
Comparing the Biological Impact of Glatiramer Acetate
with the Biological Impact of a Generic
Fadi Towfic1., Jason M. Funt1., Kevin D. Fowler1., Shlomo Bakshi2, Eran Blaugrund2,

Maxim N. Artyomov1, Michael R. Hayden2, David Ladkani2", Rivka Schwartz2", Benjamin Zeskind1"*

1 Immuneering Corporation, Cambridge, Massachusetts, United States of America, 2 Teva Pharmaceutical Industries, Petach Tikva, Israel

Abstract

For decades, policies regarding generic medicines have sought to provide patients with economical access to safe and
effective drugs, while encouraging the development of new therapies. This balance is becoming more challenging for
physicians and regulators as biologics and non-biological complex drugs (NBCDs) such as glatiramer acetate demonstrate
remarkable efficacy, because generics for these medicines are more difficult to assess. We sought to develop computational
methods that use transcriptional profiles to compare branded medicines to generics, robustly characterizing differences in
biological impact. We combined multiple computational methods to determine whether differentially expressed genes
result from random variation, or point to consistent differences in biological impact of the generic compared to the branded
medicine. We applied these methods to analyze gene expression data from mouse splenocytes exposed to either branded
glatiramer acetate or a generic. The computational methods identified extensive evidence that branded glatiramer acetate
has a more consistent biological impact across batches than the generic, and has a distinct impact on regulatory T cells and
myeloid lineage cells. In summary, we developed a computational pipeline that integrates multiple methods to compare
two medicines in an innovative way. This pipeline, and the specific findings distinguishing branded glatiramer acetate from
a generic, can help physicians and regulators take appropriate steps to ensure safety and efficacy.
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Introduction

The regulatory pathway for biosimilars has received significant

attention, [1] with regulators in Europe and the US working to

define appropriate ways to evaluate efficacy and safety. [2] As a

result, the first application for a biosimilar monoclonal antibody is

now under consideration. [3] A key consideration in all of these

cases is the impact of the generic on the immune system, including

its immunogenicity. [4] In addition to biosimilars, recent efforts

have focused attention on the need for regulatory approaches to

generic versions of non-biological complex drugs (NBCDs) [5]

which include liposomal drugs, low-molecular weight heparins,

iron-carbohydrate drugs, and glateramoids [6].

One such glatiramoid is glatiramer acetate (GA, Copaxone),

which provides significant benefit for patients with multiple

sclerosis (MS). MS is a complex neurological progressive disease

that affects between 2 and 150 per 100,000 people worldwide.

[7,8] Its onset is typically in young adults, where the disease is

manifested in demyelination of neural tissues such as the spinal

cord, cerebellum or optic nerve which is believed to be driven at

least in part by abnormalities in the immune system [7] including

impairments in regulatory T cells (Treg) function [9].

GA’s putative mechanism of action involves the induction of

tolerance via an interrelated set of immunomodulatory processes

including binding to major histocompatibility complex (MHC)

molecules, shifting from a Th1 cytokine profile to a Th2-biased

anti-inflammatory profile, the activation of FoxP3+ regulatory T

cells, and the inactivation of inflammatory monocytes [10–13].

GA is a copolymer of L-alanine, L-lysine, L-glutamic acid and

L-tyrosine in a molar ratio of 4.2:3.4:1.4:1.0 [11,13] mimicking

Myelin Basic Protein (MBP), which is proposed as one of the major

autoantigens in MS. As GA is a glatiramoid class immunomod-

ulator, [14] the heterogeneity of the various polypeptides in

solution that make up GA cannot be fully characterized with

current assay techniques. Furthermore, as response biomarkers

and pharmacodynamic markers for the drug do not currently

exist, [15] comparing GA to other glatiramers and characterizing

differences in mechanism/efficacy has proven challenging. Previ-

ously we have compared GA to a generic GA (GlatimerH, Natco

Pharma, Ltd., Hyderabad, India). [15] The previous analysis

utilized high-throughput gene-expression assays to compare the

transcriptional profiles of generic and GA in splenocytes of mice

inoculated with GA and exposed ex vivo to generic or GA. The

results focused on finding several specific genes (e.g., FOXP3) and

functional pathways that were upregulated in GA relative to

generic, concluding that the generic’s transcriptional profile

differed significantly from GA. The lists of genes and pathways

resulting from this traditional analysis were intriguing, but we
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recognized the need for new methods to integrate multiple lines of

evidence and provide a clear and comprehensive picture of the

differences in immunological impact that would contribute to the

broader discussion of safety and efficacy.

