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Abstract

We established a genomic model of quantitative trait with genomic additive and dominance relationships that parallels the
traditional quantitative genetics model, which partitions a genotypic value as breeding value plus dominance deviation and
calculates additive and dominance relationships using pedigree information. Based on this genomic model, two sets of
computationally complementary but mathematically identical mixed model methods were developed for genomic best
linear unbiased prediction (GBLUP) and genomic restricted maximum likelihood estimation (GREML) of additive and
dominance effects using SNP markers. These two sets are referred to as the CE and QM sets, where the CE set was designed
for large numbers of markers and the QM set was designed for large numbers of individuals. GBLUP and associated accuracy
formulations for individuals in training and validation data sets were derived for breeding values, dominance deviations and
genotypic values. Simulation study showed that GREML and GBLUP generally were able to capture small additive and
dominance effects that each accounted for 0.00005–0.0003 of the phenotypic variance and GREML was able to differentiate
true additive and dominance heritability levels. GBLUP of the total genetic value as the summation of additive and
dominance effects had higher prediction accuracy than either additive or dominance GBLUP, causal variants had the highest
accuracy of GREML and GBLUP, and predicted accuracies were in agreement with observed accuracies. Genomic additive
and dominance relationship matrices using SNP markers were consistent with theoretical expectations. The GREML and
GBLUP methods can be an effective tool for assessing the type and magnitude of genetic effects affecting a phenotype and
for predicting the total genetic value at the whole genome level.
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Introduction

Genomic prediction using genome-wide single nucleotide

polymorphism (SNP) markers has been shown to be a powerful

tool to capture small genetic effects dispersed over the genome for

predicting an individual’s genetic potential of a phenotype [1–5].

Current large scale genomic prediction focused on additive effects

[2,4,5]. Two SNP models for genomic prediction of additive

effects were described: a traditional quantitative genetics model

and a model with (21)-0–1 SNP coding [2]. The traditional

quantitative genetics model is attractive because it is equivalent to

a conventional animal model with the relationship matrix

calculated from the SNP genotypes [5] and it directly predicts

genomic breeding values [2,4,5]. Method and computing tool are

available for estimating genomic heritability using genome-wide

SNP markers [6]. This method uses a standardization of the 0–1–2

additive coding and the subtraction step of this standardization

leads to additive effects that are breeding values under the

traditional quantitative genetics model assuming Hardy-Weinberg

equilibrium [2,6,7]. The mixed model implementation of this

method is ideal for a large number of markers but is not ideal for a

large number of individuals because the size of the matrix that

needs to be inverted increases as the number of individuals

increases.

From the point of view of missing heritability [8–10], the ability

to estimate genome-wide dominance contribution will help

determine the total genetic contribution to a phenotype. Similarly,

methods of genomic prediction taking into account of dominance

can predict an individual’s total genetic potential for phenotypes

affected by additive and dominance effects. Substantial dominance

effect should justify the inclusion of dominance in genomic

prediction and the design of mating systems to maximize

dominance effect. In dairy cattle, dominance variances estimated

from pedigree data were reported to be 11–16% of the phenotypic

variance of stature [11], and the increased availability of cows with

phenotypes and genotypes provides an opportunity to estimate

dominance effects and include those in mating programs [12].

However, only limited methodology studies on genomic prediction

PLOS ONE | www.plosone.org 1 January 2014 | Volume 9 | Issue 1 | e87666



and variance component estimation of dominance were available

[13–16].

Genomic best linear unbiased prediction (GBLUP) and various

Bayesian methods are available for genomic prediction, and

GBLUP generally had good performance in real data [17].

Restricted maximum likelihood estimation (REML) [18] has been

a widely accepted method for estimating variance components.

Objectives of this study were to develop mixed model methods

for the joint genomic prediction of and variance component

estimation of additive and dominance effects based on the

traditional quantitative genetics model that partitions a genotypic

value into breeding value and dominance deviation. The

methodology will have two complimentary computing strategies

for large numbers of individuals and markers, and the genomic

prediction methods for have GBLUP and associated reliability for

both training and validation data sets. Accuracies of the new

methods will be evaluated using simulation data based a true dairy

cattle SNP structure.

