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Abstract

Prediction of patient-centered outcomes in hospitals is useful for performance benchmarking, resource allocation, and
guidance regarding active treatment and withdrawal of care. Yet, their use by clinicians is limited by the complexity of
available tools and amount of data required. We propose to use Disjunctive Normal Forms as a novel approach to predict
hospital and 90-day mortality from instance-based patient data, comprising demographic, genetic, and physiologic
information in a large cohort of patients admitted with severe community acquired pneumonia. We develop two algorithms
to efficiently learn Disjunctive Normal Forms, which yield easy-to-interpret rules that explicitly map data to the outcome of
interest. Disjunctive Normal Forms achieve higher prediction performance quality compared to a set of state-of-the-art
machine learning models, and unveils insights unavailable with standard methods. Disjunctive Normal Forms constitute an
intuitive set of prediction rules that could be easily implemented to predict outcomes and guide criteria-based clinical
decision making and clinical trial execution, and thus of greater practical usefulness than currently available prediction tools.
The Java implementation of the tool JavaDNF will be publicly available.
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Introduction and Background

Sepsis and Critical Care
Among inflammatory illnesses, pneumonia often presents as

sepsis, defined as infection accompanied by systemic signs and

symptoms of infection [1], including rapid heart rate, rapid

respiratory rate, and fever. Approximately 750,000 patients

develop severe sepsis each year in US, with a hospital mortality

rate of 28.6%, or 215,000 deaths per year [2]. A significant

number of these patients have pneumonia [3]. Interventions for

severe sepsis that decrease morbidity and mortality could

profoundly impact public health [4]. There is ample pre-clinical

and clinical evidence that immunomodulation improves the

outcome of patients at higher risks of death, yet pre-clinical data

and simulation have also indicated that harm may ensue from

targeting some subpopulations of patients [5–7]. Early detection of

patients at high risk of developing organ dysfunction and death has

proved challenging.

Tools to predict the outcomes of critical illness have been

developed for three decades [8–12]. Most of these prediction tools

are logistic regression models, presumably because of their

popularity and ease of interpretation of odds ratios associated

with predictors of outcome. Yet, logistic regression is intolerant of

missing data, does not readily deal with correlated data, and it may

be difficult to quickly generate a prediction for the non-expert. A

desirable prediction tool should possess the following properties:

discrimination (the ability to classify the outcome of patients that

who will develop hospital mortality and who will not), learnability

(the ability to achieve the discrimination from moderate quantity

of data and few features, especially in the early detection of critical

care where fewer data are available), completeness (explore the

solution space as completely as possible under appropriate

assumptions), transparency (not behave as a ‘‘black box’’), and

having the ability to be easily interpretable by the end-user,

typically a non-expert.

We propose to use short Disjunctive Normal Form (DNF;

‘‘OR’’ of ‘‘AND’’) as an appropriate representation of the

hypothesis space to predict critical care outcomes because 1)

DNF is a high order boolean function that examines potentially

complicated relationships between predictors and outcomes, 2)

DNF offer great flexibility and allows identification of unforeseen

interactions between predictors, 3) DNF is a natural form of

knowledge representation for humans to interpret and they

provide clinical insights and clear rules to assist in decision

making, 4) DNF is scalable to large or small datasets. A short DNF

increases interpretability of the rules and mitigates overfitting bias.

The aim of this study was to illustrate the ability of DNF to predict

hospital and 90-day mortality within 2 days of admission in

patients with community acquired pneumonia.

Related work
Previous models have been limited by retrospective design, [13–

16] the dependence on large hospitalization data [13–19], the lack

of interpretability of complex models [16], restricted applicability

to single study sites [15,18,20], and bias to certain patient

populations [15,16,18]. Time dependent techniques as alternatives
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to standard Cox proportional hazard models [21] and dynamic

microsimulation [22] have also been published [23] [24]. Both

microsimulation and Markov transition kernels derived in these

publications are learned from population-level inference and are

not instance-based (i.e. patient-specific). We also have the intuition

that, outside the framework of a clinical study, clinical data are

collected on the basis of perceived clinical need and thus

missingness is highly likely not random. Accordingly, there is a

very good case to be made that models based on instances might

perform better than population models.

