods

ARACNE and CLR drop quickly after 20% of the sample size,

improving over Pearson and bicor. TOM and WGCNA are more

stable but require at least 50% of the data. The standard MIC-

based method with the default parameter (a~0:6) is much

smoothed by the FDR correction. Overall, the FDR corrected

methods are the most stable even for small samples. TOM and

WGCNA have the best internal stability SI
HIM (Fig. 9), followed by

the FDR-corrected methods.

Given that a gold standard is available for the simulated data in

Y , we can compare the stability performance with reconstruction

accuracy in terms of HIM and its components for the nine

methods (Fig. 10). On this dataset, accuracy is independent of

sample size, except for WGCNA and TOM which have an

optimal range (N~f30,40g), given by their soft thresholding

procedures. Note that the source Yeast subnetwork is unweighted

while all methods return a weighted network: a 10{3 threshold

was thus applied to binarize the reconstructed network before

computing the distances. Hence, MIC, cor and bicor perform

badly as they lack an internal thresholding procedure; the FDR

corrected methods have better but still mediocre results, slightly

improved by CLR. On this dataset, WGCNA-FDR yields sparse

networks (less than 20 edges) with small Hamming distances from

the gold standard as they both have low density; however they

have strongly different spectral structure from the gold standard,

Figure 14. Synthetic dataset T : representation of SHIM and SI
HIM stability indicators (with confidence intervals) for different

instances of the FDR-corrected correlation networks, CORFDR(10{2), CORFDR(5:10{3), and CORFDR(10{4), WGCNA and MIC
networks on the dataset T and for different values of data subsampling.
doi:10.1371/journal.pone.0089815.g014
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as captured by the IM component. Finally, ARACNE achieves fair

stability here as well as the highest accuracy.

The effect of FDR control on stability
We aim to assess differences in the stability of correlation

networks inferred by an ad-hoc set of synthetic signals similar to

expression data whenever inference is computed with or without

False Discovery Rate (FDR) control.

FDR control for correlation networks. For an introduction

to FDR methods, see for instance [51]. The procedure considered

in this paper is explicitly described in Fig. 11. The FDR control

defines a rule for choosing which edges to trust, and thus to keep,

Table 4. Synthetic dataset T : top ranked links for edge
weight stability Sw on networks inferred by WGCNA,

CORFDR(2~10{4), and MIC.

WGCNA CORFDR( ) MIC

fi{fj Sw fi{fj Sw fi{fj Sw

1 – 3 0.03 1 – 3 0.03 3 – 4 0.20

2 – 3 0.04 3 – 4 0.04 2 – 3 0.20

1 – 2 0.04 2 – 3 0.04 1 – 3 0.21

1 – 4 0.04 1 – 4 0.05 3 – 5 0.22

3 – 4 0.04 3 – 5 0.05 1 – 2 0.23

2 – 4 0.04 1 – 2 0.05 1 – 5 0.25

4 – 5 0.04 2 – 4 0.05 1 – 4 0.26

2 – 5 0.05 2 – 5 0.06 4 – 5 0.27

1 – 5 0.05 4 – 5 0.06 7 – 10 0.28

3 – 5 0.05 1 – 5 0.06 7 – 8 0.29

6 – 8 0.08 6 – 8 0.08 6 – 8 0.29

8 – 10 0.10 7 – 8 0.09 6 – 10 0.30

7 – 8 0.11 8 – 10 0.10 1 – 20 0.31

7 – 9 0.11 8 – 9 0.11 2 – 4 0.31

8 – 9 0.11 6 – 7 0.11 8 – 10 0.31

9 – 10 0.11 7 – 10 0.12 2 – 5 0.32

6 – 7 0.11 7 – 9 0.12 9 – 10 0.32

7 – 10 0.12 9 – 10 0.13 7 – 20 0.33

6 – 10 0.13 6 – 9 0.13 14 – 16 0.33

6 – 9 0.14 6 – 10 0.15 5 – 17 0.35

11 – 13 0.33 6 – 7 0.35

14 – 15 0.41 11 – 17 0.36

13 – 14 0.46 6 – 9 0.36

12 – 13 0.58 1 – 10 0.37

12 – 15 0.60 10 – 11 0.37

11 – 14 0.62 10 – 20 0.37

13 – 15 0.71 4 – 17 0.37

11 – 15 0.78 2 – 8 0.37

14 – 18 0.78 4 – 10 0.37

3 – 11 0.83 6 – 13 0.37

5 – 11 0.83 2 – 14 0.37

1 – 11 0.84 9 – 11 0.38

4 – 11 0.85 15 – 16 0.38

3 – 10 0.87 15 – 17 0.38

5 – 16 0.89 7 – 13 0.39

8 – 17 0.89 9 – 18 0.39

2 – 11 0.91 12 – 19 0.39

8 – 12 0.91 6 – 18 0.39

4 – 13 0.91 8 – 9 0.39

1 – 13 0.93 4 – 18 0.39

3 – 13 0.93 16 – 17 0.39

8 – 13 0.94 4 – 19 0.39

9 – 17 0.94 16 – 19 0.39

1 – 16 0.95 7 – 19 0.40

1 – 10 0.95 5 – 8 0.40

14 – 16 0.97 14 – 15 0.40

5 – 10 0.97 13 – 15 0.40

Table 4. Cont.