Using GA and generic as examples, we sought to develop a

thorough set of computational methods to go beyond lists of

differentially expressed genes, using transcriptional profiles to

robustly compare the immunological impact of two medicines. We

focused on (1) comparing the variability of the two drugs across

batches as measured by their transcriptional signatures; (2)

characterizing the composition of the cell types modulated by

each medicine; and (3) characterizing and explaining the

immunomodulatory behaviors of the two drugs in the context of

the genes they induce and suppress, as well as the immune cell

types they modulate and the possible connections to clinical

outcome.

Methods

Ethics Statement
All experimental procedures conformed to accepted ethical

standards for use of animals in research and were in accordance

with Committee for the Care and Use of Experimental Animals

guidelines and approved by the Teva Institutional Animal Care

and Use Committee.

Experimental Design, Data Collection, and Pre-Processing
The experimental design, data collection, and pre-processing

steps have been previously described. [15] In brief, 8 (Balb/c x

SJL) F1 mice were injected with 100 mL of a 2.5 mg/mL solution

GA reference standard in order to induce GA-reactive T cells. Our

study design sought to model the situation in which a patient is

initially treated with GA, and later switched to a generic. Mice

were housed in individually ventilated cages for 3 days after

immunization; mice were then sacrificed and their spleens were

aseptically removed and placed on ice in RPMI 1640. The

splenocytes were isolated, and these splenocytes were mixed with

125 mL per well of 80 mg/mL activator solutions for 24 hours. The

activator solutions included 22 samples of GA reference standard,

34 samples from 30 different batches of GA (CopaxoneH drug

product, Teva Pharmaceutical Industries Ltd, Petach Tikva,

Israel), 11 samples from 5 different batches of generic (GlatimerH,

Natco Pharma, Ltd., Hyderabad, India), as well as a number of

other glateramoids, deliberately modified or degraded GA,

mannitol, and medium. Then the RNA was extracted and gene

expression characterized by microarray using an Illumina WG-

6_V2 chip. Samples were randomized on the chips to avoid batch

effect (Table S1). Illumina’s BeadStudio software was utilized for

image processing, quantification of signal intensity per bead, and

background signal correction. The microarray data have been

deposited in the Gene Expression Omnibus, under accession

number GSE40566.

Data Processing Steps
Starting with background-corrected bead-level signals, we

quantile normalized the extracted data for all samples across all

46,547 probes via the ‘‘preprocessCore’’ package in R [16]. We

then corrected for batch variation with ComBat [17] as

implemented in the SVA package of R [18]. Each microarray’s

chip designation was supplied a batch label; there were 18 batches

in all. The labels for the treatments (i.e. drug product, reference

standard…) were added as covariates. Principal Component

Analysis (PCA) was utilized to check for outliers (Figure S1A).

Variability Analysis Method
In order to identify probes with variability induced specifically

by activation (as opposed to experimental noise), we sought to

identify probes that were significantly more variable when

activated with either GA or generic than medium. Using an F-

test, we compared GA against Medium for each probe and

compared generic against Medium. We then took the set of probes

where either treatment comes up to be more variable than

medium (union, passes in at least at least one). For those set of

probes only, we compared the variability of GA across 34 samples

representing 30 batches, to the variability of generic across 11

samples representing 5 batches, utilizing an F-test to measure

significance of the differences between the probes.