Methods

Genetic Model of SNP Markers and Mixed Model of
Phenotypic Observations

The genetic model of SNP markers is an expansion of the

additive model used in genomic evaluations [2,4,5] by adding a

dominance component to the additive model. Using the traditional

quantitative genetics model that partitions a genetic value into

breeding value and dominance deviation under the assumption of

Hardy-Weinberg equilibrium [7], the genetic value of each SNP

marker can be expressed as:

gij~mzaijzdij~mzwaijazwdijd ð1Þ

where gij = genotypic value of SNP genotype AiAj(i,j~1,2),

m = common mean, a = average effect of gene substitution,

d = dominance effect, aij = waija = breeding value, dij = wdijd =

dominance deviation, wa11~2p2, wa12~p2{p1, wa22~{2p1,

wd11~{2p2
2, wd12~2p1p2, wd22~{2p2

1, and where p1 = fre-

= frequency of A1 allele and p2~1{p1 = frequency of A2. Note

that gene substitution effect (a) is a contrast of breeding values or a

contrast of allelic effects, and dominance effect (d) is a contrast of

dominance deviations or a contrast of genotypic values (Text S1:

Part A). In matrix notations, the genetic model of Equation 1 can

be expressed as:
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0
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The quantitative genetics model of Equation 2 has the interpre-

tation of ‘breeding value’ for additive effects. Assuming equal allele

frequency and using a reparameterized m, Equation 2 can achieve

the (21)-0-1 coding or 0-1-2 coding for additive effects and the 0-

1-0 coding for dominance effects, but additive effects in those

equal frequency models do not have the interpretation of

‘breeding value’ when the actual allele frequencies are unequal

(Text S1: Part A). For each SNP marker, the variance of a and the

variance of d are assumed to be Var(a)~s2
a and Var(d)~s2

d, and

the covariance between a and d is assumed null. Let N = the

number of phenotypic observations, q = the number of individuals,

m = the number of SNP markers, and c = the number of fixed

effects. Based on Equation 2, the mixed model with SNP breeding

values and dominance deviations can be expressed as:

y~XbzZWaazZWddze ð3Þ

where Z = N|q model matrix allocating phenotypic observations

to SNP marker genotypes of individuals, Wa = q|m model matrix

for gene substitution effects of SNP markers, a = column vector of

gene substitution effects of SNP markers, Wd = q|m model

matrix for dominance effects of SNP markers, d = column vector

of dominance effects of SNP markers, X = N|c model matrix for

fixed non-genetic effects such as herd-year-season in dairy cattle,

and b = vector of fixed effects. Assumptions for the first and second

moments are: E(y)~Xb, Var(a)~Ims2
a, Var(d)~Ims2

d, and

Var(e)~R~INs2
e , where s2

e = residual variance, Im = m|m

identity matrix, and IN = N|N identity matrix. With the model

and assumptions of Equations 1–3, methods for GBLUP and

genomic variance component estimation using restricted maxi-

mum likelihood estimation (GREML) can be developed.

Results and discussion

Genomic Additive and Dominance Relationship Matrices
As the number of SNP markers increases, the values of the

diagonal elements of WaW’
a and WdW’

d increase. Two methods to

normalize the WaW’
a and WdW’

d matrices can be used. The first

method divides WaW’
a and WdW’

d by the expected variance of the

diagonal elements of each matrix (Definition I, [2]). The second

method divides WaW’
a by the average of the diagonal elements of

WaW’
a (Definition II, [4]), and we apply this method to WdW’

d for

defining dominance relationship matrix. In addition, we use a

transformation to transform WaW’
a and WdW’

d into correlation

matrices so that off-diagonal elements are mathematically

comparable, and we refer to this definition as Definition III and

refer to the resulting correlation matrices as genomic additive and

dominance correlation matrices. The additive correlations of

Definition III are the genomic version of Wright’s coefficient of

relationship [19]. Each of these three definitions of additive and

dominance relationship or correlation matrices can be represented

by two transformation matrices, Qa or Qd. Let

Qa~diagf(kaii)
1=2g an q|q diagonal matrix, and

Qd~diagf(kdii)
1=2g an q|q diagonal matrix, where kaii is the

expected variance of the diagonal elements of WaW’
a and kdii is

the expected variance of the diagonal elements of WdW’
d for

Definition I (2
Pm

i~1 pi(1{pi) for additive relationships [2], and

4
Pm

i~1 p2
i (1{pi)

2 for dominance relationships, personal commu-

nication from P. VanRaden to Y. Da, March 3, 2013), kaii is the

average of diagonal elements of WaW’
a and kdii is the average

diagonal elements of WdW’
d for Definition II, and kaii is the ith

diagonal element of WaW’
a and kdii is the ith diagonal element of

WdW’
d for Definition III. Then,

Ta~Q{1
a Wa ð4Þ
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Td~Q{1
d Wd ð5Þ

The additive relationship or correlation matrix (Ag) and

dominance relationship or correlation matrix (Dg ) can be

expressed as.

Ag~TaT0a~Q{1
a WaW0

aQ{1
a ð6Þ

Dg~TdT0d~Q{1
d WdW0

dQ{1
d ð7Þ

In Equations 6–7, subscript ‘g’ is used to distinguish Ag and Dg

from the A and D matrices calculated from pedigree data [20]. In

addition to representing a number of definitions of genomic

relationships, Ta and Td are used to define equivalent models to

achieve computing efficiency.