WGCNA CORFDR( ) MIC

fi{fj Sw fi{fj Sw fi{fj Sw

11 – 12 0.98 4 – 11 0.40

12 – 16 0.98 7 – 9 0.41

2 – 13 0.99 13 – 19 0.41

The links are ordered by Sw across all 20 resamplings of k10 cross validation, for
the three algorithms; the table includes the top 50 links for WGCNA and MIC,

and all 20 links found by CORFDR(2~10{4).
doi:10.1371/journal.pone.0089815.t004

Table 5. Synthetic dataset T : nodes ranked by stability
degree Sd on networks inferred by WGCNA,

CORFDR(2~10{4), and MIC.

WGCNA CORFDR( ) MIC

fi Sd fi Sd fi Sd

4 0.17 16 0* 3 0.08

10 0.18 17 0* 19 0.08

3 0.20 18 0* 1 0.08

1 0.21 19 0* 4 0.09

9 0.23 20 0* 8 0.09

2 0.23 3 0.03 10 0.09

5 0.24 1 0.04 5 0.10

7 0.24 2 0.04 2 0.10

6 0.24 5 0.05 17 0.10

8 0.25 7 0.07 20 0.10

11 0.40 8 0.07 15 0.11

13 0.40 6 0.09 9 0.11

15 0.43 9 0.09 13 0.11

12 0.45 10 0.09 11 0.11

14 0.48 4 0.13 16 0.11

18 0.55 15 4.42 12 0.11

16 0.60 14 7.05 7 0.11

17 0.68 12 22.82 6 0.12

20 0.70 13 26.05 14 0.13

19 1.15 11 41.83 18 0.13

The 20 nodes are ordered by Sd across all 20 resamplings by k10 cross
validation. (*) indicates that range and mean are both zero.
doi:10.1371/journal.pone.0089815.t005
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during the network reconstruction phase. An edge weight is given

by the correlation coefficient between the signal values of two

nodes h,k: ahk~C(h,k)~jcor(xh,xk)j, where cor is a correlation

function. If m is the sample size, we wish to estimate the chance

that a random permutation of the expression values may give a

correlation value higher than C(h,k), thus removing the edge

when this chance is larger than a permutational p-value 2~10{z,

where z is a chosen level of significance (typically z~3). In

practice, this test is implemented by counting how many times

C(h,k) is smaller than the correlation between s(xh) and t(xk),
where s and t are distinct permutations of m objects. We consider

here the absolute Pearson correlation at different 2 levels

CORFDR(2), when compared with WGCNA [30,43] with

default thresholding parameter, as well as with the Maximal

Information Coefficient (MIC), a non-linear correlation measure

defined within the Maximal Information-based Nonparametric

Exploration (MINE) statistics [45–47]. Note that the FDR

correction procedure can be implemented with different correla-

tion measures, such as WGCNA-FDR and MIC-FDR considered

in the previous section.

Data generation. In this example, the correlation networks

are inferred from a dataset T of 100 samples of 20 features

ff1, . . . ,f20g, via the Choleski decomposition (using the chol R

Figure 15. HCC-B dataset: CLR networks in the hairball representation inferred from the 4 subsets (A) Male Tumoral (MT), (B) Male
non Tumoral (MnT), (C) Female Tumoral (FT), and (D) Female non Tumoral (FnT). Links are thresholded at weight 0.1, node position is fixed
across the four networks, node dimension is proportional to the degree and edge width is proportional to link weight.
doi:10.1371/journal.pone.0089815.g015
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Figure 16. HCC-B dataset: CLR networks in the hiveplot representation inferred from the 4 subsets (A) Male Tumoral (MT), (B) Male
non Tumoral (MnT), (C) Female Tumoral (FT), and (D) Female non Tumoral (FnT). Each plot consists of six axes with lines connecting points
lying on the axes themselves. The axis a1 pointing upwards collects all the nodes with (unweighted) degree 0 or 1; a2 , the next axis moving clockwise,
is a copy of a1; the following two axes include all nodes with degree 2, while on the remaining two axes lie all nodes with degree 3 or more. Different
colors indicate different degree. Nodes on axes are ranked by degree. Lines between two consecutive axes show the network’s edges and edge color
is inherited by the node with smaller degree. Note the absence of links between nodes of degreee 1 and 2 in the FT case, and the smaller amount of
connections between higher degree nodes in the MnT case with respect to the other three cases.
doi:10.1371/journal.pone.0089815.g016

Figure 17. HCC-B dataset: mutual HIM distances for CLR inferred networks. Comparison of the four networks Male Tumoral (MT), Male non
Tumoral (MnT), Female Tumoral (FT) and Female non Tumoral (FnT) reconstructed from the whole corresponding subsets in Tab. (A) and in the
derived 2D multidimensional scaling plot (B).
doi:10.1371/journal.pone.0089815.g017
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function) of its correlation matrix MT , randomly generated

according to the following three constraints:

cor(fi,fj)&

0:9 for 1ƒijƒ5

0:7 for 6 ƒijƒ10

0:4 for 11 ƒijƒ15 ,

0
B@

where cor is the Pearson correlation. The correlation matrix

MT is plotted in Fig. 12: the correlation values in the three groups

defined by the above constraints represent true relations between

the variables, while all other smaller correlation values are due to

the underlying random generation model for MT .

Results. Starting from the dataset T , we built five correlation

networks, using MIC, WGCNA, and CORFDR(2) with p-values

2~10{2,5:10{3,10{4.

