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Abstract

Mutual information (MI) is a powerful method for detecting relationships between data sets. There are accurate methods for
estimating MI that avoid problems with ‘‘binning’’ when both data sets are discrete or when both data sets are continuous.
We present an accurate, non-binning MI estimator for the case of one discrete data set and one continuous data set. This
case applies when measuring, for example, the relationship between base sequence and gene expression level, or the effect
of a cancer drug on patient survival time. We also show how our method can be adapted to calculate the Jensen–Shannon
divergence of two or more data sets.
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Introduction

Mutual information (MI) [1] is in several ways a perfect statistic

for measuring the degree of relatedness between data sets. First,

MI will detect any sort of relationship between data sets

whatsoever, whether it involves the mean values or the variances

or higher moments. Second, MI has a straightforward interpre-

tation as the amount of shared information between data sets

(measured in, for example, bits); other statistics such as rank-

ordering are harder to interpret. Since MI is grounded in

information theory it has an established base of theoretical tools.

Finally, MI is insensitive to the size of the data sets. Whereas a ‘p-

value’ test for strict independence can be pushed arbitrarily low by

taking a large data set if the variables are even slightly related, MI

will simply converge with tight error bounds to a measure of their

relatedness.

The MI between two data sets X and Y can be estimated from

the statistics of the (x,y) pairs between the two data sets. (Although

MI is straightforward to calculate if the underlying probability

distribution is known, that is not usually the case: our knowledge of

the distribution generally comes from the sampled data itself, so

MI must be estimated from the statistics of our data set.) For

example, if we were to compare the day of week (X ) with the time

of breakfast (Y ) we might find that when xi is a weekday the

corresponding yi is early in the morning, and when xi is Sunday or

(especially) Saturday the corresponding yi is somewhat later. MI

quantifies the strength of this effect. Importantly, the procedure for

estimating MI depends on whether X and Y take discrete values

(e.g. a day of week, a nucleobase, a phenotypic category, etc.), or

are real-valued continuous variables (a time of day, a gene

expression level, a patient’s survival time, etc.). If X and Y are

both discrete, then we can estimate the true frequencies of all

combinations of (x,y) pairs by counting the number of times each

pair occurs in the data, and straightforwardly use these frequencies

to estimate MI. Real-valued data sets are more difficult to deal

with, since they are by definition sparsely sampled: most real

numbers will not be found in a data set of any size. The common

workaround is to lump the continuous variables into discrete ‘bins’

and then apply a discrete MI estimator, but good sampling

requires large bins which destroys resolution. An improved

continuous-continuous MI estimator described in Ref. [2]

circumvents this tradeoff by using statistics of the spacings between

data points and their nearest neighbors. Crucially, their method

only works when both variables are real-valued, as the nearest

neighbor of a discrete variable is not well-defined.

This paper describes a method for estimating the MI between a

discrete data set and a continuous (scalar or vector) data set, using

a similar approach to that of Ref. [2]. This is an important statistic

simply because so many scientific activities involve a search for

significant relationships between discrete and continuous variables.

For example, one might use MI to quantify the extent to which

nationality (a discrete variable) determines income (continuous); to

identify DNA bases (ACGT, discrete) that affect a given gene’s

expression level (continuous); or to find drugs (given or not: a

discrete parameter) that alter cell division rates (continuous data).

In the University of Washington Nanopore Physics lab we use this

estimator to determine where a given DNA base must sit within

the sequencing pore in order to affect the current passing through

it, and to quantify the relative influence of different base positions

on the current. As we will demonstrate, our nearest-neighbors

method estimates MI much more reliably than does the present

alternative method of ‘binning’ the data.

MI between a discrete and a continuous variable is equivalent to

a weighted form of the Jensen-Shannon (JS) divergence [3] which

is used as a measure of the dissimilarity between two or more

continuous probability distributions. We can therefore apply our

method to estimate the weighted JS divergence, by storing samples

from each distribution to be compared in the continuous data set

Y , and using the discrete data set X to identify which distribution

each sample was drawn from. To use our method to estimate the
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unweighted JS divergence, we would either draw equal numbers of

samples from each distribution, or else modify our method some-

what as explained in the Analysis section.

Methods

This section explains how to apply our nearest-neighbor method

for estimating MI; the derivation is left to the Analysis section. We

will also describe the binning method that we compare with our

estimator.

