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Abstract

Aggressive encounters occur between competitors (particularly males) throughout the animal kingdom, and in some
species can result in severe injury and death. Here we describe for the first time lethal interactions between male nematodes
and provide evidence that the expression of this behaviour is developmentally controlled. Males of the entomopathogenic
nematode Steinernema longicaudum coil around each other, resulting in injuries, paralysis and frequently death. The
probability of death occurring between pairs of males was affected by the developmental pathway followed, being much
greater among males that had passed through the infective juvenile (IJ, or dauer) stage than among males that had not.
Post-IJ males are found only in newly colonised hosts, typically with few competing males present. Killing those few
competitors may secure valuable resources (both females and a host cadaver for nourishment of offspring). Non-IJ males
develop in subsequent generations within a host cadaver, where the presence of many closely related male competitors
increases the risk:benefit ratio of fighting. Thus, passage through the IJ stage primes males for enhanced aggression in
circumstances where this is more likely to result in increased reproductive success. Fighting occurred between males
developing in mixed-sex social groups, indicating that it is an evolved trait and not an abnormal response to absence of
females. This is supported by finding high mortality of males, but not of females, across a range of population densities in
insect cadavers. We propose that these nematodes, with their relatively simple organization, may be a useful model for
studies of aggression.
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Introduction

Fatal fighting is rare in the animal kingdom. In most cases,

encounters between rivals for a mate or resources do not result in

serious injury or death, but are settled by displays or trials of

strength [1] [2]. The most dangerous fights are found in

invertebrates. Males both of fig wasps and of the parasitoid

Melittobia use their mandibles as weapons, severing limbs and

decapitating rivals [3] [4] [5] [6,7]. Examples of severe fighting

resulting in death are also found amongst spiders [8] [9] and ants

[10] [11], but have not previously been reported for any species of

nematode. Theory predicts that fatal fights generally occur when

individuals compete over a limiting resource (including females)

that has a major impact on their lifetime reproductive success [2].

Factors favouring the evolution of fatal fighting include a small

expected future value relative to the present, such as lower

expectation of mating in the future relative to the present [2] and

distribution of a resource in compact valuable masses, especially

when the competitors cannot leave the resource. These conditions

are experienced by fig wasps and Melittobia, for example [3] [2]

[12], and such circumstances also prevail for the entomopatho-

genic nematodes Steinernema spp, which develop and reproduce

inside a killed insect host. We have observed Steinernema males coil

around each other, and such encounters have frequently resulted

in injury and death of one of the protagonists (see supplemental

movies), leading us to suspect that these animals fight over

resources.

Steinernema spp. spend most of their life cycle feeding and

reproducing in the cadavers of insects that have been killed and

digested with the aid of their bacterial symbiont Xenorhabdus spp.

[13] [14]. Like many parasitic nematodes, transmission from host

to host is by means of a specialised infective juvenile (IJ) which

actively seeks out and enters insects. The long-lived, non-feeding IJ

is analogous to the dauer juvenile of Caenorhabditis elegans and other

free-living nematodes; like the dauer (but unlike most parasitic

nematodes) the Steinernema IJ forms facultatively in response to

crowding; otherwise, juveniles develop to adult within the host.

Thus, there are two distinct developmental pathways, the route

taken depending on environmental conditions at a critical point in

early development [15]. A large insect may support several

generations of Steinernema; juveniles experiencing good conditions

develop directly to adult, while those experiencing crowding

become IJs, leave the spent host and colonise a new one before
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becoming adult. Assuming a relatively synchronous invasion of the

new host insect, adults developing from IJs will reach sexual

maturity at approximately the same time. Females have a short

fertile period, as they quickly become incapacitated by juveniles

hatching inside them (endotokia matricida) [16]. These conditions –

an enclosed resource with declining availability of receptive

females - should result in strong competition between males.