The three networks displayed in Fig. 13(A-C) were inferred with

WGCNA, CORFDR(10{4) and MIC respectively. WGCNA and

MIC generate two fully connected networks with a majority of

weak links, while CORFDR correctly selects only links within the

two disjoint sets of nodes ffi : 1ƒiƒ5g and ffi : 6ƒiƒ10g,
corresponding to the strongest correlations in the matrix MT .

Note that although both WGCNA and CORFDR(10{4)

employ cor internally, the two algorithms can lead to different

results. Indeed the soft thresholding procedure in WGCNA [43]

defines weights as aij~jcor(xi,xj)jb for b~6, while for

CORFDR(10{4) is aij~jcor(xi,xj)j if jF4
T (i,j)jƒ1, according to

the definition in Fig. 11.

Stability estimates are also less variable with the FDR corrected

methods. We compared k-fold cross-validation estimates of SHIM

and SI
HIM for the five networks, with k~1,2,4,10. Results are

presented in Tab. 3 and displayed in Fig. 14. On this dataset,

SHIM ranges over ½0:001,0:108� for WGCNA, ½0:004,0:158� for

MIC, and only over ½0:000,0:053� for CORFDR(10{4). Note that

estimates are both smaller and less variable for the smallest p-

value, as noise effects are filtered. Hence, the use of a FDR control

procedure helps stabilize the correlation based inference proce-

dure, improving the performance of WGCNA, already one of the

more robust options for real data [52].

Table 6. HCC-B dataset: SHIM and SI
HIM statistics for FnT network.

Algorithm k SHIM

SHIM CI
(min; max)

SHIM Range
(min; max) SI

HIM

SI
HIM CI

(min; max)

SI
HIM Range

(min; max)

ARACNE LOO 0.007 (0.006; 0.009) (0.002; 0.018) 0.008 (0.008; 0.009) (0.001; 0.045)

ARACNE k2 0.037 (0.030; 0.045) (0.007; 0.097) 0.032 (0.031; 0.033) (0.002; 0.179)

ARACNE k4 0.024 (0.021; 0.027) (0.004; 0.060) 0.022 (0.022; 0.023) (0.002; 0.134)

ARACNE k10 0.013 (0.012; 0.014) (0.003; 0.036) 0.014 (0.013; 0.014) (0.000; 0.081)

CLR LOO 0.022 (0.017; 0.027) (0.003; 0.048) 0.030 (0.028; 0.032) (0.001; 0.094)

CLR k2 0.094 (0.071; 0.117) (0.006; 0.257) 0.119 (0.113; 0.124) (0.006; 0.391)

CLR k4 0.062 (0.054; 0.072) (0.005; 0.203) 0.080 (0.078; 0.082) (0.003; 0.307)

CLR k10 0.032 (0.029; 0.035) (0.002; 0.093) 0.045 (0.044; 0.045) (0.000; 0.179)

cor LOO 0.021 (0.017; 0.026) (0.006; 0.051) 0.031 (0.030; 0.032) (0.002; 0.122)

cor k2 0.117 (0.104; 0.133) (0.059; 0.221) 0.145 (0.143; 0.147) (0.016; 0.431)

cor k4 0.070 (0.065; 0.078) (0.023; 0.172) 0.093 (0.092; 0.094) (0.008; 0.347)

cor k10 0.038 (0.036; 0.041) (0.014; 0.120) 0.053 (0.053; 0.054) (0.000; 0.279)

bicor LOO 0.026 (0.022; 0.031) (0.012; 0.057) 0.036 (0.035; 0.037) (0.004; 0.136)

bicor k2 0.117 (0.105; 0.132) (0.072; 0.227) 0.151 (0.148; 0.153) (0.015; 0.445)

bicor k4 0.076 (0.070; 0.083) (0.033; 0.180) 0.100 (0.099; 0.101) (0.007; 0.367)

bicor k10 0.044 (0.041; 0.047) (0.019; 0.126) 0.060 (0.059; 0.060) (0.000; 0.286)

WGCNA LOO 0.015 (0.013; 0.018) (0.005; 0.033) 0.019 (0.019; 0.020) (0.003; 0.078)

WGCNA k2 0.099 (0.086; 0.114) (0.035; 0.198) 0.094 (0.092; 0.096) (0.017; 0.341)

WGCNA k4 0.048 (0.043; 0.055) (0.015; 0.115) 0.057 (0.056; 0.057) (0.007; 0.251)

WGCNA k10 0.026 (0.025; 0.028) (0.006; 0.081) 0.033 (0.033; 0.034) (0.000; 0.187)

MINE LOO 0.035 (0.031; 0.039) (0.018; 0.054) 0.040 (0.040; 0.041) (0.003; 0.096)

MINE k2 0.138 (0.125; 0.157) (0.084; 0.277) 0.149 (0.146; 0.151) (0.020; 0.482)

MINE k4 0.150 (0.138; 0.161) (0.050; 0.259) 0.105 (0.105; 0.106) (0.007; 0.335)

MINE k10 0.067 (0.064; 0.071) (0.029; 0.138) 0.067 (0.066; 0.067) (0.000; 0.253)

TOM LOO 0.020 (0.017; 0.025) (0.007; 0.047) 0.025 (0.024; 0.026) (0.003; 0.108)

TOM k2 0.133 (0.115; 0.154) (0.046; 0.271) 0.117 (0.114; 0.119) (0.011; 0.467)

TOM k4 0.065 (0.057; 0.075) (0.017; 0.161) 0.073 (0.072; 0.074) (0.010; 0.348)

TOM k10 0.035 (0.033; 0.038) (0.007; 0.116) 0.043 (0.043; 0.044) (0.000; 0.268)

Values of the indicators SHIM and SI
HIM together with bootstrap confidence intervals and range for the inferred networks for different values of data subsampling.

doi:10.1371/journal.pone.0089815.t006
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Results for weight stability and degree stability are listed in Tab.