Two Equivalent Mixed Models, Two Sets of
Complementary Formulations

With the T matrices of Equations 4–5, two equivalent mixed

models with complementary computing advantages, Model 1 and

Model 2, can be defined. Model 1 can be written as:

y~XbzZTaazZTddze~XbzZazZdze ð8Þ

Var(y)~V~ZAgZ0s2
azZDgZ0s2

dzINs2
e ð9Þ

where a~Taa = genomic breeding values,d~Tdd = genomic

dominance deviations, Var(a)~Ags2
a, and Var(d)~Dgs2

d. Model

2 can be rewritten as:

y~XbzZ1azZ2dze ð10Þ

Var(y)~V~Z1Z’
1s2

azZ2Z’
2s2

dzINs2
e ð11Þ

(11)where Z1~ZTa and Z2~ZTd. Model 1 of Equation 8 and

Model 2 of Equation 10 have the same mathematical expectation,

i.e., E(y)~Xb. The two equivalent models of Equations 8–11 can

generate four sets of formulations with identical results of GBLUP,

reliability and GREML. Each model can use a conditional

expectation (CE) or mixed model equations (MME) to calculate

GBLUP. The CE set of Model 1 is the best for large number of

markers (m.q) and the MME set of Model 2, to be referred as the

QM set (QM meaning q.m), is the best for large number of

individuals (q.m). The MME set of Model 1 (to be referred to as

MQ, with MQ meaning m.q) has no computing advantage

because the matrix size is twice as large as that of CE and requires

the inverses of the relationship matrices. The CE set of Model 2

(CE2) also has no computational advantage because CE2 requires

more memory than QM if m.q. These two sets (MQ and CE2) are

not considered further. In the following, we focus on the CE and

QM sets of solutions, where each set consists of GBLUP, reliability

of GBLUP and GREML formulations. We first present these three

types of formulations in each set, CE for m.q or QM for q.m, and

then summarize the main features of the CE and QM sets.

GBLUP-CE, Reliability and GREML-CE for m.q
The CE form of GBLUP from Model 1 can be calculated as:

â~s2
aAgZ0V{1(y{Xb̂)~s2

aAgZ0Py ð12Þ

d̂~s2
dDgZ0V{1(y{Xb̂)~s2

dDgZ0Py ð13Þ

where â = GBLUP of breeding values, d̂ = GBLUP of dominance

deviations, b̂~ X0V{1
X

� �{

X0V{1
y is best linear unbiased

estimator (BLUE) of b, V is defined by Equation 9, and

P~V{1{V{1X X0V{1
X

� �{

X0V{1 ð14Þ

We refer to the GBLUP of Equations 12–13 as GBLUP-CE. The

GBLUP of genotypic values is calculated as ĝ~âzd̂. The

reliability measures of â, d̂ and ĝ for individuals with phenotypic

observations (individuals in training data set) are:

R2
ai~s2

a AgZ0PZAg

� �
ii
=aii ;

R2
di~s2

d DgZ0PZDg

� �
ii
=dii ;

R2
gi~ GaZ0PZGazGaZ0PZGdzGdZ0PZGazGdZ0PZGdð Þii

= aiis
2
azdiis

2
d

� �
where R2

ai = the reliability of GBLUP of breeding values (̂a) for

individual i, R2
di = the reliability of GBLUP for dominance

deviations (̂d) for individual i, R2
gi = the reliability of GBLUP for

genotypic values (̂g), aii = diagonal element i of Ag, dii = diagonal

element i of Dg, Ga~s2
aAg, Gd~s2

dDg, and P is given by

Equation 14. Note that aii~dii~1 for Definition III but the aii

and dii values generally are not ‘19 for Definitions I and II. The

average of aii values and the average of diivalues are ‘19 under

Definitions II and III, and are expected to be ‘19 under Definition

I although the observed average aii and diivalues under Definition

I may deviate from ‘19. For individuals without phenotypic

observations (individuals in validation data set), formulations of

GBLUP-CE and associated reliability measures are given in Text

S1: Part B. GREML-CE via the EM type algorithm [20–22] are:

s2
a

(iz1)~s2
a

(i)yP(i)ZAgZ0P(i)y=tr(P(i)ZAgZ0) ð15Þ

s2
d

(iz1)~s2
d

(i)yP(i)ZDgZ0P(i)y=tr(P(i)ZDgZ0) ð16Þ
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s2
e

(iz1)~s2
e

(i)yP(i)P(i)y=tr(P(i)) ð17Þ

GBLUP-QM, Reliability and GREML-QM for q.m
The mixed model equations for predicting SNP additive effects

(a) and dominance effects (d) based on Model 2 are:

X0X X0Z1 X0Z2

Z’
1X Z’

1Z1zImla Z’
1Z2

Z’
2X Z’

2Z1 Z’
2Z2zImld

0
B@

1
CA b̂

â

d̂

0
B@

1
CA~

X0y

Z01y

Z02y

0
B@

1
CA ð18Þ

where Im = m|m identity matrix, la~s2
e=s2

a and ld~s2
e=s2

d .