Amongst free-living nematodes there are rare descriptions of

potentially damaging male-male interactions, and these have been

interpreted as failure of males to discriminate between males and

females [17] [18] [19]. Inflicting damage on rivals may be less

important in free-living nematodes, which can move in search of

fresh opportunities instead of competing. Parasites by their nature

are more constrained in their movement, but are also less

amenable to study. Indirect evidence of intraspecific competition

may be obtained from incidence data: in certain oxyurid parasites

inhabiting cockroach guts typically only a single pair (or at most

one male and several females) of a species occurs per host; it is

hypothesised that both males and females produce sex-specific

chemicals effecting the elimination of conspecifics from the host

[20] [21] [22]. We know of no reports of harmful interactions in

parasitic nematodes involving direct physical contact. However,

intra-sexual conflict has been reported in a parasitic worm from a

different phylum, the acanthocephalan (spiny headed worm)

Moniliformis dubius, where males place cement on their rivals’

genitals [23]. The authors argued that, as cementing effectively

removes rivals from the reproductive population, this behaviour

probably evolved through sexual selection, with cementing of the

female vagina (as a copulatory plug) as a pre-adaptation [23]. If

the lethal interactions we observe between males of Steinernema are

adaptive (a product of natural selection), a form of lethal combat

evolved to eliminate rivals, then we might expect these behaviours

to vary in response to internal or external conditions, as in other

animals competing for resources.

Here we describe lethal interactions between male Steinernema

longicaudum, and provide evidence that this fighting behaviour is

shaped by natural selection rather than an unintended by-product

of poor sex recognition, by investigating the effect of experience

and social environment on its expression. In particular, we test the

following hypotheses:

1: Developmental pathway affects the probability of fighting.

Males developing from IJs invade a new insect in the presence of

relatively few, possibly unrelated individuals and have a good

chance of monopolizing the available females, and so may

benefit hugely from fighting. Males developing directly to adult

without passing through the IJ stage are those of subsequent

generations, which will typically experience many rivals,

including full siblings and other close relatives [24], and so

have less to gain from fighting [25] [26] [27]. Thus, there may

be selection for plastic expression of life history or behavioural

traits in adults destined to encounter these divergent conditions

[28].

2: Males are less likely to fight when the number of competitors

is high. Environmental factors that are known to influence the

occurrence and intensity of fights between animals include the

value of the resource and the presence of competitors. As the

number of competing males increases, individuals can benefit

from fatal fighting only if their chances of winning are much

greater than their chances of losing, thus the frequency of fatal

fighting should decrease with increasing male numbers [29] [30]

[31] [32]. This is tested in vivo (in insects) and in vitro. In vitro, we

vary both the number of males in all-male groups and also in

mixed sex groups. This further allows us to confirm that fighting

occurs when females are present, and to test whether the

number of females influences the probability of lethal outcomes.

Most experiments are carried out in the semi-natural conditions

of a drop of insect blood (haemolymph); this provides a three-

dimensional environment for the worms whilst permitting

observation. The incidence of fighting was monitored during the

start of the experiments, but as fights did not always occur

immediately we use the outcome of fighting (paralysis or death)

after 24 hours as the main measure that damaging interactions

occurred. Since our first hypothesis was supported, other

experiments were conducted only with IJ-derived males.

Materials and Methods

Nematode culture and life cycle: Steinernema longicaudum CB2B

cultures were routinely maintained using standard procedures by

passage through late instar Galleria mellonella (wax moth) larvae [33]

at 27uC. Infective juveniles were stored in tap water at 20uC.

Steinernema spp are mutualistically associated with entomopatho-

genic bacteria Xenorhabdus spp. (Xenorhabdus ehlersii in the case of S.

longicaudum; [34]). The IJ carries cells of the symbiont in a

specialised intestinal vesicle [14]. Once in the insect haemocoel

(body cavity) the IJ expels cells of the symbiont from its gut. These

proliferate, leading to rapid death of the host [35]; in S. longicaudum

death may occur within 24 hours. The nematodes feed on a soup

of bacteria and digested insect contents. Adult males and females

reproduce by cross-fertilisation. Males have terminal spicules,

hardened needle-like appendages which are inserted into the

female’s vulva to open it during sperm transfer. As conditions

deteriorate, IJs are formed and leave the host; hundreds of

thousands of IJs can be produced in a single wax moth larva [24].

In S. longicaudum, first IJs begin to emerge from infected wax moths

after 8 days at 27uC.

Experimental infections: Wax moth larvae were exposed on

filter paper to varying numbers of S. longicaudum infective juveniles

(10 s to 100 s per insect) and then incubated at 27uC for 2–4 days

(N = 72 insects, in 13 independent experiments). Dead insects were

dissected in Ringer’s saline and the number of live and dead, male

and female adults of the first generation was recorded. At any one

dissection time, representative cadavers from each IJ concentra-

tion were dissected, to avoid confounding effects of incubation

time. Steinernema females initially lay eggs, but after some time eggs

hatch inside and kill the females [16]. S. longicaudum females do not

normally have internally hatched eggs within 4 days of infection at

27uC.

