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Abstract

It remains a challenge to identify the geographical patterns and underlying environmental associations of species with
unique ecological niches and distinct behaviors. This in turn hinders our understanding of the ecology as well as effective
conservation management of threatened species. The white-eared night heron (Gorsachius magnificus) is a non-migratory
nocturnal bird species that has a patchy distribution in the mountainous forests of East Asia. It is currently categorized as
‘‘Endangered’’ on the IUCN Red List, primarily due to its restricted range and fragmented habitat. To improve our
knowledge of the biogeography and conservation of this species, we modeled the geographical pattern of its suitable
habitat and evaluated the potential impacts of climate change using ecological niche modeling with a maximum entropy
approach implemented in Maxent. Our results indicated that the amount of suitable habitat in all of East Asia was about 130
000 km2, which can be spatially subdivided into several mountain ranges in southern and southwestern China and northern
Vietnam. The extent of suitable habitat range may shrink by more than 35% under a predicted changing climate when
assuming the most pessimistic condition of dispersal, while some more suitable habitat would be available if the heron
could disperse unrestrainedly. The significant future changes in habitat suitability suggested for Gorsachius magnificus urge
caution in any downgrading of Red List status that may be considered. Our results also discern potentially suitable areas for
future survey efforts on new populations. Overall, this study demonstrates that ecological niche modeling offers an
important tool for evaluating the habitat suitability and potential impacts of climate change on an enigmatic and
endangered species based on limited presence data.
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Introduction

The application of biogeography principles, theories, and

analyses in conservation biology, has contributed substantially to

the conservation of global biodiversity [1,2]. One of the

preliminary tasks of conservation biogeography is to explore the

geographic patterns of species to inform conservation and

management actions [2]. Such efforts can significantly improve

our knowledge of the evolutionary history and conservation status

of species of concern, allowing effective conservation management

[3]. Efforts have been made through field surveys, distribution

sampling and modeling to better understand geographical patterns

of biodiversity.

Ecological niche modeling (ENM) is widely used to address

issues in biogeography, global change ecology, and conservation

biology [4–6]. ENM utilizes species presence data and associated

ecological variables, e.g. physical and environmental conditions, to

map areas of suitable habitat for the species in question [5].

Improving the efficiency of the ENMs, i.e. identifying area with

the highest conservation value, establishment of protected areas,

implementation of suitable conservation measures and determin-

ing the potential impacts of predicted future climate change on

species’ range shift, is a critical point for the conservation biology

[7–10].

Some animal species occupy habitats that are difficult to access,

and/or have peculiar behavioral patterns, which are difficult to be

detected. For example, it is challenging to collect presence data of

species that inhabit remote alpine mountains, tropical forests, or

polar regions [11–13]. Current distribution patterns reflect only a

snapshot in the evolutionary trajectory of a species whose

distribution may shift due to intrinsic and extrinsic factors, such

as range expansion [14] and environmental changes [15]. There is

increasing evidence that shifts in species distribution are increasing

with the ever-changing climate [15–17]. Understanding species

biogeography can also be hindered by peculiar ecology and

distinct behaviors that are not conducive to the collection of their

presence/abundance data. For example, data regarding secretive

and nocturnal species, such as carnivores, bats and owls tend to be

more difficult to obtain than those of more active and diurnal
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species [12,18]. All these difficulties pose challenges to the

understanding and application of conservation biogeography.

The white-eared night heron Gorsachius magnificus (Ogilvie

Grant, 1899; hereafter WENH), under the family Ardeidae, is a

medium-sized heron endemic to East Asia [19]. This species is

distributed in the subtropical and tropical moist lowland forests of

southern and southwestern China and northern Vietnam. It’s

nocturnal habit and secretive behavior makes it a little-known bird

species [20,21]. Population status is poorly documented and its

distribution is known to be scattered and spatially patchy [22], as

indicated by limited specimens and field sighting records [23–25].

Due to the fragmented range and small population size (with an

estimate of ,1 000 adult individuals), it is currently listed as

‘‘Endangered’’ in the IUCN Red List [22]. Habitat requirements

are poorly understood. What is known is that it relies on forest for

breeding and water bodies for foraging [20–22]. Recent studies on

distribution demonstrated that it may be more widespread in

southern and southwestern China than previously thought [20,24],

with an extent of occurrence approximately 2.56106 km2 [26].

The core range is in South China, a densely populated region with

a long history of human development, posing considerable

pressures to conservation. This highlights the urgent priority for

improvement in the conservation biogeography of this endan-

gered, mysterious species to inform management and conservation

planning [27].