From a computational point of view, existing work on outcome

prediction models in the clinic learn from a training data set and

test their performance using a test data set, such as support vector

machine (SVM) regression [25], decision tree classification [26],

neural network [27,28], recursive partitioning [29], linear stepwise

regression [30], support vector regression [31], least-squares

regression [31][32], and least angle regression [31]. This body of

work focuses on the prediction quality in a cross validation

manner. A general flaw associated with models based on these

techniques is the absence of clinically meaningful and interpretable

functions. Such easily applicable rules would be very desirable

indeed in contexts where protocolization of medical decision

making, real-time rule-based alerting, or resource allocation is

important. Rule induction algorithms, such as decision tree

algorithm, [33] and ordered list of classification rules induction

[34] can also mine if-then rules. While decision trees can be

converted to DNF, the function forms are less flexible due to the

constraints of tree structure. Another key difference is that our goal

focuses on learning the shortest DNF while decision trees aim at

either the fast computational efficiency (heuristic algorithm) or

prediction performance (cross-validation test and tree pruning).

Sequence analyses using logic regression [35] and Monte Carlo

logic regression [36] adaptively identify weighted logic terms that

are associated with outcomes; the weakness shared by the random

sampling algorithm is the incomplete exploration of the entire

hypothesis space.

Materials and Methods

The GenIMS study cohort
Patients with community acquired pneumonia (CAP), a

common cause of sepsis, were recruited as part of the Genetic

and Inflammatory Markers of Sepsis (GenIMS) study, a large,

multicenter study of subjects presenting to the EDs of 28 teaching

and non-teaching hospitals in 4 regions in the United States

(Western Pennsylvania, Connecticut, Michigan, and Tennessee)

between November 2001 and November 2003. Eligible subjects

were w18 years and had a clinical and radiologic diagnosis of

pneumonia, as per the criteria of Fine, et al. [21]. Further details

on inclusion and exclusion criteria are provided elsewhere [22].

The GenIMS study was approved by the Institutional Review

Boards of the University of Pittsburgh and all participating sites.

The current study used fully de-identified data and was approved

by the University of Pittsburgh IRB.

Of the 2320 patients enrolled, we restricted our analysis to 1815

subject admitted to the hospital and with measurements of serum

inflammatory markers data on enrollment day. Our primary

outcomes were all-cause mortality at hospital discharge and at 90

days after enrollment.

Measurements
The dataset included demographic information, diagnostic

information as to bacterial etiology and anatomical site of sepsis,

admission APACHE III as an indicator of overall disease severity

[23], organ level physiologic variables to quantify organ dysfunc-

tion, routine laboratory markers, and interventions. Relevant to

our analysis, the inflammatory markers IL-6, IL-10, tumor

necrosis factor (TNF), and lipopolysaccharide binding protein

(LBP) were collected on days 1, 2, 3, 4, 5, 6, 7, 8, 15, 22 and 30

while patients were still in the intensive care unit. An extended set

of coagulation studies was collected on day 1, as well as an array of

fluorescent antibody cell sorting (FACS) markers to quantify

different immune cell populations on day 1. Finally, DNA

information on 27 single nucleotide polymorphism (SNP), each

segregating the study population in non-overlapping binary or

ternary genotypic categories, was also collected. There were

chosen because they were previously shown or suspected to have

prognostic value in sepsis [24,37–39].

Learning the classifier as Disjunctive Normal Form (DNF)
Conceptually DNF is a disjunction of conjunctions where every

variable or its negation is represented once in each conjunction.

The learning of DNF is a machine learning technique to infer

Boolean function relevant with a class of interest. It has been

extensively used in electric circuit design, information retrieval

[40], chess gaming [41], and so on. Formally, a Disjunctive

Normal Form (DNF) is a standardization boolean function, which

is a disjunction of conjunctions, where the conjunctions consist of

one or more positive and negative literals (statement about the

data). Any given boolean function f : f0,1gd?f0,1g can be

converted into an equivalent DNF. The following is an example

DNF formula:

f (x1,x2,x3)~

(x1 AND x3) (x1 AND :x2 AND x3) x2

ð1Þ

where ‘:’ denotes negation, and ‘xi’ denotes a binary literal,

indicating whether a particular test ‘‘Feature~Value’’ is true. A

DNF formula is essentially a set of Boolean logic if-then rules,

describing how the Boolean outcome is calculated based on

Boolean inputs.