Tolerance Method for Assessing Process Variability
The goal of large scale industrial processing is to produce a large

quantity of product which is of the same quality as that produced

on a small scale. To assess the process consistency of GA and

generic, we needed a standard of comparison. This standard of

comparison was constructed by first identifying the top 1000

probes by absolute fold change of reference standard compared to

the medium (Table S2). The list includes both upregulated and

downregulated probes compared to medium. Probes were filtered

such that ones upregulated by reference standard needed to have

an average reference standard expression of 6.00 or higher and

ones downregulated by reference standard needed to have an

average medium expression of 6.00 or higher. This ensured that

the list of 1000 probes were both significantly affected by reference

standard and were sufficiently expressed to avoid noise associated

with lowly expressed probes.

For each of the 1000 probes, the maximum and minimum

expression observed by any reference standard sample was

recorded. The range between the maximum and minimum

expression observed for the reference standard served as the

acceptable tolerance range for each probe. We then counted the

number of samples from among the 34 GA samples representing

30 batches that fell within the acceptable tolerance range, and

counted the number of samples from among the 11 generic

samples representing 5 batches. We converted each result to a

percentage of samples within range for all 1000 probes. These

percentages were then sorted from smallest to largest separately for

generic and GA and plotted against the integers, 1–1000. The net

result was a plot that allowed for the determination for either drug

of how many probes would fail to meet a given processing

specification on the number of samples required to fall within the

acceptable tolerance range for each probe. A visual representation

of the method can be observed in Figure S8, which depicts scatter

plots for Gpr83 vs. FoxP3 for both GA and generic. The red

square in both plots is the acceptable tolerance range defined by

the maximum and minimum reference standard expression for

both probes. Five probes fall outside the acceptable tolerance

range for GA, while twelve probes fall outside the range for

generic.

Variance Ratio Method
To measure relative differences in the variability among generic

and GA samples, we utilized the sample variance as an unbiased

estimate for the population variance for each set of treatments (GA

and generic). Briefly, we divided the variance in the 11 generic

samples representing 5 batches by the variance in the 34 GA

samples representing 30 batches, obtaining a ratio for each probe

in the Illumina microarray. The measure provided an intuitive

comparison of the variance in each probe between treatments and

this ratio is a basic statistic computed by the F-test [19]. We then
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sorted the probes from higher than 1 ratio (more variability in

generic compared to GA) to lower than 1 (more variable in GA

compared to generic).

Coefficient of Variation Plots
To measure the relationship between probe intensity and probe

variation, we calculated the log2 intensity of each probe after

normalization/batch correction (averaging technical replicates to

focus on biological variability rather than variability introduced by

technical issues [20]). We also calculated the coefficient of

variation, denoted CV, by dividing the standard deviation of each

probe by its mean log2 intensity. We then plotted the relationship

for all probes using the log2 intensity of the probe on the X-axis

and the CV on the y-axis. The plots show a bias of probes with

higher intensity to have lower CV and vice versa. Despite this bias,

we still see that, as a class, generic-treated samples exhibit overall

significantly higher variability (measure by F-test) compared to GA

treated samples based on the number of probes that were highly

variable between the two treatments and medium.

Identification of Differentially Expressed Genes Using
Multiple Parametric Tests

To find differentially expressed probes between generic and

GA, we utilized various statistical tests at the probe level and

merged the results across the different methods. First, we

computed the statistical significance of differential expression

between treatments using the Analysis of Variance (ANOVA)

method for each probe [21], adjusting for multiple hypothesis

testing using the Benjamini-Hochberg False Discovery Rate (FDR)

correction [22]. Next, we utilized Linear Models for Microarray

(LIMMA) data analysis [23,24] R package, part of the Biocon-

ductor framework [25], to compare generic and GA samples,

fitting a linear model that adjusts for fixed effect from medium

(Effect = (GA-generic) – (generic-Medium)). The coefficients for

the linear model were tested for significance using a modified t-test

(taking into account standard deviation) and the p-values for each

probe were adjusted using FDR. [22] In parallel, we used

Comparative Marker Selection as implemented in GenePattern

[26] to directly compare probes between generic and GA. We

applied two separate techniques within this framework; a

traditional T-test and a Signal-to-Noise Ratio test (SNR). For

each of these two tests, we adjusted the nominal p-values via FDR.

For all four tests described, we used an adjusted threshold that was

less than or equal to 0.05.