Several recent presence records indicate new localities of

WENH likely owing to increased awareness and survey efforts

[24,26], but a complete picture of its range and potential suitable

habitats is still not well established. This lack of information may

hinder effective conservation efforts, particularly under the context

of habitat degradation and climate change [28]. Thus, this study

aims to provide new insights into the biogeography and

conservation management of this globally threatened species. To

achieve this goal, we used the ENM [5] to characterize the

potential suitable distribution range of WENH, and model the

potential impacts of predicted future climate change on the

species’ range. We also discussed the implications of our results for

conservation and management actions.

Materials and Methods

Species Presence Data
We obtained georeferenced data of all known presences of

WENH from published literature [21–26,29–31] and other

unpublished sources that we considered reliable sightings (Table

S1). All presence data were treated equally without consideration

of the population size at each locality. The presence data were

double-checked using spreadsheets and geographic information

system (GIS) to detect duplicates and possible georeferencing

errors. This yielded a final compilation of 36 presence records. We

tested for the presence of spatial autocorrelation for these records

using the average nearest neighbor index in spatial statistics tools

of ArcGIS 9.2 (ESRI, Redland, USA). The spatial pattern of

presence data was shown to be neither clustered nor dispersed

based on the Manhattan distance (nearest neighbor ratio = 1.04,

Z = 0.50, p = 0.62).

Environmental Variables
We initially compiled 31 environmental variables (describing

bioclimatic features, habitats, anthropogenic impacts and etc.), for

modeling the potential distribution range of WENH (Table S2).

Nineteen bioclimatic variables were obtained from the WorldClim

1.4 database [32]. We obtained water body data from the Global

Lakes and Wetlands Database [33], and the NDVI data

(normalized difference vegetation index, as the average of values

for 12 months over a 18-year period from 1982 to 2000; http://

edit.csic.es/Soil-Vegetation-LandCover.html). Since distance to

water is perhaps the most important ecological factor for

waterbirds, based on the water body data, we classified each

grid-cell’s distance to water by creating a Euclidean distance-based

raster in spatial statistics tools of ArcGIS 9.2 (ESRI, Redland,

USA). To represent soil-water balance and soil properties, we

included growing degree days, net primary productivity, soil

moisture, soil organic carbon, and soil pH from the Center for

Sustainability and the Global Environment (http://www.sage.

wisc.edu/atlas/index.php), as well as, annual actual evapotrans-

piration (AETanu), annual aridity index, and annual potential

evapotranspiration from the Consortium for Spatial Information

(http://www.cgiar-csi.org). To incorporate anthropogenic impacts

on WENH, we used the human footprint index (HF), which is an

estimate of human influence based on human settlements, land

transformation, accessibility and infrastructure data [34]. We

obtained the compound topographic index (CTI, commonly

referred to as the wetness index) that was representative of the

topography variability from the United States Geological Survey’s

Hydro1K dataset (http://edcdaac.usgs.gov/gtopo30/hydro/).

The inclusion of all environmental variables may create

uncertainty in the ENM predictions [35,36]. Over-fitting could

happen if there are too many variables, especially for the small

sample size of presence records [37,38]. Due to the high levels of

correlations between many environmental variables and the need

for variables to be as proximal as possible, we filtered the initial

variable set based on the results of Pearson’s correlation test and

jackknife analysis. We executed correlation tests across all pair-

wise combinations of variables. For highly correlated variable pairs

( rj j§0:8 ), we retained the variable that gave a higher value in the

regularized gain and/or the percent contribution to the Maxent

model [39]. Consequently, ten environmental variables were

identified: mean monthly temperature range (Tran), isothermality

(Tiso), mean temperature of the warmest quarter (Twar), annual

precipitation (Precanu), precipitation of the driest month (Precdry),

AETanu, CTI, HF, distance to water and NDVI. All variables were

resampled to a resolution of 2.5 arc-min using a bilinear

interpolation function which is considered to be more realistic

than the simpler nearest-neighbor method [39].

Bioclimatic Variables of Future Climate Projections
Given the uncertainty in future climate projections, we used two

CO2 emission scenarios (A2a and B2a) from the Fourth

Intergovernmental Panel on Climate Change (IPCC) Special

Report [40]. A2a has medium to high CO2 emissions while B2a

has low to medium emissions. Data were derived from three

general circulation models: CCCMA [41], CSIRO [42] and

HADCM3 [43]. The five selected bioclimatic variables were

extracted under different climate change scenarios to make

projections into the year 2050. Because no scenarios were

available for the future development of non-climatic variables

(i.e. AETanu, CTI, HF, distance to water and NDVI) [44], these

variables were assumed constant. Therefore, our predictions

represented a conservative estimate of the combined impacts from

environmental change on the distribution range of WENH.