DNF are traditional binary classifiers that predict Boolean

outcomes from instance-based data. The size of DNF functions is

2-dimensional: the number of conjunctive clauses and the

maximum number of literals in each clause, thus a DNF is usually

represented as k-term n-DNF, where k and n are the number of

clauses and maximum number of literals respectively. In DNF

learning, k and n are usually regularized because, without

constraints, k and n tend to become very large, result in

overfitting, thus compromising generalizability. Finding the

minimum size DNF formula is a well-known NP-Complete

problem [42,43]. There is no polynomial time learning algorithm,

and existing practical solutions usually sacrifice completeness for

efficiency. The existing heuristic or approximation approaches fall

into deterministic [40,44,45] and stochastic algorithms [41,46].

The deterministic methods include bottom-up schemes (learning

clauses first and building DNF in a greedy way) and top-down

schemes (converting DNF learning to a Satisfiability problem).

Stochastic methods randomly walk through the solution space to

search for clauses but are not guaranteed to yield optimal

solutions. Our group developed two heuristic algorithms to

accelerate the DNF learning by narrowing the solution space

under the domain assumptions: standalone DNF learning, and

monotone DNF learning (MtDL), described more fully in

Appendix S1.

Considered as a core algorithm in concept learning, DNF suffer

from shortcomings: 1) the learnability of DNF has been a

Prediction of Patient Hospital Mortality
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fundamental and hard problem in computational learning theory

for more than two decades, 2) DNF are sensitive to errors in data,

as are all Boolean function learning algorithms, 3) without the

constraint of size, DNF may suffer from a severe overfitting bias.

Our group has been developing algorithms for accelerating and

optimizing DNF learning and has been applying the techniques to

biomedical data. We specifically focus on short DNF learning to

learn meaningful rules as well as to avoid overfitting.

Model hierarchy and benchmark classifiers
We construct a hierarchy of models 1 to 8 incrementally

including features pertaining to different domains of data (Table 1).

Model 8 is the most complete model containing all available

features; Model 7 is a complete set of features, but restricted to

data available only on day 1 of hospital, while Models 1 to 6

include selective domains of features. No data beyond day 2 post-

enrollment were included in the predictions.

To compare the performance of the DNF learning algorithm, a

number of other classifiers were constructed. These include simple

Logistic Regression, Naive Bayes, SVM, Multi-layer Perceptron

(Neural Network), and tree-based algorithms, (e.g. Random Tree,

and Random Forest). Prior to classification, all continuous data

were discretized in terciles (age), or quartiles (all analytes and

APACHE score). For each model, two feature selection algorithms

(information gain ranking and chi-square ranking) were run to

select a maximum of 15 predictor variables (features). Feature

selection was applied using 10-fold cross-validation to mitigate

overfitting. Benchmark classifiers used the union of feature sets

identified by the selection algorithms.

Performance metrics
We evaluate the models ability to discriminate outcome by

received operating characteristics (ROC) area under the curve.

Sensitivity and specificity are also provided. We computed the

Brier score as a global measure of calibration. For DNF, we also

adapted the Hosmer-Lemeshow H-statistic (AHL) to binary

outcomes [47]. Because DNF learning outcomes are either 0s or

1s, we created five bins including a geometrically larger number of

predicted deaths. We randomly choose predicted survivors to

complete the bins which comprised an approximately equal

number of patients. The AHL was then computed as a chi-squared

statistic across the five bins [48]. For the probability-based models,

e.g., Logistic Regression and SVM, we use their binary outcomes

instead of the continuous probability to compute the AHL statistics

scores. All metrics are reported in the entire population and in the

external validation cohort.

