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Abstract

A healthy lifestyle is an important focus in today’s society. The physical benefits of regular exercise are abundantly clear, but
physical fitness is also associated with better cognitive performance. How these two factors together relate to
characteristics of the brain is still incompletely understood. By applying mathematical concepts from ‘network theory’,
insights in the organization and dynamics of brain functioning can be obtained. We test the hypothesis that neural network
organization mediates the association between cardio respiratory fitness (i.e. VO2 max) and cognitive functioning. A healthy
cohort was studied (n = 219, 113 women, age range 41–44 years). Subjects underwent resting-state eyes-closed magneto-
encephalography (MEG). Five artifact-free epochs were analyzed and averaged in six frequency bands (delta-gamma). The
phase lag index (PLI) was used as a measure of functional connectivity between all sensors. Modularity analysis was
performed, and both within and between-module connectivity of each sensor was calculated. Subjects underwent a
maximum oxygen uptake (VO2 max) measurement as an indicator of cardio respiratory fitness. All subjects were tested with
a commonly used Dutch intelligence test. Intelligence quotient (IQ) was related to VO2 max. In addition, VO2 max was
negatively associated with upper alpha and beta band modularity. Particularly increased intermodular connectivity in the
beta band was associated with higher VO2 max and IQ, further indicating a benefit of more global network integration as
opposed to local connections. Within-module connectivity showed a spatially varied pattern of correlation, while average
connectivity did not show significant results. Mediation analysis was not significant. The occurrence of less modularity in the
resting-state is associated with better cardio respiratory fitness, while having increased intermodular connectivity, as
opposed to within-module connections, is related to better physical and mental fitness.
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Introduction

A healthy lifestyle is a major focus in today’s society. Regular

exercise and adequate physical fitness have proven to be important

for the immune system, metabolism, prevention of infectious

disease, skeletal functioning, and risk of cancer [1–6]. In addition

to these physical benefits, cardiorespiratory fitness is also related to

better cognitive functioning [7]. Several neural factors have been

reported to mediate the relationship between mental and physical

fitness, including increased neural vascularization [8], increased

production of brain derived neurotrophic factor (BDNF; [9]),

increased hippocampal volume [10], and higher levels of N-

acetylaspartate [11], although none of these mediators fully

explain the reported associations.

Another framework that has elucidated the neural correlates of

the association between cognition and physical fitness is resting-

state functional connectivity, as measured with functional mag-

netic resonance imaging (fMRI). The resting-state, during which

no task is present and alert relaxation is achieved, can be

characterized by several highly robust networks [12,13], of which

the default mode network (DMN) is the most stable and best

studied example [14,15]. This network seems to be the functional

backbone of the brain [16], and is implicated in almost all

neurological diseases. With respect to cardiorespiratory fitness,

higher connectivity within the DMN (as measured by seeding the

posterior cingulate cortex and examining its significantly correlat-

ed regions) is associated with better fitness level, and DMN

connectivity mediates the association between physical fitness and

cognitive functioning [17]. Moreover, a one-year aerobic training

intervention in older adults improves functional connectivity

within several resting-state networks, including the DMN and

the fronto-parietal network, which is thought to be important for

working memory [18]. Conversely, overweight adults show

increased DMN connectivity, which normalizes after a six month

exercise program [19]. The important role of functional connec-

tivity in the relationship between physical fitness and cognition was

confirmed in another study by Voss and colleagues, showing that

the association between exercise and connectivity is related to

BDNF, insulin-like growth factor type 1 (IGF-1), and vascular
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endothelial growth factor (VEGF), which are markers for

neuroplasticity [20].

However, fMRI is an indirect measure of neural functioning, as

it measures the slowly operating process of blood oxygenation.

Functional connectivity can also be determined frommagnetoen-

cephalography (MEG), which is a much more direct measure of

neural activity. Furthermore, functional connectivity in general

can be used as a starting point for more extensive, higher-order

analysis of the entire brain network using graph theory [21–23].

This type of analysis has shown that the brain network is very

comparable to many simpler biological and sociological systems

[24]. This elegantly theory-governed but still data-driven property

has made the application of network theory to the brain a very

interesting endeavor. For instance, the brain network is a ‘small-

world’, combining local segregation with global integration [24–

27]. Brain network topology is to a large extent genetically

determined [28–30] and is disturbed in several neurological

diseases [21,31].