Hanging drop cultures: Adult nematodes used in experiments

were reared in hanging drops of insect haemolymph, so that their

social experience could be controlled. These cultures were initiated

using IJs from G. mellonella culture. IJs were surface sterilised using

hyamine and transferred to a hanging drop of G. mellonella

haemolymph [33], usually one IJ per 25 ml drop. The symbiotic

bacteria, released by the IJ as it recovered from its arrested state,

grew in the medium, providing suitable nutrition for the

nematodes and suppressing contaminating micro-organisms [36].

Paired fights: Unless otherwise stated, experiments were carried

out using naı̈ve worms that had developed from IJ stage in a

hanging drop of haemolymph and had not had prior social

experience before the fight was staged. Two adult males were

removed from their hanging drops and placed, in pairs, back in the

drop from which one member of the pair had been taken. Single

males were removed from their drops and replaced in the same

drops, to control for natural mortality. All adults used in an

experiment were always of the same age.

Lethal Fighting in Nematodes
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Immediate observations were normally made on a proportion of

the worms for up to 60 min, during which fighting attempts were

recorded. Observations were also made at various times; we

routinely report the outcome at 24 hours, as paralysis or death. A

worm was deemed paralysed if a portion of the body (varying in

extent and location) was not moving (see Supplemental movies);

there was frequently a distinct kink between paralysed and mobile

portions. Death of a nematode was confirmed by re-examination

of the nematode on the following day. Observations were made

using a Nikon Optiphot compound microscope.

Effect of developmental pathway on mortality of paired
males

To produce the nematodes used in the experiment, an adult

male that had matured alone in a hanging drop was placed

together with an adult female; eggs were laid into the medium,

where they hatched. To produce adult males that had not passed

through the IJ stage, juveniles that were amongst the first to hatch

were transferred into a hanging drop of haemolymph that had

previously been inoculated with bacteria-rich haemolymph. As

more progeny were produced the parental drops became crowded

and IJs developed, as expected under such conditions [15]. IJs

(which are morphologically different from non-IJs) were trans-

ferred individually to drops of conditioned haemolymph, as

described above for the non-IJs. This provided both categories of

adult males: two males that had passed through the IJ stage were

placed together (N = 83), and two males that had not passed

through the IJ stage were also placed together (N = 96). Single

male controls of each type were set up at the same time (N = 166

for IJ and 117 for non-IJ).

Mortality of S. longicaudum in multimale groups
Nematodes were reared individually from IJ and then different

numbers of naı̈ve males (1, 2, 4, 8, 16 or 32) were placed together

in a drop (N = 27, 23, 10, 4, 2 and 3, respectively).

Mortality of S. longicaudum reared in social groups
Drops of haemolymph were inoculated with varying numbers

(up to 15) of surface-sterilised IJs. These were incubated at 23uC
instead of the usual 27uC, in order to slow the rate of development

and provide opportunity to observe the nematodes before and

after killing occurred. The number and status of male and female

adults was assessed after 4 days. Of the 69 drops where males were

found, there was 1 male in 24 drops, with 2, 3, 4, 5 and 6 males in

20, 18, 1, 4 and 2 drops, respectively.

Statistical analysis
Statistical tests were carried out using Minitab16.0. Where

multiple worms were present (in insects and in multi-worm groups

in hanging drops), comparison of mortality between categories was

done using t-tests (two-tailed) for two categories, and ANOVA for

comparisons of more than two categories. Data were transformed

(arcsine square root or log(x+1)) prior to analysis. For experiments

involving just two males per hanging drop, data were totaled

across all replications and repetitions in time. Incidence of a state,

e.g. paralysis, death or production of progeny in different

treatments was compared by cross tabulation using chi-square.

Fisher’s exact test was used where one or more expected value was

less than 5.