Results

Patient characteristics
All 1815 patients had demographic, disease severity and at least

two inflammatory markers measured on day 1. The number of

patients were different domains of data were available varied and

was least for FACS (Figure 1). This distribution strongly

determined the hierarchy of models examined. A complete

description of cohort demographics and physiology has been

published [22].

Predictors identified by benchmark classifiers
Clinical markers of severity (APACHE score and number of

failing organ systems) were the strongest predictors of both hospital

and 90-day mortality. Of demographic features, only age and the

presence of chronic illness were included in most predictive

models. Most SNPs examined were uncorrelated to 90-day

mortality, but IL6M174 (GG), L100M1048 (G/T) and MIFM173

(GG) were consistently predictive, even in multivariate models.

IL18M137 was less consistently associated with outcome. Features

also consistently selected in the hierarchy of models included

monocyte positivity for CD-14 and CD-120a, and monocytic and

granulocytic positivity for toll-like receptor (TLR)-2. Although it

could be that the 10-fold cross-validation procedure admitted

significant overfitting (N = 124), it is an interesting hypothesis that

Table 1. Predictors (features) inluded in the different models.

Model Features included

Model 1 Demographics (age, sex, race, chronic, disease), Macrophysiology (APACHE III score, number of organ system failure on day 1)

Model 2 Demographics, physiology, day 1 cytokines

Model 3 Demographics, physiology, SNP profile

Model 4 Demographics, physiology, day 1 cytokines, SNP profile

Model 5 Demographics, physiology, day 1 cytokines, SNP profile, coagulation data

Model 6 Demographics, physiology, FACS

Model 7 Demographics, physiology, day 1 cytokines, SNP profile, coagulation data, FACS

Model 8 Demographics, physiology, all available cytokines, SNP profile, coagulation data, FACS

doi:10.1371/journal.pone.0089053.t001

Figure 1. Availability of data across physiologic domains. Of
1815 patients with cytokine data on day 1, much smaller numbers of
patients had single nucleotide profiles (SNP), Fluorescent-Antibody Cell
Sorting (FACS) measurements of surface markers, or full coagulation
studies (Coags)performed.
doi:10.1371/journal.pone.0089053.g001
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the profile of activation of immune cells conveys as much or more

information than cytokines and SNP polymorphisms.

DNF learning algorithm prediction performance
The DNF learning prediction quality is first evaluated by its

discrimination. The ROC curve (Figure 2) is generated upon

tuning the sensitivity/specificity weights in the optimization

objective function. The AUC for hospital mortality dataset in

Model 8 is 0.937, which is very similar to the performance

obtained with Model 7, suggesting that serum inflammatory

markers levels after day 1 do not contribute much to the predictive

ability. This is a meaningful result as hospital mortality is by and

large determined by data obtained on the first admission day.

90-day mortality is considerably more difficult to predict than

hospital mortality with the AUC decreasing to 0.785. We again

compare the performance on Model 7, Model 8, and also add day

2 serum inflammatory marker levels to Model 7, without

significant improvement in predictive ability (Figure 2). The

DNF learning algorithm outperforms other benchmark classifiers

built from Model 7 and Model 8 (Table 2), even if Model 8

contains a much more complete set of features; however Naive

Bayes and Logistic Regression model prediction performance are

lower than that of Model 7 because these two models lack of

regularization; Random tree and Random Forests’ implementa-

tions we used do not implement pruning and result in severe

overfitting issues; on the other hand, Boosted Logistic and DNF

naturally implements regularizations and perform as well as Model

7 (Table 2).

When removing features from Model 7 (Models 1 to 6), the

DNF learning accuracy decreases (Table 2). DNF learning also

outperforms other classifiers on Model 6, suggesting that models

which include FACS data perform well despite the modest size of

the cohort. For less rich Models 1 to 5, the performances of DNF

and benchmark classifiers were comparable, suggesting that

richness of the set of features contributes more to the predictive

ability of DNF compared to other classifiers. This conjecture could

be examined in computational experiments. Interestingly, Logistic

Regression-based classifiers performed consistently better than

other benchmark classifiers through Model 5 (Table 2).