The functional brain network also correlates with global

cognitive functioning and intelligence [32,33], indicating network

theory may add relevant information on neural correlates of

functioning above connectivity alone. Important information

about the integrity of the (brain) network can be extracted by

looking at modularity. Modules are clusters of nodes, or brain

areas, that are highly connected to each other, but much less to

nodes outside of their own module [34]. In the brain, five to seven

modules can be discerned, which correspond to major functional

systems [35]. Moreover, the role that specific brain areas play both

within their module and in connecting other modules has proven

relevant to brain functioning [36–38].

In this study, physical fitness, intelligence, and their neural

correlates in terms of network modularityare investigated. We

aimed to prove that VO2 max, a measure of cardio respiratory

fitness,is related to modular network topology based on MEG in a

large group of healthy subjects. Furthermore, we hypothesized that

intelligence is associated with physical fitness mediated through

brain network topology in terms of modular organization.

Materials and Methods

Ethics statement
This study was approved by the Medical Ethical Institutional

Review Board of the VU University Medical Center. All subjects

gave written informed consent before participation. This study was

carried out in accordance with the Declaration of Helsinki.

Subjects
All subjects participated in a prospective longitudinal study,

originally investigating natural development of growth, health and

lifestyle of adolescents, the Amsterdam Growth and Health

Longitudinal Study (AGHLS). This cohort study started in 1976

with four annual measurements and continued with an extensive

number of assessments with five to seven year time intervals[39].

All participants were born between 1961 and 1965 and were

residents of the Netherlands. First- and second-year pupils from

two equally large secondary schools were recruited. In 2006, MEG

recordings of the remaining 344 participants (who were all

between 41 and 44 years old) were obtained, in addition to the

health parameters that were investigated at each time-point of the

AGHLS [40]. These data are not publicly available at this point.

Physical fitness
Physical fitness was measured with a maximal running test on a

treadmill (Quinton 18–54; Quinton, Bothell, Wash), with a speed

of 8 km/h and increasing slope (every 2 minutes) and with direct

measurements of oxygen uptake (Ergoanalyzer; Jaeger, Bunnik,

the Netherlands). Maximum oxygen consumption (VO2 max) was

used as a measure of physical fitness (Kemper, 1995). This

measurement was performed approximately six years before MEG

recording.

Cognitive performance
Subjects underwent a cognitive test battery at the time of MEG

recording, to assess full-scale intelligence. The test battery

administered included the shortened Groninger Intelligence Test

(GIT [41]), which is a commonly used Dutch intelligence test.

Three subtests of the entire GIT were used, constituting the short

version of the test to assess intelligence [42]. Completion of the test

took approximately 45 minutes per subject.

Magnetoencephalography
Magnetic fields were recorded for five minutes while subjects

were seated inside a magnetically shielded room (Vacuumsch-

melze GmbH, Hanau, Germany), using a 151-channel whole-

head MEG system (CTF SystemsInc., Port Coquitlam, BC,

Canada). A third-order software gradient was used after online

band-pass filtering between 0.25 and 125 Hz. Sample frequency of

recording was 625 Hz. Fields were measured during a no-task,

eyes-closed condition of five minutes. At the beginning and ending

of each recording, the head position relative to the coordinate

system of the helmet was recorded by passing small alternating

currents through three head position coils attached to the left and

right pre-auricular points and the nasion on the subject’s head.

For each subject, the first five artifact-free epochs of 4096

samples (6.554 s) were selected by one of the authors [BWvD]. All

data analyses were performed using BrainWave [CJS, version

0.9.58, available from http://home.kpn.nl/stam7883/brainwave.

html]. Before calculating connectivity and network topology,

epochs were band-pass filtered into the commonly used frequency

bands delta (0.5–4 Hz), theta (4–8 Hz), lower alpha (8–10 Hz),

upper alpha (10–13 Hz), beta (13–30 Hz), and gamma (30–

45 Hz). All further analyses were performed for these bands

separately. The average relative power in the six abovementioned

frequency bands was calculated in each subject using a fast Fourier

transform as described in [43].