Results

Male mortality is high and declines with increasing
population size in insects

Wax moth larvae were exposed to S. longicaudum IJs at a range of

concentrations, in order to see the effect of worm density on killing

in first generation males. The insects died within 2 days. When

they were dissected 2–4 days after initial exposure to nematodes,

the invading IJs had developed into adults, but a second

generation of worms had not yet been produced. Overall, the

proportion of males dead was four times higher than that of

females (males: 370/3104; 11.9%; females, 110/3708, 3.0%), a

highly significant difference between the sexes in mortality (chi-

square = 206.8, 1 d.f., P,0.001). Results were grouped by the

number of males per cadaver (Fig. 1). Differences between all

seven density classes were not significant (ANOVA F 6, 65 = 1.14,

P = 0.350). However, inspection of Fig. 1 indicates that male

mortality averaged above 20% for each of the four categories with

fewer than 50 males per cadaver (2–10, 11–20, 21–30 and 31–50

males/cadaver) but declined thereafter at each of the three higher

densities (51–80, 100–200, and .200). The difference in male

mortality in cadavers with fewer or more than 50 males was

significant (t = 3.30, P = 0.002). Fewer than 6% females died in all

Figure 1. Effect of competitor density on killing in vivo. Percentage mortality (mean 6 S.E.) of first generation adult males and females of the
nematode Steinernema longicaudum in cadavers of the wax moth Galleria mellonella, with varying density, classed by number of males found in each
cadaver. The number above the bar is the number of cadavers in each class.
doi:10.1371/journal.pone.0089385.g001
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categories (Fig. 1); there was no evidence that female mortality

differed with male density (ANOVA F 6, 65 = 0.57, P = 0.755;,

50.t = 20.15, P = 0.884). Dissection of insects provides a snap-

shot in time, without opportunity to observe behaviours that might

lead to death, and with limited opportunity to manipulate the

social or other conditions that might influence mortality. For these

reasons, subsequent experiments were carried out in drops of

insect haemolymph.

Fighting, paralysis and death between pairs of male S.
longicaudum in vitro

In order to explore the cause of death, nematodes were

observed directly in hanging drops of haemolymph. When IJ-

derived males were placed together in a drop, they frequently

coiled around each other: typically, one male coiled its tail around

the other male and pressed its copulatory spicules against it

(Fig. 2A, B). Bouts of coiling lasted from seconds up to 20 min, and

there could be repeated bouts. While the coiling is a behaviour

resembling copulation (a male coils around the female and inserts

its copulatory spicules into her vulva once it is located) and males

also coil around inanimate objects of suitable size such as needles

or surgical sutures, when a male coils around another male the

victim is often partially or totally paralysed before being released

(Fig. 2B; Supplementary Movies). Paralysed worms often main-

tained a ‘‘kinked’’ posture indicative of muscle contraction, in

contrast to the straight or curved posture of dead worms. Partially

paralysed worms were observed to twitch, or to engage in limited

movements of a part of the body. Such worms sometimes

recovered from the paralysis. When the victim was not gripped

too near the tail, it could counterattack, pressing its own spicules to

the cuticle of the aggressor coiled around it. Such counterattack

could result in rapid release of the victim, and in some cases

paralysis of the original aggressor (Movie S3). The cause of death is

unclear, but injuries included ruptured cuticle and/or ruptured

intestine and constriction of internal organs. However, some

paralysed or killed worms bore no visible injuries.

Fights did not always occur immediately, but we did not detect

any obvious pre-fighting behaviour or assessment. Death of one

worm was the usual outcome when pairs of males were left

together for 24 h. Figure 3 shows the time course of injuries in 36

pairs; by 24 hours, there was 1 male dead in 72% (26/36) of pairs,

with one male paralysed but still alive in an additional 4 pairs

(Figure 3). All of the 36 single male controls showed normal

activity. The difference between pairs and singletons was highly

significant both for death (chi-square = 40.696, 1 d.f., P,0.001)

and for paralysis and death (chi-square = 51.429, 1 d.f., P,0.001).

When virgin adult females were placed in pairs for 24 h, there was

one female dead in 3% (2/75) of pairs, a value not different to that

of single female controls (4%; 3/75; P = 0.817, Fisher’s exact test),

indicating that females do not kill each other and that death of

males is not a simple consequence of crowding.

In order to relate death of a male in a pair to the observed

‘‘fighting’’ and consequent paralysis, additional pairs were

observed until an encounter resulting in paralysis (either partial

or total) of one of them was noted. The pair was then separated

into ‘‘victor’’ and paralysed ‘‘victim’’ which were placed in

separate drops. After 24 h, 70% (26/37) of victims and almost

none (1/37) of the victors were dead (chi-square = 36.44, 1 d.f.,

P,0.001), supporting the conclusion that where death of a male is

observed after 24 h in a pair it is as a consequence of fighting

between the males.