To define climatic variation, we extracted the values of

bioclimatic variables at species presence records under both

current and future scenarios using spatial analysis tools in ArcGIS

9.2 (ESRI, Redland, USA). The divergence between current and

future climate scenarios associated with Tran, Tiso, Twar and Precanu

was examined by independent samples t-tests. We used Kolmo-

gorov–Smirnov tests to check for normality of data and

The Conservation Biogeography of a Bird Species

PLOS ONE | www.plosone.org 2 January 2014 | Volume 9 | Issue 1 | e84529



transformed data to meet normality assumptions when necessary.

The parameter Tiso was log transformed and Tran was arctan

transformed. We tested if Precdry differed between the current and

future scenarios using a nonparametric Mann-Whitney U-test.

Finally, we extracted the value of bioclimatic variables within

projected suitable ranges under different scenarios to examine the

climatic variation between current and future predicted ranges.

The divergence associated with bioclimatic variables between

current and future scenarios was examined by a nonparametric

Kruskal-Wallis test. These analyses were conducted in SPSS 16

(SPSS Inc., Chicago, 2005).

Ecological Niche Modeling
We constructed ENM for WENH with Maxent version 3.3.3k

[39]. Maxent is a machine learning method specifically designed

for presence-only data. It has been shown to have good predictive

performance across various applications [8–10,45,46]. Maxent

uses environmental variables to predict environmental suitability

for a particular species by assessing different combinations of

variables and their interactions using the maximum entropy

principle [39]. The complexity of Maxent models can be

controlled through choice of feature classes and regularization

parameters [47]. We mainly used default settings in this study. We

ran models with 10 bootstrap replicates, and assessed model

performance using the average AUC (area under the receiver

operating curve) score (mean 6 SD) by randomly assigning the

presence records as training and test datasets (80 and 20%,

respectively). Additionally, referred to the procedure introduced by

Raes and ter Steege (2007) [48], we applied a null-model approach

to test whether our established ENMs of WENH significantly

differed from what would be expected by chance. The AUC value

of the real ENM was determined using all presence records and a

null-model was generated by randomly drawing collection

localities from the geographical area for which ENMs were

developed. We used logistic output format which was easily

interpretable with logistic suitability values ranging from 0 (lowest

suitability) to 1 (highest suitability) [45]. We defined the extent of

the study for the Maxent model as covering the entire known

range of WENH (Fig. 1) [24,26]. We ensured only one presence

per grid-cell at the resolution of 2.5-arc-min when we performed

models.

The consensus-based ensemble-forecasting approach that com-

bines a number of alternative models to forecast species

distribution is considered to provide robust projections [49], by

combining different realizations of possible statuses of the real

distribution represented by different models. Because different

ENMs provide considerably different results [50–52], which is the

very source of the largest variation in the projections of climate

change impacts among the main sources of uncertainty examined

(e.g. initial datasets, ENMs, general circulation models and gas

emission scenarios) [53], we used the bootstrap replicates from

Maxent as proxies for different single-models in the consensus

methods [49]. We summarized the output predictions from three

general circulation models under the two emission scenarios by

calculating the mean suitability within each grid-cell in ArcGIS 9.2

(ESRI, Redland, USA) [52].

Spatial Analysis of the Impacts of Climate Change
We assessed the changes of potential distribution under

predicted future climate change using the following approaches.

Because the dispersal ability of WENH is unknown, we considered

two scenarios of dispersal ability on different ends of the spectrum,

i.e. null spread (no dispersal ability) and full spread (unlimited

dispersal ability) [44]. A species will only persist in overlapping

areas between current and future projected ranges under the null

spread scenario, while it can colonize all suitable ranges under the

full dispersal scenario. Suitable range was defined on the Boolean

(presence/absence) map that was transformed from continuous

suitability outputs by corresponding thresholds or ‘‘cut-offs’’

[35,54]. We estimated the suitability for WENH, under both the

current and future climate conditions for each grid-cell based on

the average training presence threshold of the output maps. To

assess suitable range variation at the pixel level, we quantified the

potential range loss (RL) by pixel and related this to the current

suitable range (CR) by pixel. Under the full spread assumption, the

percentage of range gained (RG) was assessed by the same

procedure; we estimated the percentage of predicted range change

(RC) [55] using RC~100|(RG{RL)=CR and turnover (RT)

using RT~100|(RLzRG)=(CRzRG) . To support conserva-

tion decision making, we also illustrated the projected stable range,

range loss, and range gain.