Phase Lag Index (PLI)
As a measure of functional connectivity, the phase lag index

(PLI) was used[44], which calculates the asymmetry of the

distribution of (instantaneous) phase differences between two

time-series. This asymmetry can be obtained from a time series of

phase differences DW (tk), k = 1… N samples:

PLI~ vsign sin D tkð Þð Þ½ �wj j

The phase difference DQ is defined in the interval [2p, p] and

,. denotes the mean value. Volume conduction causes a zero

phase lag between two time-series, but the presence of a consistent,

non-zero, phase lag between two time-series reflects true

interactions that are unaffected by volume conduction or common

sources.

Modularity, between and within module connectivity
First, to describe modularity in the whole-brain network we

used a version of previously described approaches[45], adapted for

weighted networks [37,46]:
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where m is the number of modules, ls is the sum of the weights of

all links in module s, L is the total sum of all weights in the

network, and ds is the sum of the strength of all nodes (i.e. the

summed weights per node) in module s. In short, the relation

between intra- and intermodular connections determines the

strength of each module. This measure describes modularity by

summing the relative strength of all the network modules, which

takes both within and between module connections into account.

A strongly modular network has modularity value close to 1, while

modularity is closer to 0 (but not absent) in a random network.

Finding the optimal modular organization in a network is a

computationally intensive problem. Simulated annealing can

overcome part of this issue, and was used in the current study

[45]. Initially, each of the N nodes was randomly assigned to one

of m possible clusters, where the initial m was taken as the square

root of N. At each step, one of the nodes was chosen at random,

and assigned a different randomly chosen module number from

the interval [1,N]. Modularity was calculated before and after this.

The cost C was defined as {Qw
m. The new partitioning was

preserved with probability p: if the final cost Cf was lower or equal

to the initial cost Ci (indicating no added cost when preserving the

partition), p was equal to 1. If Cf was higher than Ci, p was

calculated as follows:

p~ e{
cf { ci

T

The temperature T was 1 initially, and was lowered once every

100 steps as follows: Tnew = 0.995 Told. In total, the simulated

annealing algorithm was run for 106 steps. The partition with the

strongest modular organization (highest Q) was identified sepa-

rately for each epoch of every person for all the different frequency

bands, and subjected to further graph analysis.

Once the modular organization in a network has been

determined, the topological role of individual nodes can be

described in greater detail: nodes can be mainly involved in

communication with other nodes in the same module, but can also

preferably interact with other modules (see figure1). This aspect is

quantified by two properties: the within-module degree (Zi), and

the participation coefficient (PC) [45]. The within-module degree

measures the connectivity of the node within the module

compared to the other nodes in the same module, and thus

describes the relative importance within the module. It was

defined as follows:

zw
i ~

kw
i mið Þ{ k

w
mið Þ

skw mið Þ

Here, mi is the module containing node i, kw
i mið Þ is the within

module strength of node i (the sum of all weights of the links

between i and all other nodes in mi), and k
w

( mi ) and skw mið Þ are

the respective mean and standard deviation of the within-module

mi degree distribution.

The participation coefficient expresses how strongly a node is

connected to other modules, and the weighted version is defined

as:

PCi ~1{
X
m[M

kw
i mð Þ
kw

i

� �

M is the set of modules, and kw
i is the sum of all weights of the

links between i and all nodes in module m. The within module

degree and the participation coefficient determine the identity of a

node in the modular network structure.

Statistical analysis
Statistical analyses were performed using PASW Statistics

package (version 20.0) and Matlab version r2012b. Differences

between men and women regarding VO2max, IQ, and average

head surface were tested using Student’s t-tests. The association

between intelligence and VO2 max was analyzed using a linear

regression with IQ as the dependent variable and VO2 max as

independent variable, adjusted for sex. The association between

VO2 max and modular network topology was investigated with

regression analysis in which modularity indices per frequency band

were the dependent variables and VO2 max the dependent

variable, adjusted for sex, head surface size, and relative power per

frequency band. Similar analyses were used to explore average

between-module connectivity. Finally, the relationships between

VO2 max, network modularity, and intelligence were further

studied using mediation analyses. Mediation analysis investigates

whether a third parameter underlies an observed relationship

between two variables, meaning that the third variable governs the

Figure 1. Schematic representation of modularity and modular
connectivity. Note. In (a), two modules can be discerned. These
modules show high within-module connectivity, but low between-
module connectivity. (b) depicts two nodes in the network that are
characterized by high within-module connectivity, while (c) shows a
node with very high between-module connectivity.
doi:10.1371/journal.pone.0088202.g001
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association between the other two. In our study, we hypothesized

that the association between VO2 max and intelligence is

mediated by brain network modularity. This mediation model

was tested using the INDIRECT PASW statistics plug-in [47].