To reduce the size of Equation 18, equations for b̂ can be

absorbed, and Equation 18 after the absorption reduces to:

Z1
0MZ1zImla Z1

0MZ2

Z2
0MZ1 Z2

0MZ2zImld

� �
â

d̂

 !
~

Z01My

Z02My

� �
ð19Þ

where M~IN{X(X0X){X0. The GBLUP of breeding values and

dominance deviations for all individuals with phenotypic obser-

vations can be calculated as:

â~Taâ~s2
aTa(ZTa)0V{1(y{Xb̂)~s2

aAgZ0Py ð20Þ

d̂~Tdd̂~s2
dTd(ZTd)0V{1(y{Xb̂)~s2

dDgZ0Py ð21Þ

where Ta is defined by Equation 4, Td by Equation 5, and â and d̂
are solutions to Equation 16. We refer to the approach of

Equations 19–21 as GBLUP-QM. The comparison between

Equations 20–21 and Equations 12–13 shows that GBLUP-CE

and GBLUP-QM are mathematically identical. Reliabilities of

GBLUP-QM from Equations 19–21 are:

R2
ai~1{la T CaaT’

a

� �
ii
=aii

R2
di~1{ld TdCddT’� �

ii
=dii

R2
gi~1{s2

e TaCaaT’ zTa CadT’ zTdCdaT’ zTdCddT’� �
ii

= aiis
2
azdiis

2
d

� �
where Ta and Td are defined by Equations 4–5, and Caa, Cad,

Cdaand Cdd are submatrices that satisfy:

H{1~
Z1
0MZ1zImla Z1

0MZ2

Z2
0MZ1 Z2

0MZ2zImld

� �{1

~
Caa Cad

Cda Cdd

 !
ð22Þ

For individuals without phenotypic observations (individuals in

validation data set), formulations of GBLUP-QM and associated

reliability measures are given in Text S1: Part B. GREML-QM

formulations via EM type algorithm are:

s2
a

(iz1)~â
(i)

â
(i)
=½m{tr(Caa(i))l(i)

a � ð23Þ

s2
d

(iz1)~d̂
(i)

d̂
(i)

=½m{tr(Cdd(i))l
(i)
d � ð24Þ

s2
e(iz1)~ê

(i)
ê

(i)
=fN{½r{tr(Caa(i))l(i)

a {tr(Cdd(i))l(i)
d �g ð25Þ

where r is the rank of the coefficient matrix of Equation 18,

ê~y{Xb̂{Z1â{Z2d̂ and Caa and Cdd are defined by Equation

22.

Heritability Estimates
Three heritability estimates can be obtained from estimates of

variance components: additive heritability or heritability in the

narrow sense (h2
a), dominance heritability (h2

d), and the total

heritability or heritability in the broad sense (H2). Let

s2
y~s2

azs2
dzs2

e = phenotypic variance. Then, h2
a~s2

a=s2
y,

h2
d~s2

d=s2
y, and H2~h2

azh2
d. Note that the variances of additive

and dominance effects (s2
a and s2

d) could be converted into the

variances of breeding values and dominance deviations (s2
a and s2

d )

by s2
a~s2

a(
Pq

i~1 aii)=q and s2
d~s2

d(
Pq

i~1 dii)=q based on

Var(a)~Ags2
a and Var(d)~Dgs2

d defined in Equation 9. How-

ever, this type of conversion practically is unnecessary because the

average aii and diivalues are ‘19 under Definitions II and III and

are expected to be ‘19 under Definition I of genomic additive and

dominance relationships.

Main Features of the CE and QM Formulations
The CE and QM sets of formulations for GBLUP, reliability

and GREML are mathematically identical, offer identical results,

and offer complimentary computing efficiency. The CE set is

designed for m.q and is the best approach for using a large

number of markers for GBLUP and GREML, while GBLUP-QM

is designed for q.m and is the best approach for using a large

number of individuals in GBLUP and GREML. A simple rule for

choosing between CE and QM is: use CE if q,2m or vice versa.

