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Abstract

In this paper, using the Lie group analysis method, we study the invariance properties of the time fractional fifth-order KdV
equation. A systematic research to derive Lie point symmetries to time fractional fifth-order KdV equation is performed. In
the sense of point symmetry, all of the vector fields and the symmetry reductions of the fractional fifth-order KdV equation
are obtained. At last, by virtue of the sub-equation method, some exact solutions to the fractional fifth-order KdV equation
are provided.
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Introduction

It is well known that the Lie symmetries, originally advocated

by the Norwegian mathematician Sophus Lie in the beginning

of the 19th century, are widely applied to investigate nonlinear

differential equations (including multi-component systems of

partial differential equations (PDEs) and ordinary differential

equations (ODEs)), notably, for constructing their exact and

explicit solutions. Considering the tangent structural equations

under one or several parameter transformation groups is the

basic idea of the Lie symmetry analysis. It has been showed that

how the Lie symmetry analysis have been effectively used to

look for exact and explicit solutions to both ODEs and PDEs.

There are a lot of papers and many excellent books (see, e.g.,

[1–20] and papers cited therein) devoted to such applications. It

is important to note, however, that a very small number of

them involve Lie symmetries to solve problems for fractional

differential equations (FDEs).

In recent years, the investigation of FDEs has gained much

attention due to an exact description of complex nonlinear

phenomena in various fields: systems identification, fluid flow,

control problem, signal processing, viscoelastic materials, poly-

mers, fluid mechanics, biology, physics, engineering and other

areas of science [21–44]. In reality, the next state of a physical

phenomenon might depend on not only its current state but also

on its historical states (non-local property), which can be

successfully modeled by using the theory of derivatives and

integrals of fractional order [38]. Given a FDEs, there exists no

well-defined method to analyze and study them systematically.

Also, there is no general method for dealing with exact explicit

solutions to FDEs. Consequently, many powerful methods have

been established and developed to construct exact, explicit and

numerical solutions of nonlinear FDEs, such as Adomian

decomposition method [24,25], the invariant subspace method

[26], transform method [27,28], homotopy perturbation method

[29], variational iteration method [30], sub-equation method [31–

33], Lie symmetry group method [10–11,38,47–48] and so on.

In [10], the following time fractional fifth-order KdV equation

Lau

Lta
~uxxxxxzMupux, ð1Þ

was investigated by means of the Lie symmetry group method. In

this paper, we aim to extend Eq. (1) to the following time fractional

fifth-order KdV equation

Lau

Lta
~uxxxxxzMu2uxzNuxuxx, ð2Þ

where the term Nuxuxx is added to (1). Here 0vaƒ1, N and M
are constants. If a~1, this equation can be reduced to the general

fifth-order KdV equation. When N~0, (2) can be reduced to the

special case of (1). These fifth-order KdV types of equations have

been derived to model many physical phenomena [20]. Recently,

the authors [10] studied the time fractional generalized fifth-order

KdV equation by the group classification method, the symmetries,

and other properties of the equations are investigated. However,

the authors did not give exact solutions of (1). Unlike the previous

work, this paper will extend the work in [10] and give some exact

solutions of (2). It should be noted that the above equation have

several arbitrary parameters, particularly, the fractional order

0vaƒ1, significantly affect the properties of the equation. Next,

we can find that the parameters affect the symmetry and other

properties of the equation, such as the symmetry reductions and so

on.

Our aim in the present work is to discuss the time fractional

fifth-order KdV equation by using the Lie symmetry group

method. We get the corresponding infinitesimals, Lie algebra, and

show that the time fractional fifth-order KdV equation can be
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transformed into a nonlinear ODE of fractional order. The plan of

the paper is as follows. Section 2 gives some basic notions about

fractional calculus and discusses the Lie symmetry analysis of the

FPDEs. Then in Section 3, we perform Lie group classification on

the fractional fifth-order KdV equation. In particular, some exact

solutions are obtained. Finally, we present conclusions in the last

section.

Preliminaries
In this section, we give some basic notions about fractional

calculus, and then we discuss the Lie symmetry analysis method to

fractional partial differential equations.

0.1 Notations About Fractional Calculus
Here we recall definition and basic results about the recent

fractional calculus, for more details we refer to [39,40,42]. The

modified Riemann-Liouville derivative is defined by Jumarie [39]

Da
t f (t)~

1

C(1{a)
d
dt

ðt

0

(t{j){a f (j){f (0)ð Þdj, 0vav1,

f (n)(t)
� �(a{n)

, nƒavnz1, n§1:

8><
>: ð3Þ

Apart from the R-L definition of fractional derivatives, there are

several other definitions, for instance the modified R-L (mR-L)

derivative [37], the Grünwald-Letnikov derivative (G-L) and

Caputo’s fractional derivative [41,42], and so on. Under different

circumstances, they can be used for handling different properties

of physical models. For example, the Caputo’s fractional derivative

is related to initial value problems [45,46], on the contrary, the

mR-L derivative is used to investigate exact and explicit solutions

of some FDEs sometimes [31–33].