The input to a MI estimator is a list of (x,y) data points, whose

underlying probability distribution m(x,y) we can only guess at by

looking at how the data points are clustered. Both x and y may be

either scalars or vectors. Figure 1A illustrates a simple distribution

between a discrete parameter x that can take one of three values

denoted by color, and a single scalar real-valued variable y

depicted along a y-axis. In this example we see that the different

values of x bias the sampling towards different values of y: for

example y is generally lower when x is green or red than when x is

blue. Therefore there is a relation between x and y, implying that

MI is some positive number. The challenge is to estimate MI using

only the sampled points that are known to the experimenter

(Figure 1B).

Nearest Neighbor Method
For each data point i our method computes a number Ii based

on its nearest-neighbors in the continuous variable y, as illustrated

for scalar y in Figure 1C. We first find the kth-closest neighbor to

point i among those Nxi
data points whose value of the discrete

variable equals xi (Figure 1C, bottom line) using some distance

metric of our choice. Define d as the distance to this kth neighbor.

We then count the number of neighbors mi in the full data set (top

line) that lie within distance d to point i (including the kth

neighbor itself). Based on Nxi
and mi we compute

Ii~y(N){y(Nxi
)zy(k){y(mi) ð1Þ

where y(:) is the digamma function [4]. To estimate the MI from

our data set, we average Ii over all data points.

I(X ,Y )~ Ii

~y(N){ y(Nx) zy(k){ y(m)
ð2Þ

In our implementation k is some fixed (low) integer of the user’s

choice; larger k-values lead to lower sampling error but higher

coarse-graining error.

Binning Method
We also implemented a binning method to compare with our

nearest-neighbor method. Binning methods make the data

completely discrete by grouping the data points into bins in the

continuous variable y, as shown in Figure 1D. Following

established practice [2] our estimator constructs bins of different

sizes so that each bin has n data points inside it (n is a parameter

set by the user). The binned approximation to the MI is

I(X ,Y )~ log
�mm(xi,yi)

p(xi)�mm(yi)
i

~ log
p(xi,bi)

p(xi)p(bi)
:

ð3Þ

The average is taken over all measurements i, not the bins. p(xi)
is the fraction of all measurements whose discrete variable is xi,

p(bi) is the fraction of measurements whose continuous variable

falls into the same bin bi as yi, and p(xi,bi) is the fraction of

measurements for which x~xi and y falls into bin bi. The second

Figure 1. Procedures for estimating MI. (A) An example joint
probability density m(x,y) where y is a real-valued scalar and x can take
one of three values, indicated red, blue and green. For each value of x
the probability density in y is shown as plot of that color, whose area is
proportional to p(x). (B) A set of (x,y) data pairs sampled from this
distribution, where x is represented by the color of each point and y by
its position on the y-axis. (C) The computation of Ii in our nearest-
neighbor method. Data point i is the red dot indicated by a vertical
arrow. The full data set is on the upper line, and the subset of all red
data points is on the lower line. We find that the data point which is the
3rd-closest neighbor to i on the bottom line is the 6th-closest neighbor
on the top line. Dashed lines show the distance d from point i out to
the 3rd neighbor. N~12, k~3, and for this point Nxi

~6 and mi~6. (D)
A binning of the data into equal bins containing n~4 data points. MI
can be estimated from the numbers of points of each color in each bin.
doi:10.1371/journal.pone.0087357.g001
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line in Eq. 3 follows from the first because we discretize m(y) and

m(x,y) using the same bins.

In the Supporting Information we have included two MATLAB

implementations of our method: a general-purpose estimator that

works with vector-valued data sets, and a faster implementation for

the usual case where both data sets are scalars (simple numbers).

The Supporting Information also contains our implementation of

a MI estimator using the binning method, as well as the testing

script that compares the three estimators and generated the plots

for this paper.

Results

To test our method, we chose two simple distributions m(x,y): a

square wave distribution in y for each value in x, and a Gaussian

distribution in y for each x (Figure 2A). Because we knew the exact

form of the distributions, we were able to calculate MI exactly

using its mathematical definition:

I(X ,Y )~
X

x

ð
log

m(x,y)

p(x)m(y)
dy: ð4Þ

Next, from each distribution, we constructed test data sets by

randomly sampling a certain number N of (x,y) data pairs. We

then independently estimated MI from those data sets using our

nearest-neighbor estimator and also using our binning estimator,

and compared those estimates to each other and to the exact

result. We also compared the MI estimate between our vector and

scalar implementations of the nearest-neighbor method. Their

results in all cases are in exact agreement with each other. This is a

Figure 2. MI estimated by nearest-neighbors versus binning. (A) Sampling distributions m(x,y) (thick lines) represented by a differently-
colored graph in y for each of three possible values of the discrete variable x (red, blue and green). A histogram of a representative data set for each
distribution is overlaid using a thinner line. (B) MI estimates as a function of k using the nearest-neighbor estimator. 100 data sets were constructed
for each distribution, and the MI of each data set was estimated separately for different values of k. The median MI estimate of the 100 data sets for
each k-value is shown with a black line; the shaded region indicates the range (lowest 10% to highest 10%) of MI estimates. (C) MI estimates plotted
as a function of bin size n using the binning method (right panel), using the same 100 data sets for each distribution. The black line shows the median
MI estimate of the 100 data sets for each n-value; the shaded region indicates the 10%–90% range
doi:10.1371/journal.pone.0087357.g002
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strong check that the scripts were written correctly, since the two

estimators were coded quite differently.

Both the nearest-neighbor method and the binning method

involve a somewhat arbitrary parameter that must be set by the

user. The nearest neighbor method requires that the user specify k

(the kth neighbor). k should be some low integer, much less than

the number of data points N , so Figure 2B plots MI estimated by

nearest neighbors over the range 1ƒkƒ10. Likewise, the binning

method requires that the user specify the number of data points n

per bin. It is less obvious what the best value of n should be;

Figure 2C plots MI estimated by binning over all possible values

1ƒnƒN.

Our first conclusion is that there is a much simpler prescription

for setting the k parameter of the nearest-neighbor estimator than

the n parameter of the binning method. The nearest-neighbor

estimator consistently gives good results when k is set to a low

integer. Reference [2] suggests using k~3, and that choice works

well with our estimator too. By contrast, the binning estimator

overestimates MI when n is low and underestimates MI when n is

high, and although there is guaranteed to be a crossing point

where the method is accurate it is hard to guess where that point

might be. (In the limit n~1 the binning method estimates MI to

be the entropy of the discrete variable. The actual MI only attains

this maximum limit if the sub-distributions m(yjx) are all

completely separated in y. In the limit n~N the binning method

estimates MI to be zero.).

Our second conclusion is that there is no simple way to calculate

the optimal binning parameter n based on simple statistics of the

data, such as the total number of data points N or frequencies with

which different discrete symbols occur. For example, the large

Gaussian data sets and the large square-wave data sets each have

10000 data points per set, with twice as many red points as blue

points on average, and five times more reds than greens. But the

best value of n is ,100 for the square-wave data set and ,600 for

the Gaussian data sets. This is easiest to see in Figure 3A, which

plots the ratio of the median binning error using given n to the

median nearest-neighbors error using k~3. We find that there is

no choice of n for which binning is better than nearest-neighbors

for both the square wave and Gaussian data sets. Figure 3B shows

roughly the same result for the 400-point data sets, which again

are statistically similar except in the shape of their distributions in

y.

We conclude that MI estimation by the nearest neighbor

method is far more accurate than binning-based MI estimates,

barring a lucky guess of the unknowable best value of n.

Furthermore, our nearest-neighbor method is computationally

cheap: both computation time and memory usage are proportional

to N for the scalar estimator. Therefore nearest neighbors should

be the method of choice for estimating MI in the discrete-

continuous case.

Analysis

Here we derive the formula for our nearest-neighbor MI

estimator.

Consider a discrete variable X and the continuous variable Y ,

drawn from probability density m(x,y). Both X and Y may be

either univariate (composed of scalars) or multivariate (vectors).

We will write discrete probability functions as p(:) and continuous

densities using the symbol m(:): therefore p(x)~
Ð

m(x,y)dy and

m(y)~
P

x m(x,y). The mutual information is:

I(X ,Y )~H(X )zH(Y ){H(X ,Y )

~{
X

x

p(x) log p(x){

ð
m(y) log m(y)dy

z
X

x

ð
m(x,y) log m(x,y)dy

~{

ð
m(y) log m(y)dyz

X
x

ð
m(x,y) log m(yjx)dy

~{ log m(y) z log m(yjx) :

ð5Þ

Figure 3. Binning error relative to nearest-neighbors error. (A)
Error from the binning method divided by error from the nearest-
neighbor method. Errors in MI were calculated for each of the 100 data
sets of the square-wave (light blue) and Gaussian (purple) 10,000-length
data sets (see Figure 2). Each line shows the ratio of the median MI for a
given number of neighbors n estimated using binning, as a function of
n, to the median (over all data sets and all values of k) of all MI
estimates using nearest neighbors. The binning method gives superior
results for values of n for which this ratio is less than one. Evidently,
there is no optimal value of n that works for all distributions: n~N0:5

works well for the square wave distribution but n~N0:7 is better for a
Gaussian distribution. (B) MI error using nearest-neigbor method versus
binning method for the 400-data point sets.
doi:10.1371/journal.pone.0087357.g003