DNF learning algorithm external validation
To evaluate the external validity of predictions from DNF

learning, we developed models using patients from a random

subset of 27 hospitals, comprising approximately two-thirds of the

patients. The prediction performance of DNF rules are then tested

on patients from the remaining six hospitals, where the numbers of

patients per hospital varied between 1 to 343.

Using 90-mortality as the outcome of interest the DNF learning

ROC achieves 0.789 which is similar to that we learned in cross-

validation over the entire cohort when using all the features. The

external validation performance of DNF learning compared

advantageously with that of benchmark models (Table 3). Of

note, DNF learning was the best calibrated model (AHL = 9.06,

p = 0.06 with 4 df).

Specific rules learned from the data
The DNF learning algorithm simultaneously optimizes the

prediction quality and minimizes the length of DNF functions,

because without constraining the function length, the DNF

functions can be complicated and lead to severe over-fitting

problems. The DNF learning algorithms aim to learn the shortest

functions (see section 0 for the definition of the function length),

i.e. the most generic functions extracted from the data that can

discriminate the mortality outcomes. The DNF learned to predict

hospital mortality is:

(Ssday1w1) ((Ssday1w0)

AND (Npctw1) AND (NIL6 2w1))~z
ð2Þ

Figure 2. Prediction performance of DNF learning on hospital and 90-day mortality data. 10-fold cross validation is applied to assess the
prediction performance of DNF learning on hospital and 90-day mortality, and compare the performance when using the whole feature set (Model 8,
see Table 1) and only day 1 (Model 7) and/or day 2 cytokine (Model 7 + day 2 cytokines).
doi:10.1371/journal.pone.0089053.g002
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Where Feature~t means the value of the feature falls into

group t; Featurewt means the feature value is larger than that of

group t. Recall that the feature values are discretized into 3 to 5

groups, and the group values are indexed from 0 to N{1 where N

is the number of groups. The full explanation of literals appeared

in this study is shown in Table 4.

Function (1) indicates that if either one of two conditions is

satisfied, the outcome is predicted to be hospital death, where the

two conditions are 1) Ssday1 value is larger than 1 (failure in more

than one organ system), or 2) Ssday1 value is larger than 0 AND

Npct value is larger than 1 AND NIL6 2 value (quartile of IL-6

levels on the second day) is larger than 1. The positive symbol on

the right side of function (1) is positive label, i.e., hospital mortality.

Since all the DNF predict positive class, the ‘+’ symbol on the right

side is replaced with the sensitivity/specificity metrics of the DNF.

For representation purposes a DNF will be written as DNF = sen-

sitivity/specificity, and the above function is now:

(Ssday1w1) ((Ssday1w0)

AND (Npctw1) AND (NIL6 2w1))~93:6%=82:3%
ð3Þ

This DNF contains 2 terms of 4 literals covering 3 different

features: Ssday1, Npct, and NIL6 2, comprising only 3% of all

features available in the data, suggesting that DNF functions

discriminate the outcomes by only using a small fraction of the

feature sets (v10% features in all cases).

The prediction procedure implied by a DNF (3) is illustrated in

Figure 3. The prediction procedure of DNF is represented in three

layers: the top layer is the DNF itself; the middle layer is the clause

level; and the bottom layer is the final outcome. Red color

rectangles indicate that patient data is above the threshold and a

severity condition is met; green rectangles indicate that patient

data is below and the condition is not met. Three example patients

are shown. For patient A, Ssday1, Npct and NIL6 2 are all above

the threshold and results in a positive Clause 2 so the predicted

outcome is mortality. For patient B, Clause 2 is negative due to the

low Npct (procalcitonin in the lowest quartile); however high

Ssday1 turns on Clause 1 and predicts mortality too. Patient C has

high Npct but it is not sufficient to turn on either Clause 1 or 2 and

she is therefore predicted to survive.