Direct and indirect effects between the dependent and indepen-

dent variables as well as the mediator were tested with regression

analyses (adjusted for significant abovementioned covariates), after

which 95% CIs were calculated for the total indirect effects using

bootstrapping (5,000 samples) as an unbiased means of testing

whether the mediation model was valid. The presence of a

mediation effect signifies that instead of having a direct causal

effect between the independent variable (VO2 max) and depen-

dent variable (IQ), the mediator (modular network topology) plays

an important role in the association between these two variables.

Results

Subject characteristics
At this time-point in the AGHLS study, 344 healthy subjects

participated. Our strict inspection of artifacts in the MEG

recordings caused exclusion of 79 subjects. Fourteen subjects were

excluded after examination of their intelligence scores, because

they performed well below average (,75). Of the remaining 251

subjects, VO2max measurements were performed in 219 subjects,

in whom all subsequent analyses were performed (see table1 for

subject characteristics). Subjects were on average 42 years old

(range 41–44). With respect to IQ, men and women did not differ

(t(217) = 1.005, p = 0.316). Men did have higher VO2 max

(t(217) = 14.006, p,0.001) and greater head surface in cm2

(t(217) = 8.979, p,0.001). To ascertain that network topology

results were not confounded by head surface size, this variable was

used as a covariate in all analyses. Four MEG sensors were

malfunctioning at the time of data collection, and these were

excluded from further analysis in all subjects.

The last VO2 max measurement took place six years before

MEG recording, when subjects were approximately 36 years old.

In order to investigate whether this gap could induce large changes

in physical fitness, we examined data from previous measurements

in the AGAHLS cohort. These measurements were performed at

13, 14, 15, 16, 21, 27, 29 and 32 years of age in subgroups of the

total cohort (with group sizes varying between 70 and 227

subjects). When looking at the consistency of VO2 max over these

time points, there is strong consistency within subjects over time

(see supplementary figure1), with an average correlation coefficient

R = 0.773 from one time point to the next. When comparing the

first adult measurement at 21 years old and the measurement used

in the remainder of this study at 36 years old (94 subjects

overlapping), the correlation coefficient is 0.791. Furthermore,

subjects who experienced major health burdens possibly influenc-

ing their lifestyle were excluded, which also ensures the stability

and consistency of the VO2 max measurements up to MEG and

IQ measurements six years later.

Physical fitness, intelligence and brain modularity
The previously reported association between physical fitness

and intelligence was confirmed: VO2 max was a significant

predictor of intelligence in a linear regression model (B = 0.322,

95% CI [0.049 0.594], p = 0.021). We then set out to investigate

our hypothesis concerning the association between physical fitness

and brain network topology. Lower modularity in the upper alpha

and beta bands was related to higher VO2 max (upper alpha band

B = 21.81, 95% CI [23.31 20.315], p = 0.018; beta band

B = 21.167, 95% CI [21.753 25.81], p = 0.017), adjusted for

sex, head surface, and relative power per frequency band (see

table2 for results of all frequency bands).

In order to confirm that these associations were indeed due to

network topology instead of global connectivity levels, we

performed an ANOVA with VO2 max as dependent variable

and both modularity and average connectivity in the upper alpha

and beta bands as independent variables. While the upper alpha

and beta connectivity indices did not yield significant results

(p = 0.529 and p = 0.869, resp.), modularity indices were signifi-

cantly related to VO2 max (p = 0.016 and p = 0.012, resp.). The

number of modules in the upper alpha and beta bands was not

associated with VO2 max, indicating that it was not the number of

modules that mattered, but the connectivity patterns within and

between those modules.

Modular connectivity
We then investigated the associations of between and within

module connectivity with VO2 max in these two frequency bands.

Results show that in the beta band, higher VO2max was related to

increased between-module connectivity (B = 0.674, 95% CI [0.101

1.246], p = 0.021), indicating indeed that physical fitness is

Table 1. Subject characteristics.