4 and Tab. 5, respectively, comparing the rankings for WGCNA,

CORFDR(10{4) and MIC for a k10 resampling. The stability

indicators give information consistent with the structure of the

starting correlation matrix MT : inference by WGCNA (Fig. 13 A)

exactly reconstructs the block structure with three subnetworks

(blue: Corr^0:9, green Corr^0:7, orange: Corr^0:4), while the

FDR corrected version (Fig. 13 B) selects only two subnetworks

corresponding to the two top correlated feature blocks of Fig. 12.

In the WGCNA case, the top 20 most stable links (Tab. 4) are

those of the two cliques F1,5~ffi : 1ƒiƒ5g and

F6,10~ffi : 6ƒiƒ10g with largest correlation values in MT .

The correct block structure is found by CORFDR(10{4) with

approximately the same values of Sw found by the WGCNA

network, where minor differences are due to the different

thresholding procedures.

The F11,15~ffi : 11ƒiƒ15g variables (mutual correlation of

about 0.3 imposed by design of MT ) are also mostly top ranked

links for WGCNA, but with larger instability values (0.33–0.78 vs.

0.03–0.14). The remaining links are the least stable, with Sw values

always larger than 0.83: they are the randomly correlated links of

MT . Similar but not identical results are found for the network M,

as expected given that the MIC statistic aims at detecting generic

associations between variables and it is expected to have reduced

statistical power with low sample sizes. The structure of the

network (Fig. 13 C) does not reflect the design linear correlation

structure. Indeed, several links are ranked differently as the

expected: although many links in the F1,5 and F6,10 groups are

highly ranked, some of them can also be found in much lower

positions (e.g. 6–7, 6–9, or 7–9 are ranked lower than 20; 7–10, 7–8

are ranked higher than 2–4, 2–5; 1–20, 7–20, 14–16, and 5–17 are

ranked within the top 20 links).

Similar considerations hold for the ranking of the most stable

nodes: for WGCNA, the top-ranked nodes are the F1,5 and the

F6,10 (with similar Sd values); those in F11,15 come next, leaving the

remaining five as the least stable with higher Sd values. These

nodes are trivially the most stable for CORFDR(10{4) as they are

never wired to any other node in any of the resampling and thus

their Sd values are void.

The nodes F1,5|F6,10 then follow in the ranking with small

associated values, and the nodes F11,15 close the standing with

definitely higher values. In fact, although the nodes F11,15 have

Table 7. HCC-B dataset: SHIM and SI
HIM statistics for FT network.

Algorithm k SHIM

SHIM CI
(min; max)

SHIM Range
(min; max) SHIM

I
SHIM

I CI
(min; max)

SHIM
I Range

(min; max)

ARACNE LOO 0.007 (0.006; 0.010) (0.001; 0.024) 0.009 (0.009; 0.010) (0.001; 0.053)

ARACNE k2 0.032 (0.024; 0.053) (0.008; 0.221) 0.036 (0.034; 0.039) (0.003; 0.405)

ARACNE k4 0.016 (0.014; 0.018) (0.005; 0.054) 0.019 (0.019; 0.020) (0.002; 0.137)

ARACNE k10 0.012 (0.010; 0.013) (0.002; 0.061) 0.014 (0.014; 0.014) (0.000; 0.120)

CLR LOO 0.022 (0.016; 0.032) (0.002; 0.093) 0.032 (0.030; 0.035) (0.001; 0.143)

CLR k2 0.069 (0.056; 0.082) (0.006; 0.154) 0.089 (0.084; 0.093) (0.005; 0.250)

CLR k4 0.057 (0.049; 0.066) (0.004; 0.190) 0.078 (0.076; 0.080) (0.003; 0.305)

CLR k10 0.040 (0.037; 0.044) (0.002; 0.177) 0.054 (0.054; 0.055) (0.000; 0.143)

cor LOO 0.019 (0.016; 0.024) (0.008; 0.044) 0.028 (0.028; 0.029) (0.003; 0.105)

cor k2 0.122 (0.111; 0.138) (0.079; 0.221) 0.144 (0.142; 0.147) (0.014; 0.346)

cor k4 0.067 (0.063; 0.073) (0.036; 0.141) 0.088 (0.087; 0.088) (0.007; 0.274)

cor k10 0.037 (0.036; 0.039) (0.019; 0.083) 0.051 (0.051; 0.051) (0.000; 0.196)

bicor LOO 0.022 (0.019; 0.027) (0.012; 0.049) 0.031 (0.031; 0.032) (0.004; 0.108)

bicor k2 0.116 (0.107; 0.130) (0.073; 0.217) 0.148 (0.146; 0.150) (0.012; 0.364)

bicor k4 0.069 (0.065; 0.074) (0.038; 0.137) 0.092 (0.091; 0.092) (0.009; 0.282)

bicor k10 0.040 (0.039; 0.042) (0.022; 0.085) 0.055 (0.055; 0.055) (0.000; 0.202)