This is because the size of the V matrix to be inverted is q for CE

(assuming one observation per individual) and the size of the

MME coefficient matrix of Equation 19 is 2m for QM so that V
become easier to invert than the MME coefficient matrix of

Equation 19 for q,2m. Both sets do not require the inversions of

the additive and dominance relationship matrices. The CE set uses

relationship matrices explicitly whereas the QM set does so

implicitly. Both sets are invariant to the invertibility of Ag and Dg,

i.e., both sets are applicable to singular Ag and Dg, applicable to

m.q where Ag and Dg are generally invertible, and applicable to

q.m where Ag and Dg are non-invertible. The property of

invariance to the invertibility of additive and dominance

relationship matrices is a significant convenience because re-

searchers do not have to require m.q and do not need to assess

invertibility that is not guaranteed by m.q, e.g., the existence of

identical twins results in non-invertible Ag and Dg.

GBLUP for Validation Data Set, AI-REML, Computer
Implementation

Formulations for GBLUP-CE and GBLUP-QM for individuals

without phenotypic observations (individuals in validation data set)

and reliability measures are given in Text S1: Part B. The EM type

Genomic Prediction and Estimation of Variances

PLOS ONE | www.plosone.org 4 January 2014 | Volume 9 | Issue 1 | e87666

a

d

a d da



algorithm of Equations of 15–17 and 23–25 is known to be reliable

but slow. The AI-REML algorithm [23–25] is fast but is not as

reliable as EM type. The implementation of AI-REML for

estimating additive, dominance and residual variance components

is described in Text S1: Part C. All formulations for GBLUP,

reliability, genomic relationships and GREML including AI-REML

are implemented by the GVCBLUP package [26], which is freely

available at http://animalgene.umn.edu.

Accuracy of GREML and GBLUP for Additive and
Dominance Heritabilities

Simulation study with known true values of genetic effects and

parameters is an effective approach to evaluate the accuracy of a

new methodology because the observed GBLUP and GREML

estimates can be compared with the true values. We generated a

large number of simulated data sets based on a true dairy cattle

SNP structure of 1654 Holstein cows assuming true additive and

dominance heritability levels of 0, 0.05, 0.15 and 0.30, and we

applied seven SNP sets to the simulated data, 1K causal variants,

1K SNP, 2K SNP and causal variants, 3K, 7K 40K SNP markers,

and 41K SNP markers and causal variants. Detailed information

about these marker sets and the procedure to generate the

simulation data are described in Text S1: Part D. For the sample

size of 1654 individuals in the simulation study with seven causal

and SNP marker sets, GREML were able to capture small effects

that each accounted for only 0.00005–0.0003 of the phenotypic

variance with high accuracy and were able to distinguish between

high and low heritability levels. However, dominance GREML

was less accurate and required higher density of SNP markers than

additive GREML (Table S1). These results were encouraging

given the rapid data growth in genomic selection [27–29] that

could substantially increase the GREML accuracy for both

additive and dominance effects over the accuracies observed with

our sample size.

GREML accuracy of causal variants. Causal SNP markers

(1K_QTL, Table S1) had the best accuracy in almost all cases and

had similar accuracies for both additive and dominance heritabil-

ities except the case with h2
a~0:05 and h2

d~0:05, where the

estimate of dominance heritability was ĥh2
d~0:03+0:02 and the

estimate of additive heritability was ĥh2
a~0:06+0:01. Adding

linked SNP makers to the causal SNP (2K and 41K in Table S1)

decreased GREML accuracy in most cases. Causal SNP markers

had nearly unbiased estimates of heritabilities (Figure 1) and had

the smallest MSE of heritability estimates (Figure 2). The bias and

MSE of variance components had similar patterns as those for

heritabilities (data not shown).

GREML accuracy of linked SNP markers. Linked SNP

markers were less accurate than causal SNP markers in nearly all

cases but were still highly accurate for estimating additive

variance. For additive effects, GREML using the 40K and 41K

SNP sets had a tendency of slightly overestimating additive

heritabilities and variance components. For dominance effects, the

marker densities in this simulation study, 1K_SNP, 3K, 7K and

40K, were all insufficient to achieve accurate estimates of

dominance heritabilities and variance components, although the

40K set was able to distinguish between high and low dominance

heritabilites. Accuracy of dominance GREML increased as the

density of linked SNP marker increased from 1K_SNP to 40K,

indicating that further increase in marker density over 40K could

improve the accuracy of dominance GREML (Table S1).

GREML estimates for ‘09 heritability. Estimating ‘09

heritability generally is considerably more difficulty than estimat-

ing non-null heritability. Therefore, the accuracy in estimating ‘09

heritability is a strong test for the accuracy of the GREML

formulations. From the same simulation data set we generated

above, we generated another set of simulation data requiring

additive or dominance effects to be the only genetic effects such

that h2
a~0:00 and/or h2

d~0:00 to test the performance of

GREML when the true heritability and variance component for

one or both effects were null. The causal variants (503_A and

503_D) again had the highest accuracy in estimating ‘09

heritabilities and variance components, with average heritability

estimates in the range 0–0.01 for additive heritability and 0–0.02

for dominance heritability (Table S2). The 1K SNP set with half

causal variants and half inter-QTL SNP (503_A +503_D) was

virtually as accurate as the causal variants of 503_A or 503_D.