It is simple to prove the following properties of fractional

derivatives and integrals (see e.g. [39,40]) that will be used in the

analysis:

Da
t tc~

C(cz1)

C(cz1{a)
tc{a,cw0, ð4Þ

Da
t ½u(t)v(t)�~u(t)Da

t v(t)zv(t)Da
t u(t), ð5Þ

Da
t f (u(t))½ �~f ’u½u(t)�Da

t u(t)~Da
uf ½u(t)�(u’t)a: ð6Þ

0.2 Lie Symmetry Analysis Method to Fractional Partial
Differential Equations

We recall the main idea of this method: consider a scalar

evolution equation [10,38,47,48]

Lau

Lta
~F ½u�: ð7Þ

where u~u(x,t) and F ½u� is a nonlinear differential operator.

The one-parameter Lie group of transformations

t�~tzEt(x,t,u)zO(E2),

x�~xzEj(x,t,u)zO(E2),

u�~uzEg(x,t,u)zO(E2),

La�uu

L�tta
~

Lau

Lta
zEg0

a(x,t,u)zO(E2),

L�uu

L�xx
~

Lu

Lx
zEgx(x,t,u)zO(E2),

L2�uu

L�xx2
~

L2u

Lx2
zEgxx(x,t,u)zO(E2),

..

.

ð8Þ

where

g0
a ~

Lag

Lta
z(gu{aDt(t))

Lau

Lta
{u

Lagu

Lta
zm

z
X?
n~1

a

n

� �
Lagu

Lta
{

a

nz1

� �
Dnz1

t (t)

� �
Da{n

t (u)

{
X?
n~1

a

n

� �
Dn

t (j)Da{n
t (ux):

ð9Þ

here

m~
X?
n~2

Xn

m~2

Xm

k~2

Xk{1

r~0

a

n

 !
n

m

 !
k

r

 !
1

k!

tn{a

(nz1{a)
½{u�r Lm

Ltm
½uk{r� L

n{mzkg

Ltn{mLuk
:

ð10Þ

gx~Dx(g){uxDx(j){utDx(t),

gxx~Dx(gx){uxtDx(t){uxxDx(j),

gxxx~Dx(gxx){uxxtDx(t){uxxxDx(j),

gxxxx~Dx(gxxx){uxxxtDx(t){uxxxxDx(j),

..

.

ð11Þ

Here, Dx denotes the total derivative operator and is defined by

Dx~
L
Lx

zux
L
Lu

zuxx
L

Lux

z � � � ð12Þ

We consider the following general vector field:

V~t(x,t,u)
L
Lt

zj(x,t,u)
L
Lx

zg(x,t,u)
L
Lu
: ð13Þ

If the vector field (13) generates a symmetry of (7), then V must

satisfy Lie symmetry condition

pr(n)V (D1)DD1~0~0, ð14Þ

Group Analysis Fractional fKdV Equation
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where D1~
Lau

Lta
{F ½u�:

On the basis of the Lie theory, one can obtain

Theorem. A solution u~h(x,t) is an invariant solution of (7)

if and only if

(i) u~h(x,t) is an invariant surface, in other words,

Vh~0[ t(x,t,u)
L
Lt

zj(x,t,u)
L
Lx

zg(x,t,u)
L
Lu

� �
h~0,

(ii) u~h(x,t) is the solution of FPDE (7).

0.3 Time Fractional Fifth-order KdV Equation
In this part, we determine the invariance properties of the time

fractional fifth-order KdV equation. Then we construct some

exact solutions of the time fractional fifth-order equation.

According to the Lie theory and the Section 2, applying the fifth

prolongation pr(5)V to the Eq. (2), the invariance condition (2) is

equivalent to the following equation:

g0
a{gxxxxx{Mu2gx{2MguuxzNgxuxxzNuxgxx~0: ð15Þ

Substituting (9) and (11) into (15), and equating the coefficients

of the various monomials in partial derivatives with respect to x

and various power of u, we can get the determining equations for

the symmetry group of the Eq. (2). Solving these equations, one

can get.

j~c1xzc2, t~
5c1t

a
, g~{2c1u, ð16Þ

where c1 and c2 are arbitrary constants. Thus, we can get the

corresponding vector fields

V~
5c1t

a

L
Lt

z(c1xzc2)
L
Lx

{2c1u
L
Lu
: ð17Þ

Thus, infinitesimal generators of every one parameter Lie group

of point symmetries of the (2) are:

V1~
L
Lx

, V2~
5t

a

L
Lt

zx
L
Lx

{2u
L
Lu
: ð18Þ

It is easily seen that the symmetry generators found in (18) form

a closed Lie algebra

½V1,V2�~V1, ½V2,V1�~{V1: ð19Þ

For the operator V2 characteristic equation is

dx

x
~

adt

5t
~

{du

2u
: ð20Þ

The corresponding invariants are

j~xt
{a
5 , u~t

{2a
5 g(j): ð21Þ

From the above discussion, one can find that (2) can be reduced

to a nonlinear ODE of fractional order with a new independent

variable. Consequently, we have

Theorem. The transformation (21) reduces (1) to the

following nonlinear ordinary differential equation of fractional

order

P
1{7a

5
,a

5
a

g

� �
(j)~g

jjjjj
zMg2g

j
zNg

j
g

jj
, ð22Þ

with the Erdelyi-Kober fractional differential operator Pt,a
b of

order [44]

(Pt,a
b g) : ~P

n{1

j~0
tzj{

1

b
j

d

dj

� �
(Ktza,n{a

b g)(j), ð23Þ

n~
½a�z1, a 6 [N,

a, a [ N,

�
ð24Þ

where

(Kt,a
b g)(j) : ~

1

C(a)

ð?
1

(u{1)a{1u{(tza)g(ju
1
b)du, aw0,

g(j), a~0

8<
: ð25Þ

is the Erdélyi-Kober fractional integral operator.

Remark 1. The proof is similar to Theorem 2 in [10].

Remark 2. Although the term Nuxuxx is added, the obtained

point symmetries are the same as in [10].

Remark 3. Through the above discussion, one can find that

the point symmetries of the time fractional equation are relatively

narrower than those for generalized fifth-order KdV equation.

The main reason is that the fractional order 0vav1 is an

arbitrary parameter in our model.

0.4 Exact and Explicit Solutions of Time Fractional Fifth-
order KdV Equation

0.4.1 Summary of the method. In this part, we deal with

the explicit solutions of (2) by using the improved fractional sub-

equation method.

For a given NFDEs [31–33,47,48], say, in two variables x and t,

P u,ut,ux,Da
t u,Da

xu,:::
	 


~0, 0vaƒ1, ð26Þ

where Da
xu and Da

t u are the modified Riemann-Liouville

derivatives of u with respect to t and x, respectively.

To determine u explicitly, one take the following steps:

Step 1. Using the variable transformation

u(x,t)~u(j), j~xzctzj0, ð27Þ

Group Analysis Fractional fKdV Equation
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where c is a nonzero constant to be determined later, the

fractional differential equation (FDE) (26) is reduced to a nonlinear

fractional ordinary differential equation (NFODE)

P u,cu’,u’,caDa
ju,Da

ju,:::
� �

~0, 0vaƒ1: ð28Þ

Step 2. Suppose that Eq. (28) has the following solution:

u(j)~
Xn

i~1

ai

Da
jw

w

� �i

za0, ð29Þ

where ai(i~1 � � � n) are constants to be determined later,

positive integer n can be determined by using Eq. (26) or (28) to

balance the highest order derivatives and nonlinear terms and w(j)
satisfies the following fractional Riccati equation:

Da
jw(j)~szw2(j), ð30Þ

where s is a constant. Eq. (30) have five solutions as follows:

w(j)~

{
ffiffiffiffiffiffiffiffi
{s
p

tanh ({
ffiffiffiffiffiffiffiffi
{s
p

j,a), sv0,

{
ffiffiffiffiffiffiffiffi
{s
p

coth ({
ffiffiffiffiffiffiffiffi
{s
p

j,a), sv0,ffiffiffi
s
p

tan (
ffiffiffi
s
p

j,a), sw0,

{
ffiffiffi
s
p

cot (
ffiffiffi
s
p

j,a), sw0,

{
C(1za)

jazv
, v is constant, s~0,

8>>>>>>>><
>>>>>>>>:

ð31Þ

with the generalized hyperbolic and trigonometric functions

sin (j,a)~
Ea(ija){Ea({ija)

2i
, cos (j,a)~

Ea(ija)zEa({ija)

2i
,

sinh (j,a)~
Ea(ja){Ea({ja)

2
, cosh (j,a)~

Ea(ja)zEa({ja)

2
,

tan (j,a)~
sin (j,a)

cos (j,a)
, cot (j,a)~

cos (j,a)

sin (j,a)
,

tanh (j,a)~
sinh (j,a)

cosh (j,a)
, coth (j,a)~

cosh (j,a)

sinh (j,a)
,

ð32Þ

here Ea(j)~
X?

k~0

jk

(1zka)
(aw0) is the Mittag-Leffler

function in one parameter.