WGCNA LOO 0.010 (0.008; 0.013) (0.003; 0.025) 0.013 (0.013; 0.014) (0.002; 0.070)

WGCNA k2 0.109 (0.095; 0.124) (0.026; 0.194) 0.070 (0.068; 0.072) (0.016; 0.269)

WGCNA k4 0.043 (0.039; 0.049) (0.008; 0.099) 0.039 (0.038; 0.039) (0.007; 0.182)

WGCNA k10 0.022 (0.020; 0.023) (0.005; 0.066) 0.024 (0.024; 0.024) (0.000; 0.141)

MINE LOO 0.031 (0.028; 0.034) (0.016; 0.051) 0.032 (0.031; 0.032) (0.003; 0.095)

MINE k2 0.138 (0.128; 0.149) (0.094; 0.216) 0.129 (0.128; 0.131) (0.007; 0.321)

MINE k4 0.201 (0.194; 0.207) (0.132; 0.257) 0.088 (0.088; 0.089) (0.005; 0.243)

MINE k10 0.077 (0.075; 0.080) (0.040; 0.138) 0.054 (0.054; 0.054) (0.000; 0.193)

TOM LOO 0.015 (0.011; 0.019) (0.004; 0.038) 0.018 (0.017; 0.019) (0.002; 0.105)

TOM k2 0.148 (0.128; 0.170) (0.023; 0.269) 0.092 (0.090; 0.095) (0.012; 0.386)

TOM k4 0.060 (0.053; 0.069) (0.011; 0.143) 0.053 (0.052; 0.054) (0.006; 0.272)

TOM k10 0.031 (0.029; 0.033) (0.006; 0.097) 0.033 (0.033; 0.033) (0.000; 0.212)

Values of the indicators SHIM and SI
HIM together with bootstrap confidence intervals and range for the inferred networks for different values of data subsampling.

doi:10.1371/journal.pone.0089815.t007
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degree zero in the network CORFDR(10{4) inferred from the

whole T , some links connecting them have weight over the

threshold in several resamplings. Note that the ranking values for

MIC span a narrow range, with most of the nodes in F1,5 in top

positions, in general yielding a weak relation with the structure of

MT .

The weight and degree stability analysis for the other

subsampling cases (LOO, k2 and k10) are almost identical and

thus not shown here.

miRNA networks for hepatocellular carcinoma
Investigating the relationships connecting human microRNA

(miRNA) and how they evolve in cancer is a key issue for

researchers in biology [53,54]. Hepatocellular carcinoma (HCC) is

a notable example [55,56]: we test the NetSI indicators on a

miRNA microarray hepatocellular carcinoma dataset with two

phenotypes as a tool for differential network analysis. As CLR was

used in the original paper, we applied this inference method and

compared its stability with the reconstruction algorithms previ-

ously employed on the synthetic datasets.

Data description. The HCC dataset (HCC-B) [31,32] is

publicly available at the Gene Expression Omnibus (GEO) http://

www.ncbi.nlm.nih.gov/geo with accession number GSE6857. The

dataset collects 482 tissue samples from 241 patients affected by

HCC. For each patient, a sample from cancerous hepatic tissue

and a sample from surrounding non-cancerous hepatic tissue are

available, hybridized on the Ohio State University CCC

MicroRNA Microarray Version 2.0 platform consisting of

11,520 probes measuring the expression of 250 non-redundant

human and 200 mouse miRNAs. After imputation of missing

values [57], probes corresponding to non-human (mouse and

controls) miRNAs were discarded; samples for one patient (AN)

were eliminated. We thus obtained a dataset of 240+240 paired

samples described by 210 human miRNAs (210 males, 30

females). Thus HCC-B can be split into four subsets by combining

the gender and disease status phenotypes, respectively for tissues of

male cancer patients (MT), female cancer patients (FT) and the

corresponding non cancer tissues (MnT and FnT).

For validation, we considered a second dataset (HCC-W)

recently used to derive a signature of 30 miRNAs for hepatocel-

lular carcinoma [58]. miRNA expression data for 166 subjects

Table 8. HCC-B dataset: SHIM and SI
HIM statistics for MnT network.

Algorithm k SHIM

SHIM CI
(min; max)

SHIM Range
(min; max) SHIM

I
SHIM

I CI
(min; max)

SHIM
I Range

(min; max)

ARACNE LOO 0.002 (0.002; 0.002) (0.001; 0.004) 0.002 (0.002; 0.002) (0.000; 0.011)

ARACNE k2 0.014 (0.011; 0.016) (0.003; 0.033) 0.012 (0.012; 0.012) (0.002; 0.056)

ARACNE k4 0.007 (0.006; 0.008) (0.003; 0.022) 0.008 (0.007; 0.008) (0.001; 0.046)

ARACNE k10 0.005 (0.004; 0.005) (0.002; 0.011) 0.005 (0.005; 0.005) (0.001; 0.027)

CLR LOO 0.002 (0.002; 0.002) (0.000; 0.009) 0.003 (0.003; 0.003) (0.000; 0.016)

CLR k2 0.033 (0.026; 0.041) (0.003; 0.104) 0.037 (0.035; 0.039) (0.002; 0.158)