The 41K set also included the causal variants but were not as

accurate as the 1K set and overestimated dominance heritability

by 0.05 when the true dominance heritability was ‘09. The 40K

inter-QTL SNP markers had the same overestimates as the 41K.

The results of the 1K, 40K and 41K SNP sets showed that a large

number of linked SNP markers decreased the GREML accuracy

when the true dominance heritability was null. Overall, the

GREML formulations were surprisingly accurate in estimating

null additive and dominance heritabilities except the 40K and

41K marker sets for null dominance heritability.

Accuracy of GBLUP for breeding values, dominance

deviations and genetic values. GBLUP of genotypic values

(̂g) and GBLUP of breeding values (̂a) were less sensitive to marker

density than GREML. GBLUP of dominance deviations (̂d) was

sensitive to marker density as was dominance GREML. Observed

and expected accuracies all increased as heritability levels

increased. The benefit of using ĝ over â or d̂ for predicting the

total genotypic values increased as dominance heritability

increased for a given additive heritability except the case

h2
d~0:05 (Figure 3).

GBLUP accuracy of causal variants and linked SNP

markers. Causal variants had the best GBLUP accuracy for

â, d̂ and ĝ, but the accuracy for d̂ was lower than that for â and ĝ,

unlike additive and dominance GREML that had similar

accuracies using causal variants. The difference in observed

GBLUP accuracy between â and d̂ was the largest for low additive

and dominance heritabilities at h2
a~h2

d~0:05 with R̂Ra~0:50 and

R̂Rd~0:36, and was the smallest for high heritabilities at h2
a~0:30

and h2
d~0:30 with R̂Ra~0:80 and R̂Rd~0:76. These results

indicated that dominance GBLUP could be considerably more

difficult than additive GBLUP for low dominance heritabilities.

Observed accuracy of ĝ (R̂Rg) was higher than that of for â (R̂Ra) i.e.,

R̂Rg.R̂Ra for all heritability levels in this simulation study except the

case h2
a~h2

d~0:05 (Table S3).

For various densities of inter-QTL SNP markers ranging from

3K, 7K to 40K, R̂Rg and R̂Ra were relatively unchanged within each

combination of additive and dominance heritability levels,

indicating that increasing SNP density over 3K would achieve

little improvement in R̂Rgand R̂Ra. For the 1K_SNP, R̂Rgand R̂Ra were

lower than the 3K, 7K and 40K by about 0.05. In contrast, R̂Rd

was similar for the 7K and 40K, had substantial decrease for the

1K_SNP and 3K, and was considerably lower than R̂Ra across all

heritability combinations. These results indicated that dominance

GBLUP required higher density of SNP markers and was more

difficult than additive GBLUP (Table S3).

Adding linked SNP makers to causal variants (1K_QTL +
1K_SNP, 1K_QTL +40K) had lower observed accuracies than

causal variants alone. The decrease in R̂Ra was 0.03 for adding the
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1K_SNP to the 1K_QTL and was 0.06 for adding the 40K to the

1K_QTL. The decreases in R̂Rdwere even larger, 0.06 and 0.13,

respectively. These decreases were relatively constant across

heritability levels (Table S3). However, any marker set with causal

variants, the 2K or 41K, was more accurate than linked SNP only,

the 1K_SNP, 3K, 7K or 40K.

Predicted and observed GBLUP accuracies. Predicted

accuracy for breeding values (Ra) and for genotypic values (Rg)

agreed well with the observed accuracies (R̂Raand R̂Rg) across all

heritability levels used in this study. For dominance deviations,

predicted accuracy (Rd ) and observed accuracy (R̂Rd ) agreed well

except h2
a~h2

d~0:05, where Rd was substantially lower than

observed accuracies. In real data sets, observed accuracies

measured by R̂Ra, R̂Rdand R̂Rg are unavailable. The good agreements

between predicted and observed accuracies indicated that

predicted accuracy could reliably represent the observed accuracy

in real data.

Figure 1. Bias and relative bias of GREML estimates of additive and dominance heritabilities. On the X-axis, heritiabilities of the top row
are dominance heritabilities and those of the bottom row are additive heritabilities. (n = 10 repeats).
doi:10.1371/journal.pone.0087666.g001
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Comparison of Genomic Additive and Dominance
Relationships with Expected Relationships

For genomic additive and dominance relationships, Definitions

I-III had nearly identical results. The 1K, 3K, 7K and 41K

marker sets had similar results of relationships (data not shown).