To examine the spatial trend of WENH’s range change in

response to climate change, we calculated the mean, minimum,

and maximum suitability values, elevations, latitudes, and

longitudes of the grid-cells of suitable range for both current and

the corresponding future scenarios [56], using spatial analysis tools

in ArcGIS 9.2 (ESRI, Redland, USA). We then categorized and

summed the total area of suitable range (number of grid cells) per

latitudinal band, to investigate the latitudinal pattern of the

resulting gain or loss in suitable range under projected climate

change.

Finally, to remedy uncertainties associated with the choice of

thresholds to convert logistic model outputs into binary estimates

of presence and absence [35,54], we additionally calculated the

change in habitat suitability as the difference of the suitability

between current and future climate scenarios without choosing

any type of threshold [57].

Results

Model Performance, Explanatory Variables and Predicted
Distribution

The AUC values revealed that our model can provide

reasonable discrimination (AUCtraining = 0.88660.016; AUCtest

= 0.81760.047). Additionally, with the 95% confidence interval

upper limit AUC value (0.786) from the frequency histogram of

the null-model, the ENM of WENH had an accuracy that was

significantly higher than expected by chance alone (p,0.01; Fig.

S1). Environmental variables that contributed the most to

modeling the potential distribution were Precdry, NDVI and Tiso.

In contrast, Tran, and Precanu made only small contributions to

model development (Table S3).

Most areas of the study region were predicted to have low

suitability for WENH (Fig. 1). 90.7% of grid cells had a logistic

suitability value ,0.5. Moreover, 5.4% (c. 1.96105 km2), 2.9% (c.

1.06105 km2), and 0.9% (c. 3.26104 km2) of habitat were

classified to have a suitability value of 0.5–0.6, 0.6–0.7 and 0.7–

0.8 respectively. Only 0.07% (c. 2.56103 km2) of habitat was with

a logistic value of .0.8. Additionally, 1.36105 km2 of the output

map can be considered as the suitable distribution range of

WENH.

Model outputs clearly identified five areas as containing highly

suitable habitat for WENH: eastern to southwestern China,

western Hubei province, southern Anhui province to northeastern

Jiangxi province, Hainan, and northeastern Vietnam (Fig. 1). The

predicted distribution range generally matches with available

presence records. However, both Yunnan and Hunan provinces in
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China were projected to have low suitability, although both had

known presences of the species.

When comparing current value of bioclimatic variables on

known presences to those values under the climate change

scenarios, current Twar was significantly lower than future Twar

(t = 24.03, p,0.0001) while other comparisons were not signifi-

cantly different (Tran: t = 1.09, p = 0.28; Tiso: t = 0.02, p = 0.99;

Precanu: t = 21.09, p = 0.28; Precdry: U = 3578, p = 0.44; Fig. S2). For

values of bioclimatic variables within suitable range, Tiso, Twar and

Precanu were lower at present than in future scenarios (all p,0.001,

Kruskal-Wallis tests), while Tran and Precdry were higher at present

than in future scenarios (both p,0.001, Kruskal-Wallis tests;

Fig. 2).

Potential Effects of Climate Change
The projected effects of climate change on the suitable range of

WENH were identifiable (Fig. 3). Under the climate change

scenario A2a, 6.9% (c. 2.396105 km2), 3.0% (c. 1.036105 km2),

and 0.9% (c. 3.206104 km2) of grid-cells were classified to have a

logistic suitability value of 0.5–0.6, 0.6–0.7 and 0.7–0.8, respec-

tively. The number of grid cells with logistic prediction of .0.8

(0.06%, c. 2.356103 km2) was slightly less than that at present.

Under the scenario B2a, 7.9% (c. 2.756105 km2), 4.0% (c.

1.386105 km2), and 1.3% (c. 4.366104 km2) of grid cells were

classified to have a logistic value of 0.5–0.6, 0.6–0.7 and 0.7–0.8,

respectively. The grid cells with logistic prediction .0.8 (0.09%, c.

3.186103 km2) were about five quarters of that at present.

Under the climate change scenarios A2a and B2a, the

percentage of range loss for WENH was respectively predicted

to be 35% and 36%. The percentage of range gain was 36% and

73%, under A2a and B2a, respectively. These combined to

produce a percentage of range turnovers of 52% and 63% under

A2a and B2a, respectively. Under the full dispersal assumption, a

range increase of 1% and 37% was projected under A2a and B2a,

respectively. The average extent of areas that herons were

predicted to occur would increase to 1.326105 km2 and

1.806105 km2, respectively.