CLR k4 0.018 (0.015; 0.022) (0.001; 0.067) 0.025 (0.024; 0.026) (0.001; 0.102)

CLR k10 0.009 (0.008; 0.010) (0.001; 0.034) 0.013 (0.013; 0.013) (0.001; 0.061)

cor LOO 0.003 (0.003; 0.004) (0.001; 0.020) 0.005 (0.005; 0.005) (0.000; 0.047)

cor k2 0.050 (0.044; 0.057) (0.028; 0.094) 0.065 (0.064; 0.066) (0.007; 0.219)

cor k4 0.031 (0.028; 0.034) (0.013; 0.080) 0.042 (0.041; 0.042) (0.005; 0.180)

cor k10 0.018 (0.017; 0.019) (0.007; 0.056) 0.025 (0.025; 0.025) (0.002; 0.134)

bicor LOO 0.004 (0.004; 0.004) (0.001; 0.011) 0.005 (0.005; 0.005) (0.000; 0.027)

bicor k2 0.046 (0.041; 0.054) (0.026; 0.103) 0.063 (0.062; 0.064) (0.009; 0.240)

bicor k4 0.031 (0.028; 0.034) (0.014; 0.093) 0.042 (0.042; 0.043) (0.005; 0.197)

bicor k10 0.018 (0.017; 0.019) (0.008; 0.050) 0.025 (0.024; 0.025) (0.002; 0.122)

WGCNA LOO 0.002 (0.002; 0.003) (0.000; 0.019) 0.003 (0.003; 0.003) (0.000; 0.039)

WGCNA k2 0.037 (0.032; 0.044) (0.009; 0.078) 0.044 (0.043; 0.045) (0.011; 0.181)

WGCNA k4 0.021 (0.019; 0.024) (0.006; 0.059) 0.026 (0.026; 0.027) (0.005; 0.132)

WGCNA k10 0.013 (0.012; 0.014) (0.003; 0.044) 0.016 (0.016; 0.016) (0.002; 0.100)

MINE LOO 0.005 (0.005; 0.005) (0.002; 0.008) 0.006 (0.006; 0.006) (0.000; 0.019)

MINE k2 0.132 (0.123; 0.143) (0.059; 0.199) 0.064 (0.063; 0.065) (0.006; 0.233)

MINE k4 0.052 (0.048; 0.058) (0.021; 0.126) 0.041 (0.040; 0.041) (0.004; 0.186)

MINE k10 0.019 (0.019; 0.021) (0.012; 0.055) 0.025 (0.025; 0.025) (0.002; 0.121)

TOM LOO 0.003 (0.003; 0.004) (0.000; 0.023) 0.004 (0.004; 0.004) (0.000; 0.052)

TOM k2 0.051 (0.043; 0.060) (0.011; 0.111) 0.058 (0.056; 0.059) (0.010; 0.253)

TOM k4 0.029 (0.026; 0.033) (0.007; 0.085) 0.035 (0.034; 0.035) (0.005; 0.193)

TOM k10 0.017 (0.016; 0.018) (0.003; 0.060) 0.021 (0.021; 0.021) (0.003; 0.138)

Values of the indicators SHIM and SI
HIM together with bootstrap confidence intervals and range for the inferred networks for different values of data subsampling.

doi:10.1371/journal.pone.0089815.t008
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(paired samples for 141 males and 25 females), acquired with the

CapitalBio custom two-channel microarray platform (692 probes),

are available at GEO accession number GSE31384. Data are

processed as normalized differential miRNA expression levels

between tumors and non cancerous liver tissue data [58].

Results. Using the CLR algorithm we first generated the four

networks inferred from the whole set of datasets and correspond-

ing to the combinations of the two binary phenotypes, discarding

links with weight smaller than 0.1. Two different representations of

the resulting graphs are shown in Fig. 15 and Fig. 16, respectively

in hairball and hiveplot layouts [59]. The second visualization

technique is particularly useful in highlighting differences between

networks by disaggregating the network structure according to

their node degree. The four networks have different structures:

more high degree links are present for tumoral tissues (graphs for

MT and FT: Fig. 16 A and C) than for controls (MnT, FnT).

Their density values, defined as the ratio between the number of

existing edges and the maximal number of edges for the given

graph), are 0.0153 (MT), 0.0092 (MnT), 0.0206 (FT) and 0.0121

(FnT). The mutual HIM distances for the four networks are

reported in Fig. 17 A, together with the corresponding

two-dimensional scaling plot (Fig. 17 B). The networks corre-

sponding to the female patients (and, in particular, the FT inferred

from cancer tissue) are different from those inferred for the male

patients.

In order to explore network reconstruction reliability, we then

computed the NetSI indicators and compared the results for CLR

with other six reconstruction algorithms ARACNE, cor, TOM,

bicor, WGCNA and MIC. The corresponding statistics for the

four subsets and different subsampling (LOO, k2, k4, and k10) are

listed in Tables 6–9 and summarized in Fig. 18. Both the

resampling strategy and phenotypes have an impact on the

network stability, differently for the seven methods: the networks

corresponding to male patients have smaller values for SHIM and

SI
HIM (and thus they are much more stable) than the correspond-

ing female counterparts. The leave-one-out stability for FT and

FnT is worse than for k10 and k4 stability on MT and MnT.