Total group (N = 219) Men (N = 106) Women (N = 113)

Mean age in years (SD) 42 (0.7) 42 (0.7) 42 (0.7)

IQ score (SD) 108 (13) 109 (13) 108 (13)

Head surface in cm2 (SD) 231 (19)** 242 (17) 222 (15)

VO2max (SD) 46 (8.6)** 52 (7.0) 40 (5.5)

Note ** = p,.01, significant gender difference.
doi:10.1371/journal.pone.0088202.t001

Table 2. Associations between band-specific modularity and
VO2 max.

B 95% CI (B) p-value

Delta band modularity 0.435 [-.080 0.167] 0.487

Theta band modularity 20.390 [21.64 0.086] 0.540

Loweralphamodularity 0.509 [20.121 2.23] 0.561

Upperalphamodularity 21.81 [23.31 23.15] 0.018*

Betamodularity 21.17 [21.75 25.81] 0.017*

Gamma modularity 211.1 [280.9 58.6] 0.754

Note. * = p,0.05. Sex, relative power in each frequency band, and skull size
were entered as covariates in each regression.
doi:10.1371/journal.pone.0088202.t002
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important for better intermodular integration. Moreover, an

ANOVA with both between-module and average connectivity as

covariates shows significant results for between-module connec-

tivity only (p = 0.039 and p = 0.919, resp.), further underlining the

added value of modularity-based connectivity over regular

connectivity alone.

Figure2a shows significant associations between VO2 max and

between-module connectivity per channel for both upper alpha

and beta bands, after correcting for the number of tests performed

with the false discovery rate (FDR, q,0.05 [48]). These maps

confirm the analysis of averaged between-module connectivity,

and show positive correlations between VO2 max and between-

module connectivity throughout the brain in the beta band, but

not the upper alpha band.

Due to the nature of the within-module calculation (i.e. within-

subject z-score is computed), no global average can be computed

for this measure. However, figure2b displays significant within-

module connectivity associations with VO2 max in the upper

alpha and beta bands, indicating that higher within-module

connectivity in the central areas is positively associated with VO2

max, while the within-module connectivity within lateral temporal

areas is negatively associated with physical fitness.

Modularity and between-module connectivity as VO2

max – IQ mediators
Finally, the associations between intelligence, VO2 max, and

brain modularity were analyzed using mediation analyses. Our

hypothesis was that better physical fitness leads to better cognitive

performance and thus higher IQ later, through the mediating

effect of brain network modularity (see figure3). This hypothesis

was not confirmed. Although separate regressions of the associ-

ations between both VO2 max and network characteristics and

intelligence were significant, the mediation effects, as evidenced by

significance levels and 95% confidence intervals through 5,000

bootstrapping samples, were not (see table3). This indicates that

although modularity, VO2 max and IQ are interrelated, the

association between VO2max and intelligence is not statistically

explained by modularity. Exploratory mediation analyses using

different dependent, independent, and mediating variables also did

not yield significant results.

Discussion

Physical fitness and cognitive functioning are related. We show

that this relation is also associated with topology of the functional

brain network during the resting-state. Decreased upper alpha and

beta band modularity were related to higher VO2 max, with

higher beta between-module connectivity being associated with

better physical fitness. Average functional connectivity did not

show this association with VO2 max. The association between

Figure 2. Significant sensor-specific associations between
modular connectivity and VO2 max. Note. (a) shows an FDR-
corrected t-map of significant associations between alpha band and
beta band (left and right panel, resp.) between-module connectivity
and VO2 max, while (b) shows the same for within-module connectivity.
Warm colors indicate positive associations, cool colors refer to negative
associations.
doi:10.1371/journal.pone.0088202.g002

Figure 3. Graphical representation of hypothesized mediation
effect. Note. A mediating effect of brain network topology on the
association between VO2 max (maximum oxygen uptake during an
effort test) and intelligence quotient (IQ) was hypothesized.
doi:10.1371/journal.pone.0088202.g003

Table 3. Mediation analyses of network topology on the
association between physical fitness and intelligence.