For the 41K results with the removal of three full-sib outliers and

nine half-sib outliers, additive and dominance relationships agreed

well with theoretical expectations (Figure 4). For full-sibs, genomic

additive and dominance relationships were nearly identical to

theoretical expectations. Average genomic additive relationships

was 0.471 for Definition I, 0.478 for Definition II, and 0.488 for

Definition III, while the mean value of pedigree coancestry

coefficients for full-sibs was 0.262, i.e., genomic additive relation-

ships were about twice as large as pedigree coancestry coefficients.

The mean dominance correlation for full-sibs was 0.245 for

Definition I, 0.248 for Definition II and 0.254 for Definition III,

compared to the expected full-sib dominance correlation of 0.25

assuming no inbreeding. The 1654 cows used in this comparison

of genomic and pedigree relationships in fact were all related [30].

Therefore, the true full-sib dominance relationships should have

been above 0.25. For half-sibs, Definitions I-III had mean additive

relationship of 0.213–0.221 and the average of ‘26(pedigree

coancestry coefficient)’ was 0.282. Genomic dominance relation-

Figure 2. Mean square error (MSE) and relative MSE of GREML estimates of additive and dominance heritabilities. On the X-axis,
heritiabilities of the top row are dominance heritabilities and those of the bottom row are additive heritabilities. (n = 10 repeats).
doi:10.1371/journal.pone.0087666.g002
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ships were null for half-sibs and unrelated individuals, and

genomic additive relationships for unrelated individuals were also

null, as expected (Figure 4). The observed similarity between

Definitions I-III likely was due to the underlying similarity of the

three definitions: Definition I and II are the same if the expected

and observed SNP variances are the same, and Definitions II and

III are the same if all diagonal elements are the same. Definitions I

and II make slightly less modification to the original mixed model

Figure 3. Correlation between the true genotypic values and GBLUP of breeding values, dominance deviations and genetic values.

Corr(g,âa) is the correlation between true genotypic values and GBLUP of breeding values, Corr(g,d̂d) is the correlation between true genotypic values
and GBLUP of dominance deviations, and Corr(g,ĝg) is the correlation between true genotypic values and GBLUP of genotypic values. On the X-axis,
heritiabilities of the top row are dominance heritabilities and those of the bottom row are additive heritabilities. (n = 10 repeats).
doi:10.1371/journal.pone.0087666.g003

Genomic Prediction and Estimation of Variances

PLOS ONE | www.plosone.org 8 January 2014 | Volume 9 | Issue 1 | e87666



of Equation 3, whereas off-diagonal elements of Definition III as

measures of genomic relatedness among individuals are mathe-

matically comparable.

Genomic relationships have a distinct advantage over pedigree

relationships: the calculation of genomic relationships does not

need to know the pedigree. This advantage is important for

assessing relatedness among individuals in species where pedigree

information is unavailable or difficult to collect such as in wildlife

species. Two important differences exist between relationships

based on markers and relationships based on pedigree informa-

tion. The first difference is that marker density affects the

invertibility of genomic relationship matrices, which are non-

invertible when q.m. In contrast, pedigree relationship matrices

are positive definite in the absence of identical twins. Our cattle

data showed that the invertibility of a genomic relationship matrix

should not affect the use of genomic relationships as measures of

genomic relatedness among individuals, because the genomic

relationships calculated from genomic relationship matrices that

were invertible or non-invertible had nearly identical values that

were consistent with theoretical expectations (data not shown).

The additive and dominance relationship matrices were non-

invertible for the 1K SNP set, and were invertible for the 3K, 7K

and 41K sets after removing a potentially identical twin or

duplicated individual. The second difference is the range of

relationship values. Genomic relationships by Definitions I-III

could take negative values whereas pedigree relationships are non-

negative. However, no negative values were observed for full-sib

genomic relationships. Negative genomic additive relationships

with small absolute values near ‘09 were observed for unrelated

individuals and some half-sibs, and negative dominance relation-

ships with small absolute values near ‘09 were observed among

half-sib (Figure 4). In all those situations, the expected relationships

were ‘09. Therefore, negative genomic relationships close to ‘09

could be interpreted as no correlation. It remains to be seen

whether genomic relationship measures could detect true ‘negative

genomic correlations’ (if such correlations exist) that are impossible

to detect using pedigree information.

Effect of Genomic Relationship Definitions on GBLUP and
GREML Accuracies

Simulation results showed that the methods to normalize WaW’
a

and WdW’
d (Definitions I and II of genomic relationships) had no

effect on GBLUP accuracy, i.e., the original mixed model was just

as accurate, as shown by the R̂Ra and R̂Rdvalues (Table S4).

Figure 4. Genomic additive and dominance relationships among full-sibs, half-sibs and unrelated individuals.
doi:10.1371/journal.pone.0087666.g004

Table 1. Estimated genomic additive and dominance
heritabilities from a swine nucleus line.