Figure 2. Fighting nematodes. Fighting in Steinernema longicaudum
in a drop of insect haemolymph A. A male wrapped around the tail end
of another male (the victim). The victim is moving rapidly at this stage,
resulting in blurring of the image. B. The same pair ten minutes later.
Here, the victim has slowed movement and is paralysed. Scale bar:
1 mm.
doi:10.1371/journal.pone.0089385.g002

Figure 3. Time course of killing in IJ-derived males. Percentage
of pairs of male Steinernema longicaudum in which one male was either
paralysed or dead at various times after the males were placed
together; N = 36 pairs. None of the 36 single male controls was
paralysed or dead after 24 h.
doi:10.1371/journal.pone.0089385.g003
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Since partially paralysed worms sometimes recovered, and it

can be difficult to be certain that a nematode is dead, we assessed

the ability of males that had no or reduced movement following a

fight to inseminate a female. Victors and victims from 54 fights

were separated and each was placed with two females: 98% (53/

54) of victors and 15% (8/54) of victim males fertilised at least one

female, as evidenced by production of progeny, indicating that

most (though not all) of the worms scored as ‘‘paralysed or dead’’

were reproductively dead. The difference between victor and

victim was highly significant (chi-square = 76.282, 1 d.f., P,

0.001).

Developmental pathway affects subsequent mortality in
pairs of males

Fights were staged between pairs of adult males that had

developed from IJs and between pairs which had followed the

alternate developmental pathway, without passage through the IJ

stage. When adult males derived from IJs were placed together in

pairs for 24 h, there was at least one male dead in 58% of pairs,

and evidence of severe fighting (at least one male paralysed or

dead) in a total of 73% of pairs (Fig. 4); for non-IJ males, the

corresponding values were 13% and 16% of pairs, a highly

significant difference between developmental pathways for each

parameter (death: chi-square = 41.049, 1 d.f., P,0.001; paralysis

and death: chi-square = 61.016, 1 d.f., P,0.001; Fig. 4). No more

than 3% of single male controls were dead for either develop-

mental pathway (3/117 for IJ and 5/166 for non-IJ). There were

no additional single males paralysed but not dead. The difference

between pairs and singletons in the number of males dead was

highly significant for males that passed through the IJ stage (chi-

square = 34.239, 1 d.f., P,0.001) and not significant for those that

did not (chi-square = 2.064, 1 d.f., P = 0.151).

Males in single-sex groups suffer high mortality
Worms were reared individually from IJ and then different

numbers of naı̈ve males (up to 32) were placed together in a drop

with no females. As all drops were approximately the same size,

male number also reflects male density. The males coiled around

each other within minutes. After 24 hours, mortality ranged from

50% in pairs to 78% in 8-male groups (Table 1). There was no

difference in mortality due to number of males present (ANOVA,

F 4, 37 = 0.48, P = 0.747). In all groups of more than two males,

mortality increased over the next 1–3 days, with a maximum of

94% dead in the 16 male groups (Table 1). Again, there was no

difference in mortality due to number of males present (ANOVA,

F 4, 37 = 2.09, P = 0.103), though there was a trend for mortality to

increase with increasing group size. The maximum percentage

mortality expected due to fighting (assuming one male remains

alive) is 50% in pairs and 96.9% in groups of 32 males. Two-four

days after groups were formed, all but one of the drops with up to

16 males had only one male (or occasionally none) left alive (23/

23, 9/10, 4/4 and 2/2 for drops with 2, 4, 8 and 16 males,

respectively had 0–1 live male). The three drops with 32 males had

0, 3 and 6 males alive. However, eight of the nine surviving males

appeared injured.

Males (but not females) reared in social groups suffer
high mortality

The behaviour of nematodes developing on their own may

differ from that of nematodes developing in social groups. In the

previous experiments, mortality between pairs or groups of IJ-

derived nematodes placed together after developing alone was

higher than that seen in cadavers. Therefore an experiment was

carried out to quantify male mortality when reared together from

IJ under more normal social conditions, in mixed-sex groups

(males and females, with up to six males per group). Mortality of

males in groups with differing numbers ranged from 47.5% to

61.1% (Table 2); there was no effect of the number of males

present (ANOVA, F 2, 42 = 2.19, P = 0.125) on male mortality. The

mortality of males overall was 54.7%, a value similar to that of

males reared in isolation from IJ in the experiment on

developmental pathway. Mortality of single males was 8% (2/24).