Non-parametric/Wilcoxon
Because of natural variations of the distributions of probe

expression in samples of generic and GA, we sought to identify

differences via a non-parametric approach. For this, we used the

Wilcoxon Rank Sum Test [27] as implemented in R (R version

2.15.1 (2012-06-22)) for each probe. Nominal p-values were FDR

adjusted and only probes that were less than or equal to 0.05 were

considered.

GSEA with FoxP3 Target Gene Lists
In order to examine how genes downstream of the FoxP3

transcription factor were modulated by the two treatments, we

utilized gene sets constructed by Zheng et al. [28] from FoxP3+ T-

cells isolated from human thymus and periphery comprising genes

that had FoxP3 binding sites by ChIP (Chromatin-Immunipreci-

pitation) and are differentially expressed relative to FoxP3– T-cells.

Orthology mapping from human to mouse was conducted using a

map provided by the Mouse Genome Database. [29] We then

utilized the Gene Set Enrichment Algorithm (GSEA) [30] to

measure the enrichment of FoxP3 targets in genes upregulated in

GA relative to Medium, and generic relative to Medium. Briefly,

GSEA takes as input a gene set (in this case, the set of FoxP3

targets) and an expression matrix (the set of samples treated with

either generic or GA or untreated/Medium), then it ranks genes

based on their expression in the expression matrix for each class/

treatment. GSEA then calculates an enrichment score for each

geneset based on how overrepresented each geneset is at the

extremes of expression (high or low expression) for each treatment.

ANOVA-based Pattern Identification Method
We sought to identify probes matching specific patterns of

expression across experimental conditions using a technique that

referred to as the ANOVA-based Pattern Identification Method.

For instance, one pattern of interest was where probes are only

significantly affected by generic. In this pattern, the expression for

a given probe should not be statistically different among cells

treated by GA, reference standard, or Medium. In statistical terms,

probes matching this pattern should have p-values for the

comparisons between generic and GA (genericA-generic), generic

and reference standard (pgeneric-reference standard), and generic and

Medium (pgeneric-Medium) less than 0.05 and p-values for the

comparisons between GA and Medium (genericA-Medium), GA and

reference standard (genericA-reference standard), and reference stan-

dard and Medium (preference standard-Medium) greater than 0.05.

To carry out the analysis in a general manner, we computed the

6 p-values required to do pairwise comparisons of all 4 conditions

for all probes using the ANOVA1 function in MATLAB. We then

identified sets of probes matching the desired pattern. In the

example above, probes were identified as being only affected by

generic if their 6 pairwise comparison p-values matched the

following pattern (genericA-generic ,0.05, pgeneric-reference stan-

dard,0.05, pgeneric-Medium,0.05, genericA-Medium.0.05, genericA-

reference standard.0.05, preference standard-Medium.0.05).

Cell Type Enrichment
To measure cell-type specificity in gene sets, we utilized Benita

et al.’s enrichment tool [31] to calculate specificity scores relating

each gene to each cell type in IMMGEN (Immunological Genome

Project). [32] We then utilize a hyper-geometric test to calculate

the significance of the summed specificity scores for the geneset

across each cell type. Finally, we adjusted each p-value output by

the hypergeometric enrichment using the Benjamini-Hochberg

False Discovery Rate correction for multiple hypothesis testing

[22].

Functional Enrichment with MSigDB
To assess the functional significance of lists of genes (test set), we

used version 3.1 of the database of MSigDB [30] as our reference

set. We implemented a standard hypergeometic enrichment test

with the additional criterion that at least three genes from our test

set be in the reference set. We then applied the Benjamini-

Hochberg correction procedure and used a significance threshold

of 0.05.

Results

Variability Analysis: GA is Significantly More Consistent
than Generic

In comparing medicines produced by different manufacturing

processes, it is important to assess if they are equally consistent in

their biological impacts. We sought to examine differences in

global variability across all relevant probes in order to address the

Comparing Glatiramer Acetate with a Generic
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question of whether the biological impact of generic was as

consistent (across 5 batches) as GA (across 30 batches). Defining

relevant probes as those with variability induced specifically by

activation (as opposed to experimental noise such as the variability

seen in samples exposed only to medium), we found that 4-fold

more probes had significantly higher variability across the generic

batches than across the GA batches (Figure 1A and Table S3).