Step 3. Substituting (31) along with (29) into (28), we can get a

polynomial in
Da

jw

w

� �i

. Setting the coefficients of the powers of

Da
jw

w

� �i

to be zero, one can obtain an over-determined nonlinear

algebraic system in ai (i~1 � � � n) and c.

Step 4. Assuming that the constants c,ai(i~1 � � � n) can be

obtained by solving the nonlinear algebraic system in Step 3,

substituting these results and the solutions of Eq. (30) into (29), one

can get the explicit solutions of Eq. (26) immediately.

0.4.2 Applications to Time Fractional Fifth-order KdV

Equation. In this section, we apply the improved fractional sub-

equation method for solving the FDEs (2).

According to above steps, we first introduce the following

transformations:

u(x,t)~u(j), j~xzct, ð33Þ

where c is a constant. Substituting (33) into Eq. (2), then Eq. (2)

can be reduced to the following NFODE:

caDa
ju{Mu2u

j
{Nu

j
u

jj
{u

jjjjj
~0: ð34Þ

Supposing that Eq. (34) has the following solution:

u(j)~a0z
Xn

i~1

ai

Da
jw

w

� �i

, ð35Þ

where ai(i~1 � � � n) are constants to be determined later.

Balancing the highest order derivative terms with nonlinear terms

in Eq. (34) yields the following ansatz,

u(j)~a0za1

Da
jw

w

� �
za2

Da
jw

w

� �2

: ð36Þ

Substituting Eq. (36) along with Eq. (30) into Eq. (34) and then

setting the coefficients of
Da

jw

w

� �i

to zero, one can obtain a set of

algebraic equations about c,a0,a1,a2. Solving the algebraic

equations by Maple, we have

Case 1:

M~M, N~{
a2

2Mz360

6a2
, c~

16

9
s2(a2

2Mz144)

� �1
a

,

a0~{
4

3
sa2, a1~0, a2~a2, a~a, s~s:

8>>><
>>>:

ð37Þ

Case 2:

M~M, N~{7
ffiffiffiffiffiffi
M
p

, c~ 512s2
	 
1

a, a~a, s~s,

a0~{16s

ffiffiffiffiffiffi
1

M

r
, a1~0, a2~12

ffiffiffiffiffiffi
1

M

r
:

8><
>: ð38Þ

Using (37), one can get new types of explicit solutions of Eq. (2)

as follows:

u1~{
10

3
a2s{a2s coth2 (

ffiffiffiffiffiffiffiffi
{s
p

j,a)z tanh2 (
ffiffiffiffiffiffiffiffi
{s
p

j,a)
	 


, ð39Þ

where sv0, j~xzctzj0.

u1~
2

3
a2sza2s cot2 (

ffiffiffiffiffiffiffiffi
{s
p

j,a)z tan2 (
ffiffiffiffiffiffiffiffi
{s
p

j,a)
	 


, ð40Þ

where sw0, j~xzctzj0.

u1~a2
C(1za)ð Þ2

jazvð Þ2
, ð41Þ

where s~0, j~xzctzj0.

Group Analysis Fractional fKdV Equation
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Considering (38), one can get exact solutions of Eq. (2)

u1~{16s

ffiffiffiffiffiffi
1

M

r

{12

ffiffiffiffiffiffi
1

M

r
s coth2 (

ffiffiffiffiffiffiffiffi
{s
p

j,a)z tanh2 (
ffiffiffiffiffiffiffiffi
{s
p

j,a)
	 


,

ð42Þ

where sv0, j~xzctzj0.

u1~{16s

ffiffiffiffiffiffi
1

M

r
a

z12

ffiffiffiffiffiffi
1

M

r
s cot2 (

ffiffiffiffiffiffiffiffi
{s
p

j,a)z tan2 (
ffiffiffiffiffiffiffiffi
{s
p

j,a)
	 


,

ð43Þ

where sw0, j~xzctzj0.

u1~12

ffiffiffiffiffiffi
1

M

r
C (1za)ð Þ2

jazvð Þ2
, ð44Þ

where s~0, j~xzctzj0.

Conclusions

In this paper, the invariance properties of the time fractional

fifth-order KdV equation are presented in the sense of point

symmetry. All of the geometric vector fields and the symmetry

reductions of the equation are obtained. And then, some exact

solutions of the equation are constructed. The obtained solutions

include generalized hyperbolic function solutions, generalized

trigonometric function solutions and rational function solutions.

These solutions can be further applied to deal with the nonlinear

boundary-value problem, they also can be used to compare with

the relevant numerical simulations. Furthermore, these solutions

may be useful to further study the complicated nonlinear physical

phenomena.
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