The DNF learned from the data are shown in Table 5. For

hospital mortality, Ssday1 is a strong predictor. A high level of

Ssday1 is associated with high risk of mortality. IL6 and IL10 are

strong predictors too, and appear to be consistently predictive,

which can possibly support the concept that total inflammation, as

opposed to a balance between pro-inflammation and anti-

inflammation, is predictive of outcome [21]. IL6 on day 2 turns

out to be a strong predictor, yet needs two other conditions to also

be present (Equation (1) in Table 5). In Model 7, IL10 1 is selected

instead, and it needs 3 other conditions too: agew1, Ssday1w0
and IL1R901827 SNP is not A/G (Equation (2) in Table 5).

To predict 90-day mortality, the number of terms in DNF

increases to 5, and the sensitivity decreases to 80%, suggesting that

Ssday1 is not as strong a predictor of 90-day mortality as it is of

hospital mortality. In Model 8, Ssday1 combines with Npct factor

to form a single clause, and in Model 7 it needs Nap3. Higher

Nap3 is also an indication of high death risk. Interestingly

although SNP generally has low correlation with the 90-day

mortality, IL1R895495 and IL1R901827 are learned in the DNF.

The highest discriminator of poor outcome was the day 1 to day

2 trend in the product of IL-10 and IL-6. Trends in day 1 to day 2

TNF, IL-10, IL-6, were also retained in the models. This is a very

interesting, and somewhat refreshing observation, raising the

hypothesis that interventions significantly impacting early cytokine

profiles might indicate biological activity resulting in more

favorable long-term outcome.

Table 2. Comparative performance of models on predicting 90-day mortality.

Model NB SVM NN LOG BL RT RF DNF

Model 1 .740 .716 .746 .748 .755 .705 .743 .752

Model 2 .733 .697 .690 .747 .752 .673 .681 .740

Model 3 .709 .683 .742 .762 .763 .670 .696 .755

Model 4 .745 .714 .733 .762 .755 .662 .711 .749

Model 5 .770 .718 .728 .774 .766 .650 .654 .756

Model 6 .739 .689 .696 .728 .739 .690 .699 .759

Model 7 .783 .747 .751 .785 .766 .701 .715 .791

Model 8 .704 .744 .756 .723 .768 .575 .628 .785

NB-Naive Bayes, SVM-Support vector machine, NN-neural network, LOG-Logistic regression, BL-Boosted logistic regression, RT-Random tree, RF-Random forest, DNF-
Disjunctive Normal Form learning.
doi:10.1371/journal.pone.0089053.t002

Table 3. Comparative performance of models on predicting 90-day mortality.

Scores NB SVM NN LOG BL RT RF DNF

ROC .747 .752 .757 .738 .748 .655 .698 .789

1 - Brier Score .712 .750 .844 .822 .867 .792 .874 .891

NB-Naive Bayes, SVM-Support vector machine, NN-neural network, LOG-Logistic regression, BL-Boosted logistic regression, RT-Random tree, RF-Random forest, DNF-
Disjunctive Normal Form learning.
doi:10.1371/journal.pone.0089053.t003

Prediction of Patient Hospital Mortality

PLOS ONE | www.plosone.org 5 April 2014 | Volume 9 | Issue 4 | e89053

OR



In the external validation, the DNF learned from the

development set is:

(Npctw1 AND Ssday1w0 AND Nap3w1) OR

(Nap3~4 AND IL1R895495 AG!~

G=A AND Npctw1 AND Nfcd120av4)

(chronic tw0 AND NIL6 3w1 AND IL1R895495 AG!~

G=A AND Ssday1w0)~81:8%=71:4%
ð4Þ

The first two clauses are similar to those learned in Table 5,

which indicated that 1) the process of DNF learning is robust in

identifying predictive rules if data used in development is

consistent with population data, and that 2) correlations in data

may allow similar, but not identical rules, when different

development sets are selected.