Upper alpha band modularity (total 95% CI
[20.042 0.055])

Beta p

VO2max - upper alpha modularity 20.216 0.018*

VO2max - IQ total 0.187 0.046*

VO2max - IQ direct 0.185 0.052

Upper alpha band modularity mediation 20.010 0.885

Beta band modularity (total 95% CI [20.057
0.058])

Beta p

VO2max - beta modularity 20.197 0.018*

VO2max - IQ total 0.187 0.046*

VO2max - IQ direct 0.188 0.049*

Beta band modularity mediation 0.004 0.959

Beta band PC (total 95% CI [20.032 0.074]) Beta p

VO2max - beta PC 0.206 0.021*

VO2max - IQ total 0.187 0.046*

VO2max - IQ direct 0.184 0.053

Beta band PC mediation 0.013 0.854

Note. * p,0.05, CI = total confidence interval of indirect effects, based on 5,000
bootstrap samples.
Adjusted for sex, head surface, and relative band power. PC = participation
coefficient.
doi:10.1371/journal.pone.0088202.t003
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cardiorespiratory fitness and intelligence was however not

statistically mediated by network characteristics.

Modularity refers to the extent to which the brain can be

subdivided into coherent subsystems. Although such a modular

organization is generally beneficial for brain functioning [35],

having consistently tight connectivity within modules may be

detrimental. Our results show negative correlations between

modularity and both mental and physical functioning, indicating

that higher levels of within-module connectivity versus between-

module connectivity may be related to decreased functioning. An

MEG study comparing modularity during several conditions of a

working memory task reports decreasing modularity, i.e. increas-

ing intermodular communication, as effort increases [49]. A study

compiling a large number of task-related fMRI and PET studies

also shows the importance of the modular organization of the

brain for cognitive functioning [38]. However, how modularity

relates to healthy functioning during the resting-state has not been

reported.

Another resting-state study using modularity reports increased

delta and theta band modularity in Alzheimer’s patients when

compared to healthy controls, which was related to poorer

performance on a fluency task [37]. Furthermore, an fMRI study

during task performance did not find changes in overall

modularity over consecutive learning sessions, but does report

that the flexibility of particular nodes, i.e. the number of times that

each node in the network changes its belonging to specific

modules, was related to better performance [50]. That is, having a

highly dynamic modular structure, as opposed to a fixed modular

division, was related to better functioning. These task-based

findings concerning network flexibility have recently been

replicated, localizing these multi tasking nodes mainly in the

fronto-parietal network [51]. Our findings indicate that the

resting-state is characterized by lower modularity and increased

between-module, possibly long-range connections in brighter and

fitter individuals. It would be interesting to investigate the

transition from resting-state to any task, which may indicate that

the resting-state modular flexibility of the brain network is similar

to task-based dynamics.

The effects of modularity and between-module connectivity

were present in the upper alpha and beta bands. These frequency

bands havebeen studied extensively with respect to cognitive tasks,

albeit mostly with respect to power and not connectivity or

network properties. The (upper) alpha band has been related to

attention and working memory [52–55], while the beta band has

been implicated in learning, novelty detection, and reward

evaluation, indicating that this oscillation might be an important

mechanism for directing attention towards a novel stimulus [56–

59]. A previous study used electroencephalography (EEG) to

investigate connectivity and network efficiency during a task in

active versus sedentary subjects [60]. Results show that in the beta

band, active subjects show greater connectivity and network

efficiency than sedentary subjects. Similar results were obtained

when using coherence as a measure of connectivity, also in the

alpha and beta band [61]. None of these studies investigated

resting-state network topology.

With respect to the previously described study investigating

modularity during increasingly difficult cognitive conditions [49],

most effects of neural reconfiguration were found in the beta band,

which the authors ascribe to the need for higher long-range

synchronization, increased intermodular connectivity, and thus

loss of modularity in this frequency band during tasks. This

hypothesis, as well as our results, are corroborated by computa-

tional and animal work, showing that beta oscillations provide

excellent support for long-distance synchronization [59,62]. The

beta band may speculatively be at the heart of communication

between hub areas in the brain, which regulate higher-order

functioning of the brain network and therefore relate to

intelligence and cardio respiratory fitness, although more studies

are needed to confirm this hypothesis.

Previous studies have only reported associations between

resting-state functional connectivity, cognitive functioning, and

physical fitness. Particularly higher connectivity within the default

mode network (DMN) has been related to increased cardiorespi-

ratory fitness, while DMN connectivity also mediates the

association between VO2 max and cognitive functioning [17].