In addition to the males, there were up to 8 females per group.

The mortality of females in multi-male groups (all groups with 2–6

males, combined) was nearly ten times lower than that of males in

these groups (5.7% compared to 54.7%), a highly significant

difference (t = 14.49, P,0.001). To ascertain if the number of

females present affected the number of males that died, multi-male

groups were classified as either ‘‘high combat’’ if only one (or no)

male remained alive in a group, and as ‘‘low combat’’ if more than

one male remained alive. The sex ratio (females: males) did not

Figure 4. Developmental pathway affects killing. Effect of
developmental pathway on fatal fighting in Steinernema longicaudum.
Percentage of pairs in which at least one male was paralysed or dead
24 hours after they were placed together. Differences between the IJ
and non-IJ pathways significant at P,0.001 (chi-square, 1 d.f. = 41.049
for dead, 61.016 for total affected (paralysed or dead). Numbers on the
bars are numbers of pairs. A maximum of 3% of single males suffered
paralysis or death, significantly different to pairs for IJ (chi-square
= 34.239, 1 d.f., P,0.001), but not for non-IJ (chi-square = 2.064, 1 d.f.,
P = 0.151)
doi:10.1371/journal.pone.0089385.g004

Table 1. Mortality (mean 6 S.E.) of male S. longicaudum 24 h
and 2–4 days after being placed in groups of 1–32.

% males dead (mean ± S.E.)

No. males/drop1 No. drops 24 hr 2–4 days

1 27 0 7.4

2 23 50.063.21 50.063.21

4 10 65.067.64 72.565.83

8 4 78.169.38 87.560.00

16 2 53.1615.63 93.860.00

32 3 77.165.51 90.665.41

1Males were reared separately in hanging drops each inoculated with one
infective juvenile before being placed in groups.

Lethal Fighting in Nematodes
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differ between levels of combat (high: mean 6 SE 0.6360.70,

N = 34; low: 0.5960.17, N = 11; t = 0.20, P = 0.842). There was

also no difference between combat categories in the proportion of

groups with at least one female present (low combat 63.6% (7/11),

high combat 85.3% (29/34); Fisher’s exact test, P = 0.19),

indicating that the level of combat was not affected by the

presence or absence of females in the group.

Discussion

Mortality for male S. longicaudum was four times as high as for

females in recently invaded insects. While we cannot directly

observe what takes place inside an insect, males of this species can

be seen to kill each other in the semi-natural environment of a

drop of insect haemolymph. We infer that killing is the cause of

high male mortality in the insect also, and argue that this

behaviour has evolved to remove competitors.

Factors favouring the evolution of fatal fighting include

competition for valuable resources, particularly compact, defen-

sible resources which the males cannot leave [2,3]. These

conditions exist for Steinernema males. A single insect cadaver can

support several generations and produce up to 300,000 nema-

todes, representing a substantial reward for a founding male that

can monopolise all the founding females by dispatching the limited

number of other males likely to be present in the founder

generation resulting from invasion of the host by IJs. The high

number of males in subsequent generations produced through the

non-IJ pathway [24] means that reward to risk ratio for fighting

would be much lower, as a higher number of opponents must be

defeated. As predicted, there was a large difference in killing

between males that developed from IJs and those that did not. In

more than half of the pairs of IJ-derived males, one killed the

other, while in pairs of males that had developed directly there was

little evidence of killing. Since in our experiments males of both

types were reared and tested under identical conditions, the

difference in fighting must be due to developmental pathway (or to

the conditions in early juvenile life that influenced the pathway)

rather than to the prevailing conditions at the time of fighting.

Thus, passage through the IJ stage primes males for enhanced

aggression in circumstances where this is more likely to contribute

to enhanced reproductive success. We see the difference in fighting

between IJ-derived and non-IJ males as strong evidence that fatal

fighting is an adaptive behaviour in these nematodes, evolved

under selection pressure for reproductive success, and that male

death is not an unintended outcome of same-sex sexual behaviour

due to poor sex recognition [37].