Suitable range in current condition was predicted to not become

less or more suitable for WENH under climate change, with no

significant change in mean logistic prediction and maximum

logistic prediction. However, the area of minimum prediction was

predicted to decrease under A2a (Z = 3.86, p,0.001; Fig. 4a). The

elevational distribution was predicted to decrease in upper limit

(by 361 m under A2a, Z = 21.50, p,0.001; by 370 m under B2a,

Z = 24.43, p,0.001) and in mean value (by 162 m under A2a,

Z = 24.42, p,0.001; by 184 m under B2a, Z = 32.77, p,0.001;

Fig. 4b) while it was predicted to increase in lower limit (by 9 m

under A2a, Z = 3.62, p,0.01; by 18 m under B2a, Z = 7.46,

p,0.001). Overall, our models predicted longitudinal distribution

shifts, with a mean westward shift of 1.65u under B2a, a maximum

shift of 0.01u under A2a, and of 1.10u under B2a, and a minimum

shift of 0.92u under A2a, and of 1.58u under B2a (Fig. 4c). Suitable

areas were predicted to shift southward in mean latitude (by 0.49u
under A2a, and by 0.80u under B2a), in maximum latitude (by

1.18u under A2a, and by 1.54u under B2a) and in minimum

latitude (by 2.11u under A2a, and by 2.45u under B2a; Fig. 4d).

Along latitudinal gradient, compared with the current distribu-

tion, suitable range loss was predicted to mainly happen at mid to

high latitudes. This trend of range loss along latitudinal gradient

was consistent with that of range projected to be stable, regardless

of the emissions scenario used (A2a or B2a; Fig. 5a & b). Range

gains in the future were predicted to scatteredly occur along

latitudinal gradient under the A2a scenario, whereas this trend was

consistent with that of range loss and stable under the B2a

scenario. The percentage of predicted range loss along latitude was

shown to be low below 20u N and was relatively high after a gap

Figure 1. Study area and predicted habitat suitability for the endangered white-eared night heron Gorsachius magnificus. The
suitability is displayed in logistic value and ranges from 0 (lowest suitability) to 1 (highest suitability). Blue circles indicate known occurrence records.
The Arabic numerals indicate locations of the significant mountain ranges mentioned in this study: 1, Shennongjia Mt.; 2, Dabie Mt.; 3, Huangshan-
Tianmu Mt.; 4, Yandang-Wuyi-Daiyun Mt.; 5, Mufu-Jiuling-Luoxiao Mt.; 6, Nanling Mt.; 7, Wuling-Xuefeng-Miaoling Mt.; 8, Dayaoshan Mt.; 9, Limuling-
Wuzhishan Mt.; 10, Shiwan’dashan Mt.; 11, Ban Thi & Xuan Lac; 12, Ailao Mt.
doi:10.1371/journal.pone.0084529.g001
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ranging 20u to 22u N (Fig. 5c & d). Spatially explicit comparisons

between current and future projected ranges showed that more

than 75% of grid cells had a low divergence range 20.1–0.1 in

logistic suitability prediction (Fig. 6). Additionally, under A2a,

3.7% (1.276105 km2) and 0.12% (4.036103 km2) of current range

were predicted to decrease by 0.1–0.2 and .0.2 in logistic

suitability prediction, respectively. In contrast 11.6%

(4.006105 km2) and 0.19% (6.536103 km2) of current range were

predicted to increase by 0.1–0.2 and .0.2, respectively. Under

scenario B2a, 3.5% (1.206105 km2) and 0.24% (8.186103 km2) of

current range were predicted to decrease with 0.1–0.2 and .0.2,

respectively. In contrast, 18.6% (6.436105 km2) and 1.99%

(6.896104 km2) of current range were predicted to increase by

0.1–0.2 and .0.2, respectively. These spatially explicit compar-

isons identified high divergences in Guangxi, Guangdong, Hubei,

Anhui and Fujian provinces of China and northeastern Vietnam

under either scenario A2a or B2a (Fig. 6).

Discussion

Our study shows that suitable habitat for the WENH is

scattered in the mountainous areas of southern and southwestern

China and northern Vietnam. The current presence records of

WENH largely fall in this range, which is much congruent with the

range defined by BirdLife International [35,46,58]. Although the

estimated suitable range spans a wide geographical area, it is

generally patchy. Despite the lack of field records, we found

substantial areas of presumably suitable habitats in the east part of

this range (i.e. Fujian and Guizhou), which is a candidate region to

search for new populations. We further demonstrated that the

current suitable range would decrease under the projected climate

scenarios if WENH cannot disperse unrestrainedly. Altogether,

these results provide new insights into the biogeographic pattern of

the most enigmatic heron species in the world and are useful

information guiding effective conservation management.