After a 1-year exercise intervention in older adults, both the DMN

and the fronto-parietal network show higher connectivity than a

control group [18], further building on the causal relationships

that might exist between physical fitness and functional connec-

tivity. Our results partly corroborate these findings, and indicate

that there might be differential associations with particular types of

connectivity: in our investigation of a very large cohort of healthy

subjects with a direct measurement of neural activity, particularly

increased between-module connectivity was related to superior

cardiorespiratory fitness and intelligence. Also, our lack of findings

with respect to average functional connectivity indicate that

network analysis contributes valuable information to the associa-

tion between fitness and intelligence, and advocates for investiga-

tion of the brain network as a whole instead of only focusing on

connectivity between particular spatially determined areas.

Although circumstantial evidence is available, the definite

direction of the association between increased cardio respiratory

fitness, functional brain network organization, and cognition is still

uncertain, and our results in a large sample do not support the

hypothesis that better physical condition leads to better intelli-

gence through brain network topology. Several aerobic interven-

tion studies, which usually randomize between an exercise

program and a control intervention of for instance light stretching,

have reported increased cognitive functioning afterwards, but a

number of studies failed to find a cognitive effect of increased

cardio respiratory fitness [7,63]. Our study was not aimed at

addressing this issue, and mediation analyses were not significant.

Additionally, measurement of VO2 max took place approximately

six years prior to intelligence testing and MEG recording. Our

analysis of VO2 max at previous time points suggests that this

measurement is a relatively stable measure of physical fitness, and

all subjects with disease burden influencing their lifestyle were

excluded. Finally, the presence of associations between VO2 max

and intelligence six years later suggest that we are indeed looking

at a robust indication of physical fitness. However, we cannot

ascertain that this interval between measurements did not

influence our results. Future longitudinal studies are needed to

shed light on the causal relations between cardiorespiratory fitness,

intelligence, and network topology, while investigation of anatom-

ical brain connections may also yield further insights into this issue.

Increased physical fitness is associated with better functional

brain network topology. The step from exercise to functional brain

network may be difficult to understand. On a cellular level, better

physical fitness has often been associated with increases in BDNF

[64,65], and possibly with IGF-1 and VEGF [66]. A recent study

suggests that these exercise-induced cellular changes are indeed

related to functional connectivity, by comparing BDNF, IGF-1

and VEGF levels in two groups of participants undergoing either

an aerobic or non-aerobic intervention [20]. The link between

cellular biology and network functioning as measured with MEG

has recently also been addressed in a study of protein expression

and epilepsy in brain tumor patients [67]. We were able to show a

direct association between epilepsy-related protein expression and
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between-module connectivity of the tumor area, further indicating

that these network patterns may be the intermediate between

molecules and behavior. Future studies are needed to further

explore how cellular changes as a consequence of exercise lead to

changes in functional connectivity.

Several limitations of the current study should be recognized.

First of all, as previously mentioned, measurement of cardiorespi-

ratory fitness was performed several years before MEG recording

and intelligence testing took place. The influence of the lag

between measurements in the current study design on the reported

results is unknown. Secondly, this study was performed on the

sensor-level, since no anatomical MRI scans (which are necessary

to perform accurate source reconstruction in MEG data) were

available. This limits the spatial specificity of our results, and

prohibits further investigation of specific spatial network proper-

ties. Third, the spatial resolution of MEG is limited. Although

MEG is much less sensitive to volume conduction and disturbing

effects of the skull and scalp than EEG, common sources still pose

a serious problem for coupling analysis. However, the phase lag

index is a particularly strict measure of functioning connectivity,

because it excludes all non-zero lagged correlations [44,68].

In conclusion, we show that functional brain network organi-

zation may mediate the association between cardiorespiratory

fitness and intelligence. Less tightly connected, more intercon-

nected functional modular topology in the upper alpha and

particularly beta band may promote long-range connectivity in the

resting-state, which relates to both increased physical and mental

fitness.

Supporting Information

Figure S1 Temporal consistency of VO2 max measure-
ments in the AGAHLS cohort. Note. (a) depicts the

correlations between VO2 max measurements at each neighboring

time point in the AGAHLS study, the first two measurements

being performed at 13 and 14 years old (YO). The number of

overlapping subjects between time points is indicated in paren-

theses. In (b), the first adult VO2 max measurement at 21 years old

is correlated to the last measurement at 36 years old, which we

used in this study (correlation coefficient of 0.791, p,0.001).
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