However phenotypes have a stronger effect than the resampling

strategy. Note that while control and cancer networks display

similar stability for males at all levels of subsampling ratio, the FT

network is more stable than the matching FnT control networks;

Table 9. HCC-B dataset: SHIM and SHIM
I statistics for MT network.

Algorithm k SHIM

SHIM CI
(min; max)

SHIM Range
(min; max) SHIM

I
SHIM

I CI
(min; max)

SHIM
I Range

(min; max)

ARACNE LOO 0.001 (0.001; 0.002) (0.000; 0.008) 0.002 (0.002; 0.002) (0.000; 0.017)

ARACNE k2 0.017 (0.014; 0.020) (0.004; 0.039) 0.012 (0.012; 0.013) (0.002; 0.054)

ARACNE k4 0.009 (0.008; 0.010) (0.002; 0.021) 0.008 (0.008; 0.008) (0.001; 0.039)

ARACNE k10 0.005 (0.005; 0.006) (0.001; 0.015) 0.005 (0.005; 0.005) (0.001; 0.033)

CLR LOO 0.002 (0.002; 0.002) (0.000; 0.018) 0.003 (0.003; 0.003) (0.000; 0.030)

CLR k2 0.040 (0.033; 0.051) (0.003; 0.146) 0.051 (0.048; 0.054) (0.003; 0.218)

CLR k4 0.024 (0.020; 0.029) (0.002; 0.099) 0.033 (0.032; 0.033) (0.001; 0.148)

CLR k10 0.011 (0.010; 0.013) (0.001; 0.048) 0.016 (0.016; 0.016) (0.001; 0.092)

cor LOO 0.003 (0.003; 0.004) (0.001; 0.013) 0.005 (0.005; 0.005) (0.000; 0.028)

cor k2 0.046 (0.041; 0.054) (0.029; 0.105) 0.063 (0.062; 0.064) (0.008; 0.254)

cor k4 0.028 (0.026; 0.030) (0.016; 0.052) 0.038 (0.037; 0.038) (0.005; 0.132)

cor k10 0.017 (0.016; 0.018) (0.008; 0.041) 0.023 (0.023; 0.023) (0.002; 0.101)

bicor LOO 0.004 (0.003; 0.004) (0.001; 0.013) 0.005 (0.005; 0.005) (0.000; 0.028)

bicor k2 0.049 (0.044; 0.058) (0.027; 0.112) 0.067 (0.066; 0.068) (0.009; 0.272)

bicor k4 0.029 (0.027; 0.031) (0.016; 0.061) 0.039 (0.039; 0.040) (0.004; 0.148)

bicor k10 0.018 (0.017; 0.019) (0.009; 0.042) 0.025 (0.025; 0.025) (0.002; 0.105)

WGCNA LOO 0.002 (0.002; 0.002) (0.000; 0.009) 0.003 (0.003; 0.003) (0.000; 0.020)

WGCNA k2 0.034 (0.029; 0.040) (0.009; 0.075) 0.038 (0.037; 0.039) (0.008; 0.175)

WGCNA k4 0.018 (0.016; 0.021) (0.006; 0.046) 0.022 (0.022; 0.023) (0.004; 0.122)

WGCNA k10 0.011 (0.010; 0.012) (0.002; 0.028) 0.013 (0.013; 0.013) (0.002; 0.075)

MINE LOO 0.006 (0.006; 0.006) (0.002; 0.010) 0.006 (0.006; 0.006) (0.000; 0.018)

MINE k2 0.173 (0.163; 0.183) (0.111; 0.242) 0.060 (0.059; 0.061) (0.004; 0.220)

MINE k4 0.065 (0.061; 0.070) (0.027; 0.117) 0.037 (0.036; 0.037) (0.003; 0.149)

MINE k10 0.020 (0.019; 0.021) (0.011; 0.046) 0.024 (0.024; 0.024) (0.001; 0.099)

TOM LOO 0.003 (0.003; 0.003) (0.000; 0.012) 0.003 (0.003; 0.004) (0.000; 0.028)

TOM k2 0.046 (0.039; 0.054) (0.011; 0.102) 0.049 (0.047; 0.051) (0.008; 0.246)

TOM k4 0.025 (0.022; 0.028) (0.007; 0.062) 0.029 (0.029; 0.030) (0.003; 0.168)

TOM k10 0.015 (0.013; 0.016) (0.003; 0.038) 0.017 (0.017; 0.017) (0.002; 0.102)

Values of the indicators SHIM and SI
HIM together with bootstrap confidence intervals and range for the inferred networks for different values of data subsampling.

doi:10.1371/journal.pone.0089815.t009
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this is evident when the size of the subset used for inference gets

smaller, in particular for k2.

To validate the interest of the stability analysis in terms of

biological relevance and reproducibility, we applied the Sw weight

stability indicator and ranked accordingly the links for networks

inferred with CLR on the MT, MnT, FT, FnT subsets. Our

hypothesis is that, in practical cases, stability may be either an

effect of real biological relevance of the link or highlight trivial

relationships between nodes. In the former situation, we expect

that stable links have a better chance of being reproduced on new

datasets. However, the comparison between miRNA studies is

often haunted by the significant changes across releases of the

annotation datasets. It is not uncommon that a miRNA may get

discarded or unified with others in a newer release, or that miRNA

symbols may just be remapped to different sequences.