Other evidence that mistaken identity is not the cause of the

damaging male-male interactions in S. longicaudum comes from the

extreme outcome of the interactions, the fact that they occur even

in the presence of females and differ in form from copulation

behaviour. The interactions also conform to several predictions

based on theoretical assumptions regarding the adaptiveness of

intraspecific fighting (Zenner & Griffin, unpublished). Lack of sex

discrimination may be favoured where costs of a homosexual

encounter are small [38], as appears to be the case in C. elegans. In

some strains of C. elegans, males in all-male groups place a

copulatory plug on the excretory pore of another male, resulting in

shortened life-span, such that pairs of males had a median lifespan

of 15 days compared to 20 days in males kept on their own [17]. In

another free-living nematode, Oncholaimus oxyuris, where males

inseminate females by puncturing the cuticle, males also insert

their copulatory spicules into the anus or through the cuticle of

another male [19]. Adverse effects of puncturing on male

reproductive potential or lifespan were not investigated [19].

Clearly, male-male encounters are costly in S. longicaudum, resulting

in immediate paralysis (Supplemental Movies) followed by death

within hours; even the male originating the encounter may be

killed. Sex recognition factors would be expected to evolve under

this kind of selection pressure [39]. Animals may engage in sexual

interactions with members of the same sex when members of the

opposite sex are absent or scarce- the ‘‘prisoner effect’’, but such

behaviour is expected to disappear when members of the opposite

sex are available [40]. In C. elegans, males plugged each other only

in all-male groups [17], while in S. longicaudum attacks occurred

under all social conditions: in pairs, in all male groups, and in

mixed sex groups. Moreover, the nature and outcome of the

encounter between two males differs from that between a male

and a female. On encountering a female of its own species, a

steinernematid male wraps its entire body around it and frequently

changes position, seeking the vulva. In contrast, on encountering

another male he wraps only his tail end around the victim’s body,

does not shift position, but grips tightly, until the victim reduces

movement. We found no evidence of negative interactions

between females, either by direct observations or from the

outcome of encounters. Amongst animals in general, it is males

that compete as they can increase their reproductive output by

removing rivals [1] [2]; moreover, in Steinernema, the male’s ability

to coil tightly around another worm and possession of hardened

spicules, both features evolved for copulation, provide it with

‘‘weaponry’’ lacking in females.

The reduced male mortality at high density of competitors

(cadavers occupied by more than 50 males) is as predicted; at such

high density of competitors there is lower probability that a

victorious male will increase its probability of mating, and fighting

wastes time that could be spent in mating [29] [41] [42]. However,

there was little evidence that increased competitor number

reduced fighting in haemolymph, either when males were reared

in mixed-sex groups or placed together in multi-male groups. It is

difficult to make direct comparisons of crowding between drops

(about 25 ml liquid) and insects weighing on average 250 mg. One

possible reason for the difference between in vivo and in vitro

experiments is that the restricted area of the drop, and its rather

uniform liquid medium, provides less opportunity for a male to

avoid an attack than does the insect cadaver. As male density

increases so too does the encounter rate, counteracting reduced

aggression at intermediate densities [12] [29] [41]. This is

supported by the fact that the overall kill rate was higher in vitro

than in vivo.

The level of fatal fighting recorded in our experiments may be

unusually high as a result of the unnatural experimental

procedures. Males used in most experiments were reared in

isolation, which may affect adult behaviour. Rearing C. elegans in

Table 2. Mortality (mean 6 SE) of S. longicaudum males and
females developing together for 4–5 days in hanging drops of
insect haemolymph inoculated with infective juveniles.

% nematodes dead (mean ± S.E.)

No. males/drop No. drops Males Females

1 24 8.3 5.9

2 20 47.565.71 6.365.09

3 18 61.164.04 5.660.00

4–6 7 58.669.31 4.862.65

All multi-male (2–6)45 54.763.40 5.762.40
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isolation had widespread cellular and behavioural consequences,

and affected the development of neuronal connectivity [43], while

Drosophila that had experienced social isolation displayed increased

aggression [44]. However, while social isolation during develop-

ment may have exacerbated aggression, males reared in mixed-sex

groups also killed a high proportion of competitors. A second

factor that may have exacerbated the level of fatal fighting overall

is the relatively small size of the arena, with less opportunity for

retreat [9] [45] [46] than may be found in many host insects.

Nevertheless, there is evidence that killing takes place in a wax

moth larva- a relatively large insect in which it should be possible

for worms to avoid each other.