Although the availability of presence records is a considerable

limitation for the application of ENMs for threatened species,

Maxent is recognized to be accurate and stable across all tested

sample-size categories [35,46,58]. Additionally, because sampling

bias exists in our presence records Maxent provides a solution to

both omission and commission errors using both presence records

and randomly selected background samples [39]. Acceptable

values of AUC and the validation with the null-model here

confirmed the effectiveness of using Maxent for the implementa-

tion of ENM for WENH. The results of ENM have been suggested

to be only a spatial projection of realized niche estimated from the

input presences and environmental predictors but not necessarily

reflected the current occupied range [59]. Thus it is crucial to

consider the actual habitat requirement of a species and involve

relevant and operable environmental layers in ENM. In this study,

besides the bioclimatic layers, we actually considered the relevant

non-climatic layers, especially the layer of distance to water that is

important to a waterbird species. Therefore, the suitable

distribution projected here represents the habitat requirement of

WENH reasonably.

Biogeographic Pattern
Our results showed that the WENH is distributed between 18–

32u N and 100–120uE, with about 130 000 km2 of potentially

suitable habitat. This area is only about 5% of the extent

calculated by He et al. [26]. The range covers 11 provinces in

southern and southwestern China and northern Vietnam but

habitats of high suitability (i.e. with a logistic prediction value of

.0.8) are restricted and scattered within the mountain chains of

southern China. These areas include several mountain ranges,

namely the Huangshan-Tianmu Mountains, Yandang-Wuyi-

Daiyun Mountains, Mufu-Jiuling-Luoxiao Mountains, Wuling-

Xuefeng-Miaoling Mountains, Nanling Mountains, and Shiwan’-

dashan Mountains (Fig. 1). The two peripheral mountains, the

Shennongjia and Dabie Mountains, represent the northern limit of

Figure 2. Comparison values of bioclimatic variables in projected suitable range between current and future climate scenarios. The
black solid horizontal line represents the median, the square symbol represents the mean, edges of box are quartiles, whiskers are the 1th and 99th
percentiles and black short lines are minimum and maximum.
doi:10.1371/journal.pone.0084529.g002
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this species [60]. The southwestern limits of WENH are around

the Ailao Mountains and Ban Thi & Xuan Lac of Vietnam, both

of which contributed recent records of the species [21,26].

Historical records from the Limuling-Wuzhishan Mountains in

Hainan Province constitute the southernmost distribution limit of

WENH is isolated from the rest of the species’ range.

Apart from regions with only historical records, e.g. Hainan and

the northernmost Dabieshan, recent sightings or evidence of

breeding colonies have been reported in other mountain ranges

mentioned above [20,21,24,26]. These records suggest that

independent and self-sustaining subpopulations may inhabit these

regions. He et al. estimated 11 subpopulations corresponding to

the major mountain chains within the heron’s range based on

review of field records [25]. However, it should be noted that the

spatial division of these subpopulations was tentative without

supporting genetic information. While the WENH is mainly

distributed in the subtropical mountainous forests in southern and

southwest China, this region harbors several other endemic

montane bird species with pronounced phylogeographic struc-

tures, such as Tragopan caboti [61] and Stachyridopsis ruficeps [62]. We

therefore consider that the postulated subpopulations may

correspond to distinct evolutionary units. Genetic analyses are

necessary to assess genetic diversity, as well as to obtain sound

understandings of the population connectivity between mountain

ranges [63].

The recent rediscovered Fujian subpopulation is only the

second record from this province since a historical breeding colony

in northern Fujian [26]. Models predict that suitable habitat is

projected to occur along the Yandang-Wuyi-Daiyun Mountain

chains in southern Zhejiang and central Fujian. This projected

distribution may be habitats for breeding populations that have

not yet had field confirmation. Another region with relatively large

areas of suitable habitat that may warrant field surveys are the

Miaoling Mountains between southeastern Guizhou and northern

Guangxi. Our results suggest that these mentioned regions require

further field survey efforts as they may contain existing undiscov-

ered subpopulations.