Discussion and Conclusion

We present a new class of models, DNF learning, which

produce data-driven rules predicting mortality in patients hospi-

talized with severe community acquired pneumonia (see Appendix

S1 for details). A distinctive feature of DNF, compared to

commonly presented prediction models, is that the resulting rules

are readily interpreted by clinicians and can be used to enhance

clinical decision making in a variety of contexts. These rules are

created under the assumption that DNF are an appropriate

representation of the manner data relate to outcome in severe

Table 4. DNF literals explanation.

literal meaning value type num of value groups

Ssday1 Presence of some organ dysfunction on day 1 [49] integer 5*

Npct Quartile of procalcitonin [50] integer 5

NIL6 2 Quartile of the inflammatory marker IL-6 on the second
day of admission

integer 5

IL1R901827A15 Genetic polymorphism of IL-1 receptor antagonist protein Gene 3

Nage Quartile of age integer 5

NIL10 1 Quartile of the inflammatory marker IL-10 on the day of
admission

integer 5

IL1R895495 AG Genetic polymorphism of IL-1 receptor antagonist protein Gene 5

Nap3 Quartile of APACHE III score integer 5

chronict Burden of chronic illness, as determined by the Charlson
index [51]

integer 5

Nfactor Quartile of coagulation Factor IX activity integer 5

Note*: when missing values present in the data, they are treated as a literal, but they are never selected in the DNF learning.

doi:10.1371/journal.pone.0089053.t004

Figure 3. Interpreting DNF models on three patients. The prediction procedure of DNF is represented in three layers: the top layer is the DNF
itself; the middle layer is the clause level; and the bottom layer is the final outcome. Red color rectangles indicate that patient data is above the
threshold and a severity condition is met; green rectangles indicate that patient data is below and the condition is not met. Three example patients
are shown. For patient A, Ssday1, Npct and NIL6 2 are all above the threshold and results in a positive Clause 2 so the predicted outcome is
mortality. For patient B, Clause 2 is negative due to the low Npct (procalcitonin in the lowest quartile); however high Ssday1 turns on Clause 1 and
predicts mortality too. Patient C has high Npct but it is not sufficient to turn on either Clause 1 or 2 and she is therefore predicted to survive.
doi:10.1371/journal.pone.0089053.g003
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community acquired phenomena. In other words, several alter-

native (disjunctions) mechanisms can contribute to the outcome,

each mechanisms represented by the conjunction of conditions.

The assumption is clinically plausible and important as we develop

algorithms to compute the DNF, because it reduces the hypothesis

space greatly and makes the computational hard problem solvable

in reasonable time. We demonstrated learning efficiency and

consistency on simulated sequences, showed the strength of the

methods in learning meaningful mapping functions and showed

superior prediction accuracy compared to other machine learning

methods on real clinical data.

The use of DNF as a prediction tool has several strengths.

Prediction rules are intuitive and easy to apply at the bedside

(Figure 3). They could be easily interfaced with the electronic

health record. Because a rule is comprised of separate disjunctive

statements, each or which can be true or false, its veracity can

typically be assessed even if partial data is available, and very soon

following an initial assessment of the patient. A popular mortality

prediction model, APACHE [49], requires 24 hours of observa-

tion before formulating a prediction. Another popular tool, MPM

[50], uses information available upon initial encounter, but is less

accurate and requires many more data elements to formulate a

prediction. Prediction models not based on logistic regression are

essentially black-box classifiers which provide little insight as to

which feature drives the prediction. In this regard, DNF are very

transparent in their use of data to generate a prediction.

We aimed to learn the minimum size DNF in spite of the fact that

the exact learning task is NP-complete [42,43]. Compared to existing

heuristic algorithms that only focus on learning time and learnability

[40,41,44–46], we exploit domain knowledge and develop efficient

exhaustive algorithms to learn the shortest DNF. We also applied a

number of techniques to accelerate the DNF learning process (see

Appendix S1 for details), including setting the maximum length of

clauses in standalone algorithm, using feature selector (CF) in MtDL

to narrow down the searching space, equivalence filtering of the

clauses, and extending both algorithms to greedy versions. This

enables the algorithms to run efficiently on large datasets. The DNF

learning algorithms are also powerful in extracting DNF from only a

small numbers of sequences where the data are reliable.

The approach achieves equivalent or higher prediction perfor-

mance compared to a set of state-of-the-art machine learning

models, and unveils insights unavailable with standard methods.