Trait 1 Trait 2 Trait 3 Trait 4 Trait 5

h2
a

0.03 (0.07*) 0.27 (0.16) 0.22 (0.38) 0.35 (0.58) 0.38 (0.62)

h2
d

7.2261027 0.02 0.07 0.01 0.05

H2 0.03 0.29 0.29 0.36 0.44

*Value in each () is the pedigree-based heritability estimate [31].
doi:10.1371/journal.pone.0087666.t001
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Definition III of genomic relationships had the same accuracy as

Definitions I-II for breeding values and had slightly lower accuracy

for dominance deviations for one case only at h2
a~h2

d~0:30, with

R̂Rd~0:75 for Definition III and R̂Rd~0:76 for Definitions I and II

(Table S4). For GREML, normalization or transformation of the

WaW’
a and WdW’

d matrices was necessary. Without such

normalization or transformation, diagonal values in WaW’
a and

WdW’
dincreased and estimates of variance components decreased

as the number of SNP markers increased regardless of the true

heritability level, so that hertitability estimates based on such

variance component estimates became meaningless, as shown by

the comparison of GREML estimates and the corresponding

heritability estimates in Table S4. For GREML estimation of

additive and dominance variances, Definitions I-III had similar

estimates that were consistent with the true values.

Random and Directional Dominance Effects
Random additive and dominance effects with zero means were

assumed in the simulation study reported in the section of Results.

Under these assumptions, dominance effects were more difficult to

predict and estimate in two aspects: the current densities of inter-

QTL SNP markers up to 40K were insufficient to achieve

accuracies comparable to those for additive effects, and causal

variants had lower accuracy of dominance GBLUP than the

accuracy of additive GBLUP, although causal variants had similar

accuracy for estimating additive and dominance variance compo-

nents. The simulation results indicated that the number of SNP

markers needed in the absence of causal variants would be

considerably greater than 40K to achieve accuracies of dominance

GBLUP and GREML comparable to the accuracies of additive

GBLUP and GREML. High density of SNP markers could also

compensate the lower accuracies of causal variants, whether or not

causal variants were among the SNP markers. The simulation data

set assuming positive dominance deviation for each heterozygous

genotype (Text S1: Part D) showed that dominance GBLUP had

similar accuracies to additive GBLUP (Table S5).

Taken all evidence together, genomic prediction and variance

component estimation of dominance effects was more difficult

than those of additive effects in populations where additive and

dominance effects had similar distributions and heritabilities but

could achieve similar accuracies as those for additive effects if

heterosis exists.

An Application to Estimate Genomic Additive and
Dominance Heritabilities in a Swine Population

We applied our methodology to a publically available swine

genomics data set with anonymous genome-wide SNP markers

and phenotypes with the SNP locations and true trait names

masked [31] to compare genomic additive heritability with the

reported heritability estimated using pedigree information and to

explore whether the swine phenotypes had dominance effects. The

data set included 3534 animals from a single PIC nucleus pig line

with genotypes from the Illumina PorcineSNP60 chip [32].

Genotyped animals had phenotypes for five purebred traits

(phenotypes in a single nucleus line), with additive heritability

estimated from pedigree data ranging from 0.07 to 0.62 (Table 1).

Genotypes were filtered by requiring minor allele frequency

(MAF) .0.001 and proportion of missing SNP genotypes ,0.100.

Markers on the X or Y chromosome were excluded. The total

number of available autosome markers used in our analysis was

52,842, with missing genotypes imputed using software AlphaIm-

pute [33]. The results showed that estimates of genomic additive

heritability of 0.22–0.38 were substantially lower than the pedigree

estimates of 0.38–0.62 for traits 3–4, the genomic additive

heritability (0.27) was higher than the pedigree estimate (0.16)

for trait 2, and was in agreement with the pedigree estimate for

trait 1, 0.03 versus 0.07. Only traits 3 and 5 had small dominance

heritabiities, 0.07 for trait 3 and 0.05 for trait 5. The genomic

estimates reported here provide useful information to breeders

about the underlying true genetic factors and about the potential

true heritability levels of the five traits.

Conclusions

The genomic model based on the partition of a genotypic value

into breeding value and dominance deviation with additive and

dominance relationship matrices calculated using SNP markers

parallels the traditional quantitative genetics model that calculates

additive and dominance relationships using pedigree information.

The GREML and GBLUP methods based on equivalent models

with complementary computing advantages and identical math-

ematical results provide an efficient approach for the genomic

estimation of variance components and heritabilities and for the

genomic prediction of additive and dominance effects using SNP

markers. These methods were able to capture small additive and

dominance effects and were able to differentiate different levels of

additive and dominance heritabilities. GBLUP of total genetic

value that includes additive and dominance effects can be an

effective tool to predict an individual’s total genetic potential for a

phenotype.
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