Effects of Climate Change
Although climate change was suggested to pose less effect in the

tropics and subtropics than temperate zones or polar regions,

increasing frequencies of extreme weathers (e.g. severe droughts,

Figure 3. Predicted habitat suitability for Gorsachius magnificus under the projected climate scenarios in 2050. These predictions are
obtained with an ensemble-forecast approach across the three general circulation models CCCMA, CSIRO and HADCM3 of the climate scenarios
under the two storylines (A2a and B2a).
doi:10.1371/journal.pone.0084529.g003
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large fires, storms, and flooding) are threatening the ecosystems of

the tropics and subtropics [64]. Few studies have evaluated the

impacts of climate change on the terrestrial biota in South and

East Asia (but see Zhou et al. [65]). Due to the current limited

distribution, climate change may substantially affect WENH by

reducing its current suitable range. We attempted to illustrate

Figure 4. Discrepancy of suitability, altitude, longitude and latitude for predicted distribution between current and future
scenarios. The minimum, mean, and maximum of suitability (a), altitude (b), longitude (c), and latitude (d) for predicted distribution of Gorsachius
magnificus are exhibited. Red, green and blue represent current, A2a and B2a scenarios, respectively.
doi:10.1371/journal.pone.0084529.g004

Figure 5. Impacts of climate change on the habitat suitability along the latitude. Panels a and b represent the projected impacts for
Gorsachius magnificus under two future climate scenarios (A2a and B2a; blue, current suitable ranges projected to be stable; red, suitable ranges
projected to be lost; and green, the suitable ranges projected to be newly gained), respectively. The panels c and d represent the percentage of range
lost. The predicted suitability is estimated based on the average training presence threshold.
doi:10.1371/journal.pone.0084529.g005
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patterns of distribution under climate change using an up-to-date

ENM, because bird species generally exhibit predictable responses

to changes in temperature and precipitation [55,56,66]. As

expected, the projected distribution under future climate scenarios

suggests that current suitable habitat will become more limited

with a considerable proportion of current suitable habitat

predicted to be lost. Under the unlimited dispersal assumption,

projected appropriable colonization locations in the future are

similar to that of lost in the climate change scenario A2a but are

twice as much as that of lost in the scenario B2a. Consequently,

distribution would be likely to decrease in the future if this species

cannot disperse to the new appropriable colonization locations.

This situation is most likely to occur due to the high intensity of

human activities and habitat fragmentation through much of

range of WENH [22,26]. Although predictions from our study

carry considerable uncertainties, the predicted distribution

changes under relatively conservative scenarios suggest consider-

able challenges to, and demands for, conservation actions.

Specifically, climate change is shown to cause increased mortality

and decreased growth rates in large trees in a subtropical monsoon

evergreen broad-leaved forest in southern China [65]. This change

in forest community can induce habitat degradation in the region,

which might influence the breeding site of WENH. Moreover,

habitat fragmentation and habitat loss (mainly led by illegal

logging) are considered key threats to this heron through much of

its range [22,26]. Thus, any climate change effect on suitable

habitat will compound the challenge of preserving suitable habitat

adequately.

Climate change is suggested to alter the distribution of WENH,

and may threaten the species’ population viability. Population-

level impact of climate change has been found in many species in

many parts of the world [67–70]. Climate is recognized to be a

Figure 6. Disagreement of projected habitat suitability between current and future scenarios. The disagreement is calculated as the
divergence of habitat suitability of Gorsachius magnificus between current and future climate conditions under the A2a (panel a) and B2a (panel b)
climate scenarios. The negative values represent that the habitat is less suitable in future than in current, while the positive values represent the
habitat is more suitable in future than in current.
doi:10.1371/journal.pone.0084529.g006
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dominant environmental factor dictating the distribution of species

[5,17]. It is therefore critical to understand the effects of climate

change on species’ distribution [70]. Under a changing climate,

some species will benefit by extending ranges into currently

unsuitable areas, however, many species exhibit negative feed-

backs that will reduce their distribution range and/or accelerate

extinction rates [44,55,56,67,68]. Species with a small geographic

range tends to be more vulnerable to climate change than more

widely distributed species [56,67,68]. More importantly, the

primary effect of the involvement of climate extremes, which is a

correction of local over- and under-prediction, can improve

models of species range limits under future conditions [71]. In line

with this statement, our results show that the habitat change under

the scenario B2a on is larger than that of the A2a. This seems

intuitively reverse because the scenario B2a described less severe

climate change situation [72]. In our case, however, precipitation

of the driest month (Precdry) contributed the most to the ecological

niche modeling of WENH among environmental variables. Due to

the value of Precdry in the B2a is lower than that in the A2a within

the projected suitable range (Fig. 2), the effects of the scenario B2a

on the potential distribution of WENH are most likely to be larger

than that of the A2a. These results highlight the importance of

incorporating climate change, especially climate extreme, into the

habitat conservation planning of endangered species.