For example, we have shown that although predictive on their

own, the added benefit of genetic and cytokine data over

physiology and demographics-based classifiers was not spectacular

in identifying poor long-term outcome. It also appears that, if one

were to choose between a serum assay and a DNA profile (or SNP

screen) as an early predictor of outcome, both convey comparable

information with the possible exception of the product of serum

levels of IL6 and IL10, plausibly a (quite naive) integrator of the

magnitude of the inflammatory response. There are no currently

available point-of-care kits to measure cytokine panels reliably,

although a rapid kit exists for IL-6. The same is true of SNP

profiling. Our exploration suggests that we probably do not need

both a cytokine and SNP profile at this time, but the jury is

certainly not out. Yet, it cannot be anticipated that such detailed

physiotyping will be commonly performed at the bedside in the

foreseeable future. Therefore, it would seem appropriate to

expand data available to the DNF algorithms to include a larger

overlap with data used by currently available mortality prediction

tools. Indeed, one could conceive of DNF rules as representing

phenotypes, confined to data that is already available, and that

could be refined if more data were available to develop a more

complete set of rules. The level of sophistication with which these

phenotypes would be described would increase from purely

clinical, to phenotypes characterized by a combination of clinical,

laboratory, and genetic markers.

Our exploration was limited to 27 SNPs and 3 cytokines, and

several leukocytic surface markers in a subset of the population

therefore our representation of the cellular and genetic component

to physiotyping is very limited. Other analytes are now becoming

available in this database, including SNPs for coagulation genes,

which are definitely strong predictors of outcome. This can be

understood mechanistically when that considering excessive

activation of coagulation, with subsequent microthrombosis and

perfusion deficit, is a plausible cause of cellular energetic failure

with ensuing organ dysfunction [11].

It can be argued that 90-day mortality is an inappropriate

outcome and that one would expect early physiotyping to perform

better on predicting outcome on a shorter time scale. However, it is

apparent, especially in this dataset that our current concept of what

constitute acute illness extends well beyond the intensive care unit,

or a specific hospitalization episode [51,52]. It makes entire sense

that wider genetic screens might be more predictive than early

physiology in teasing late death. Different classes of predicative

models are required to tease out time-varying hazard ratios [53].

Such a study would be a natural extension of this work. It could also

be argued that predicting mortality does not mean the ability to

predict response to treatment, a holy grail of acute care medicine.

Any signal in the possible effectiveness of immunomodulatory

therapies has been observed in the sickest individuals. [54,55],

suggesting the relevance of more detailed physiotyping in the

prediction of the response to treatment. This is also suggested by in

silico studies [7]. The DNF formulation can generally applied to a

variety of outcomes of clinical interest. For example, enrollment and

decision points in clinical trials are often criteria-based. The

applications of data-driven rules computed from DNF learning to

the profiles of patients currently screened or enrolled in clinical trials

could be quite helpful to assist clinical trial design, enrich

enrollment, or eventually adapt design based on observed response.

Table 5. DNF of the patient mortality.

Hospmort mortality
(model 8)

(Ssday1w1) ((Ssday1w0)AND(Npctw1)AND(NIL6 2w1))~93:6=82:3

Hospmort mortality
(model 7)

((Ssday1w1) ((Ssday1w0)AND(IL1R901827 A15!~A=G)AND(Nagew1)AND(NIL10 1)w1))~ 91:0=89:3

90-day mortality
(model 8)

((Ssday1w0)AND(Npctw1)) ((IL1R895495 AG !~A=G)AND(Npctw1)AND(Nap3~4)AND(chronic tw0))~70:1=76:4

90-day mortality
(model 7)

((Ssday1w0)AND(Nap3w0)AND(Npctw0)) (IL1R901827 A15 !~A)AND(Nap3~4)AND(Npctw0)AND(Nfactor 0w0))~69:6=76:6

doi:10.1371/journal.pone.0089053.t005
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In conclusion, we presented DNF as a novel prediction tool

which perform comparably or better than currently available tools

to predict outcome in patients with hospitalized community

acquired pneumonia, and which presents the added advantage to

be criteria-based and easily implemented as a decision support

system at the bedside. We believe DNF are generally applicable to

a range of clinically relevant patient-centered outcomes. Despite its

apparent simplicity, DNF do require the input of expert

quantitative scientists to develop and implement.
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