Discrete-Continuous Mutual Information

PLOS ONE | www.plosone.org 4 February 2014 | Volume 9 | Issue 2 | e87357

〈 〉 〈 〉



Here H denotes an entropy, m(y) is the probability density for

sampling y irrespective of the value of x, and m(yjx)~m(x,y)=p(x) is

the probability density for sampling y given a particular value of x.

The averages are taken over the full distribution and weighted by

m(x,y), and they would be straightforward to calculate if we knew

the underlying density functions. Alternatively, each average can be

taken over a representative set from (x,y) pairs sampled from the

distribution; using this latter interpretation we estimate the MI from

the mean of log m(y) and log m(yjx) at each of our sampled data

points. The more points we have, the greater the accuracy.

The remaining task is to estimate the logarithm of two

continuous distributions evaluated at given data points. For this

we use a nearest-neighbor entropy estimator originally developed

by Kozachenko and Leonenko [5] whose proof we will briefly

outline. Given a point i, we define V as the volume of points

centered about i that are closer to point i than its kth neighbor.

The estimator uses Bayesian arguments to identify s(myjV ) with

s(V jmy) (s denotes a probability density that is not to be confused

with m). Approximating the density function m as being constant

throughout the neighborhood of point i, we find:

log mV &

Ð 1

0
(mV )k{1(1{mV )N{k{1 log (mV )d(mV )Ð 1

0
(mV )k{1(1{mV )N{k{1d(mV )

~
1

B(k,N{k)

dB(k,N{k)

dk

~y(k){y(N)

? log m &y(k){y(N){ log V

ð6Þ

where B(:) is the beta function [4] and y(:) is the digamma

function. We can now estimate the entropy using the full data set:

log m(y) &y(k){y(N){ log V ð7Þ

where the average is taken over all sampled data points.

For each sampled data point i we employ the Kozachenko-

Leonenko (KL) entropy estimator twice: once to estimate m(y) by

finding a neighbor from the full set of data points, and once to

estimate m(yjx) by finding a neighbor in the subset of data points j
for which xj~xi. Notice that we can independently choose the

neighbors of the two points: we will pick the kth neighbor in the

reduced distribution and the mth neighbor from the full

distribution. The result is

I(X ,Y )&y(N){y(m)z log Vm;y

{y(Nx)zy(k){ log Vk;yjx :
ð8Þ

There is a systematic averaging error that comes from the fact

that the kth-neighbor KL entropy estimator applied to point i

necessarily computes the average of log m(xi,yi) over the volume

Vk, rather than evaluated exactly at point (xi,yi). Following Ref.

[2], we attempt to minimize this error by choosing k and m so that

both uses of the KL entropy estimator use the same neighbor j.

Therefore Vm;y~Vk;yjx for each data point, and we obtain Eq. 2.

The cancellation is only partial; but because the averaging error

scales with the number of data pairs as N{2 whereas the counting

error scales as N{1=2, averaging error is generally insignificant

except for very small data sets (as we have verified in our tests).

As mentioned before, the mutual information between discrete

and continuous data is equivalent to a weighted Jensen-Shannon

(JS) divergence between the conditional distributions m(yjx), where

the frequencies p(x) of the discrete symbols x are the weighting

factors. To compute an unweighted JS divergence we need to place

all the conditional distributions on equal footing irrespective of

their frequencies in the data, by weighting each term in the

averages in Eq. 5 by the factor N=NxcX where cX is the number of

distinct values that x can take. The result is

JSD~y(N)zy(k){
1

cX

X
i

y(Nxi
)zy(mi)

Nxi

: ð9Þ

Supporting Information

Script S1 Slow (vector) MI calculator. Estimates MI between

two vector or scalar data sets using the nearest-neighbor method.

(M)

Script S2 Fast (scalar) MI calculator. Estimates MI

between two scalar data sets using the nearest-neighbor method.

(M)

Script S3 Binning MI calculator. Estimates MI between two

scalar data sets using the binning method.

(M)

Script S4 Testing script. Compares the methods using

sampled data drawn from user-defined distributions. This script

was used to generate the plots in this paper.

(M)
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