As an experiment, we considered the first six top ranked edges

for the four networks, obtaining seven distinct pairs of miRNAs

according to the original annotation (Tab. 10). As reported by the

original GEO platform (accession number GPL4700), the HCC-B

dataset [31] used the miRBase June 2004 or information collected

from literature. The two miRNA hsa-mir-321No1 and hsa-mir-

321No2 had the same mature Sanger registry name in the

miRBase June 2004, and were eliminated and marked as tRNA in

the June 2013 version. Not surprisingly they define a link (link (a)

in the table) which is trivially the most stable for all four networks,

regardless of the phenotypes. Similarly the pairs of miRNA

defining the links (b) and (c) can be found to align to the same

sequences by considering miRBase June 2013. Note that (c) is

associated with the mature miR21, which is a known oncomir

[60]. The hsa-mir-219-1 in link (d) is one of the 20 miRNAs in the

signature proposed by Budhu and colleagues [31]; in our table it is

differently stable for gender, which is consistent with being

associated with estrogen regulation and overexpressed in breast

cancer [61,62]. The link (e) connects hsa-mir-326 with hsa-mir-

342; the first node is known to be involved in brain tumorigenesis

[63,64] and it is directly related to microRNA gene expression

profile of hepatitis C virus-associated hepatocellular carcinoma

[65]. The second node is associated with different cancers and

recently proposed as a diagnostic biomarker and therapeutic target

for HCC [66].

Both nodes defining link (f) are associated with cancer [67-69],

namely with HRC in hepatitis infection and cirrhosis [53,70]. A

search by sequence with the miRBase web-service [71] shows that

the two probes hsa-mir-192.2.3No1 and hsa-mir-215.precNo have

a high alignment score (e value: 0.02 [72]). In our analysis, the link

is very stable in tumours and definitely unstable on controls.

Link (g) connects hsa-mir-092.prec.13.092.1No2 and hsa-mir-

092.prec.X.092.2: it is the most stable for FT. The two miRNAs

are to known to be associated with chronic lymphocitic leukemia

[73], found respectively in genomics regions related to follicular

lymphoma and advanced ovarian cancer.

Finally, we compared a disease network inferred from HCC-B

[31] with the one from HCC-W using the stability indicators, also

considering the 30 miRNAs signature for hepatocellular carcino-

ma derived from this dataset [58]. As a preliminary step, data from

HCC-B were also normalized as ratios (tumor/non-tumor), then

Figure 18. HCC-B dataset: SHIM and SI
HIM stability indicators of the four subgroups MT, MnT, FT, and FnT. The networks are inferred

with six different algorithms for different values of data subsampling. MT: Male Tumoral. MnT: Male non Tumoral. FT: Female Tumoral. FnT: Female
non Tumoral. Confidence intervals are represented for each experiment. Points of increasing dimension are used to represent the diverse resampling
schema: Leave One Out, k-fold cross validation for k set to 2 (k2), 4 (k4) and 10 (k10) respectively.
doi:10.1371/journal.pone.0089815.g018
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we mapped the probes from the first platform into the second with

the Bowtie aligner v. 0.12.7 [74] with default parameters. A subset

of 120 matching miRNAs was found, which includes 12 miRNAs

from Wei’s signature. Separately for each dataset, we filtered for

probes having a homogeneous fold change for at least 80% of the

samples, obtaining 30 miRNAs for HCC-B and 37 for HCC-W,

for a total of 54 distinct miRNAs (13 were common). We inferred

by CLR two disease networks NB and NW on these 54 miRNAs,

and then computed the weight stability Sw with k~10 cross-

validation for each network.

Within the first 10 top ranked links for NB, half (5) included

nodes that also belonged to Wei’s original signature. Moreover,

the second most stable link for NB was also present in the same

position for the NW disease network, which also included 4

miRNAs from Wei’s signature in its top 10 most stable edges. The

common link is formed by the pair (hsa-mir-17,hsa-mir-20a),

which are both strongly associated with cancer, including

colorectal cancer [75,76]. It is worth noting that hsa-mir-17 is

the most strongly associated miRNA to hsa-mir-20a according to

PhenomiR 2.0 [77], being at distance v10 kb [71]. The same

range includes hsa-mir92a-1, mapping to the hsa-mir-092.pre-

c.13.092.1No2 probe mentioned above. A concordant overex-

pression of both hsa-mir-20a and hsa-mir-17 was found for this

link for both the two networks NB and NW .

Conclusions

We introduced the NetSI family of indicators for assessing the

variability of network reconstruction algorithms as functions of a

data subsampling procedure. Our aim here is to provide the

researchers with an effective tool to compare either the inference

algorithms or properties of the investigated dataset. The first two

indicators are global, giving a confidence measure over the whole

inferred dataset and are based on a measure of distance between

networks. In particular, we demonstrated the proposed framework

with the HIM distance, although it is independent from the chosen

metric. The other two indicators are local, associating a reliability

score to the network nodes and the detected links. They are of

particular interest when coupled with algorithms of proven

performance, being able to capture the effect of data perturbation

on the reconstruction process. We demonstrated their consistency

on two synthetic datasets, testing their dependency on different

inference methods, and also in comparison with the gold

standards. Finally we showed an application for disease networks

on miRNA hepatocellular carcinoma data; we found biological or

technical evidence for the most stable links in the networks, and

good reproducibility on a second dataset having relevant

differences in terms of microrray technology and annotation

platform.
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