Fatal fighting in S. longicaudum is profoundly influenced by the

male’s developmental experience and to a lesser extent by its

environment including population density (in insect), as shown

here, as well as by its mating status, prior victory and residency

(Zenner & Griffin, unpublished data). There are thus several

factors influencing the male’s decision whether to fight. Most

studies on aggression and fighting have been done with animals

with more complex nervous systems, such as vertebrates and

insects. However, even animals without a centralised nervous

system such as anemones appear to use logical decision rules in

contests [47] [48]. Despite the relatively small number of neurons

compared to other animals, the C. elegans male is capable of

surprisingly complex and sophisticated sexual behaviour that

involves integrating information from the environment and the

worm’s physiological state [49] [50] [51]. Thus, it is not surprising

that a ‘‘simple’’ parasitic nematode is capable of such sophisticated

behavioural strategies as are described here.

Across taxa, early experience profoundly affects the behavioural

phenotype expressed by animals in later life [52] [53]. The

probability of Steinernema males fighting was greatly influenced by

the developmental pathway they had followed - whether or not

they had passed through the IJ stage, which is triggered at an early

stage in development. In C. elegans, passage through the

functionally analogous dauer stage resulted in adults with

differences in life history traits, including extended adult life span

and increased progeny production compared to non-dauer adults

[54]; an example of developmental history programming adult

physiology and behaviour through epigenetic mechanisms [54]

[55]. The availability of a simple tractable nematode model may

facilitate the study of effects of developmental and social history on

aggression.

There is a growing body of evidence that similar neural

mechanisms are at work from worms to humans even in

coordinating complex behaviours [56], making the relatively

simple nematodes attractive for studies of fundamental processes

underpinning for example fear and anxiety, and diseases such as

Alzheimer’s and Parkinson’s [57] [58]. The extensive body of

knowledge of C.elegans genetics, neurochemistry and neural

circuitry has allowed tremendous advances to be made regarding

the neural underpinning of behaviour from environmental

stimulus to behavioural expression, influenced by motivational

state [59] Increasingly, studies on other nematodes complement

and build on the knowledge-base of C. elegans. Steinernema spp are

increasingly used as model organisms for addressing questions

regarding symbiosis and parasitism, for example [60] [61].

Genomes of five Steinernema species have been sequenced and

annotated [61] facilitating this investigation. We have detected

fighting in several Steinernema species in addition to S. longicaudum

(O’Callaghan, Zenner, Griffin, unpublished data), suggesting that

it is a characteristic of the genus. Our demonstration of aggressive

interactions in Steinernema means that a nematode is now available

to complement arthropod models [62] [63] for testing hypotheses

about aggression, and exploring neural mechanisms and proximal

cues in fighting.

Supporting Information

Movie S1 Tailgrapple: This is a typical fight between two males.

Initially, both are moving normally. Then one wraps its tail end

around the tail end of the other male. The ‘‘wrap’’ lasts only a few

seconds. The released victim gradually ceases to move the

posterior part of its body, so that by the end of the clip only the

anterior one-third is moving normally. The victor contacts the

victim several times using its head or tail, as if checking for

movement.

(AVI)

Movie S2 Headgrab. This movie opens with two males moving

normally. After about a minute, one male wraps its tail around the

anterior end of the other male and coils tightly. Initially, the victim

thrashes strongly as if to gain release, but within 30 seconds has

almost ceased moving. The victor unwinds partly and briefly

touches the victim’s tail with its head, as if to check that it is

incapacitated. It then fully releases its hold. The victor contacts the

victim again several times. The victim remains largely inactive and

abnormally bent at both head and tail ends.

(AVI)

Movie S3 Successful counterattack. When this movie opens, one

worm has its tail coiled about the tail of the other; soon, it appears

that the two males are entangled by their tails. For a short while,

we can see that the worm on right of frame is grasped by the worm

on left, but at around 40 seconds into the clip this changes, so that

worm on the left is now the victim. When released, the victim is

moving feebly; the victor leaves.

(AVI)

Movie S4 Unsuccessful counter-attack. This movie opens with

two males moving normally. One wraps its tail around the anterior

end of the other, leaving the victim’s tail free. The victim now

brings its own tail into contact with the aggressor’s body and is

soon released. However, it appears to be too late, as within seconds

of being released the victim has ceased activity apart from some

weak movements of the head.

(AVI)
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