Implications for Species Conservation
The WENH is currently listed as an ‘‘Endangered’’ species in

the IUCN Red Data list under the criteria of EN C2 (i) for its small

and fragmented population and pressures from hunting and

deforestation in current habitats [22]. Though updated presence

data and observations in southern China [24,25,73] have been

expand our knowledge on the distribution and ecology of WENH,

these few data seem to be weak to inform conservation efforts

given the wider distribution of this species in the region. In stead,

by taking biophysical and environmental conditions into account

and using robust spatially explicit modeling techniques, our study

quantified habitat suitability of WENH in its range for the first

time. The results of this study have several implications for the

conservation of WENH. First, our ENM reveals the existence of

several patchy suitable habitats WENH in its range in southern

China (Fig. 1c). This appears to support the assessment of

fragmented population by IUCN. Second, apart from several

known key regions that require special attention in research and

conservation management, we identify southern Guizhou and

northern Fujian as the regions demanding survey efforts aiming for

searching new subpopulations. Third, most suitable habitats of

WENH are in integral montane subtropical forests though, some

records are located in less-suitable habitats (i.e. locations 10 and 12

in Fig. 1c), which may be exposed to more habitat loss and human

disturbance in the future. New nature reserves or protected areas

should consider to be established there. Further, we examined the

range of WENH under climate change scenarios and found its

current range may shrink considerably under future climate

change while new suitable habitat may be available if WENH can

disperse unrestrainedly (Figs. 4–6). The predicated significant

future changes in habitat suitability suggested for this species urge

caution in any downgrading of Red List status that may be

considered.

In conclusion, our study presents a robust, spatially explicit

model of the conservation biogeography of an enigmatic and

endangered bird species. We demonstrate the utility of ecological

niche modeling in predicting potential distribution and future

threats posed by climate change. Future research efforts should be

targeted on population size estimation, surveys in locations of

potential distribution, and conservation genetic analyses. Com-

bined with the knowledge of large-scale biogeography, it is

necessary to conduct research on fine-scale habitat use. This will

enables us to understand the patchy distribution and habitat

choice of WENH. Apart from research, management actions

should be focused on protecting known habitats and nesting sites,

as well as raising awareness to reduce habitat degradation and

human disturbance. Collectively, these efforts will not only provide

critical information to enable a complete understanding of the

distribution and population of the WENH, but will aid in

implementing effective conservation and management actions.
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37. Heikkinen RK, Luoto M, Araújo MB, Virkkala R, Thuiller W, et al. (2006)

Methods and uncertainties in bioclimatic envelope modelling under climate
change. Progress in Physical Geography 30: 751–777.

38. Beaumont LJ, Hughes L, Poulsen M (2005) Predicting species distributions: use

of climatic parameters in BIOCLIM and its impact on predictions of species’
current and future distributions. Ecological Modelling 186: 251–270.

39. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of

species geographic distributions. Ecological Modelling 190: 231–259.

40. Solomon S, Qin D, Manning M, Marquis M, Averyt K, et al, editors (2007)
Climate change 2007: the physical science basis. Contribution of Working

Group I to the fourth Assessment Report of the Intergovenmental Panel on
Climate Change. Cambridge and New York: Cambridge University Press.

41. Kim, Kim SJ, Flato, Flato G, Boer, etal. (2003) A coupled climate model

simulation of the Last Glacial Maximum, Part 2: approach to equilibrium.
Climate Dynamics 20: 635–661.

42. Gordon HB, Farrell SP (1997) Transient climate change in the CSIRO coupled

model with dynamic sea ice. Monthly Weather Review 125: 875–908.

43. Collins M, Tett SFB, Cooper C (2001) The internal climate variability of
HadCM3, a version of the Hadley Centre coupled model without flux

adjustments. Climate Dynamics 17: 61–81.

44. Thuiller W, Broennimann O, Hughes G, Alkemade JRM, Midgley GF, et al.
(2006) Vulnerability of African mammals to anthropogenic climate change

under conservative land transformation assumptions. Global Change Biology 12:

424–440.
45. Phillips SJ, Dudı́k M (2008) Modeling of species distributions with Maxent: new

extensions and a comprehensive evaluation. Ecography 31: 161–175.

46. Elith J, Graham CH, Anderson RP, Dudı́k M, Ferrier S, et al. (2006) Novel
methods improve prediction of species’ distributions from occurrence data.

Ecography 29: 129–151.

47. Elith J, Phillips SJ, Hastie T, Dudı́k M, Chee YE, et al. (2011) A statistical
explanation of MaxEnt for ecologists. Diversity and Distributions 17: 43–57.

48. Niels R, ter Steege H (2007) A null-model for significance testing of presence-

only species distribution models. Ecography 30: 727–736.
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