To ensure the robustness of the result, we randomly selected 11

samples from GA to match the 11 samples from generic, merging

technical replicates to eliminate technical variability. We conduct-

ed a sensitivity analysis by repeating this process 10 times. Even by

this strict method, the number of probes with greater variability in

generic than GA was still significantly higher than the number of

probes with greater variability in GA than generic (p,0.00089 by

paired t-test, Figure S1B), consistent with the findings above.

As a second method of examining variability, we determined for

each probe an acceptable range (i.e. between the minimum and

maximum expression induced by GA reference standard). We

determined the percentage of samples within this acceptable range

across 34 samples including 30 batches of GA. We then

determined the percentage of samples within this acceptable

range across 11 samples including 5 batches of generic. We

defined the maximum allowed percentage of samples with this

range as the tolerance threshold, and found that for any given

tolerance threshold generic almost always has more probes out of

tolerance than GA (Figure 1B). For instance, 158 probes for

generic fail to meet a tolerance of 75% of samples within the range

defined by the reference standard, while only 10 probes for GA fail

to meet the same tolerance. The very worst generic probe has

22.7% of samples within tolerance, while the very worst GA probe

has 63% of samples within tolerance.

Finally, we examined the coefficient of variation (CV) across all

probes in GA and in generic as a function of intensity, and found

that there was a much narrower range of CV values present in GA

than in generic at any given intensity (Figure S1C). We also

examined the difference of CV(GA)-CV(generic) (Figure S1D),

and observed more probes with highly negative values than highly

positive values, consistent with the presence of greater variation in

the generic.

It is important not only to identify differences in variability, but

also to explore the potential biological impact of these differences.

Thus, we calculated for each probe the ratio of the variance in

generic to the variance in GA. The highest ranked probe by

variability in generic relative to its variability in GA was for FOXP3

(ILMN_2635132, ratio 4.17, Table S4), the key marker of

tolerance-inducing regulatory T cells (Tregs). The probe with the

second highest ratio of variance in generic to variance in GA was

for GPR83 (ILMN_2707941, ratio 4.14), which is also an

established Treg marker [33].

Comparing Impact on Key Immune System Genes: GA
Induces Treg Markers FoxP3 and Gpr83 More Effectively
than Generic

To systematically examine the differential expression of a

particular gene in response to different medicines, we applied

multiple methods including both parametric and non-parametric

testing. Not only did GA induce FOXP3 expression more

consistently than generic, but GA also induced significantly higher

expression as determined by 4 parametric methods: ANOVA

(adjusted p,1.3761023), LIMMA with background subtraction

(adjusted p,6.1461024), comparative marker selection using

signal-to-noise (adjusted p,1.3461022 and t-test (adjusted

p,2.1261022), and a non-parametric Wilcoxon rank-sum test

(adjusted p,4.6261022 (Figure 2A, Table S5).

Applying the same methods to GPR83, we found that GA

induced significantly higher levels of expression than generic:

ANOVA (adjusted p,4.7561028), LIMMA with background

subtraction (adjusted p,8.67610210), comparative marker selec-

tion using signal-to-noise (adjusted p,1.3461022) and t-test

(adjusted p,1.4961022), and a non-parametric Wilcoxon rank-

sum test (adjusted p,3.4561024, Figure 2B). GPR83 is also in

the top 20 probes by fold change from GA compared to generic

(Table S5).

Because both FOXP3 and GPR83 are associated with Tregs [33]

and both have more consistent and significantly higher expression

induced by GA than by generic, we sought to determine on a per-

Figure 1. The biological impact of GA is significantly more
consistent than that of generic. Among probes with variability
induced by activation, 4-fold more probes had significant variation by F-
test across 11 generic-activated samples from 5 batches, when
compared to the number of probes with significant variation by F-
test across 34 GA-activated samples from 30 batches (A). Defining
tolerance as the percentage of samples with expression levels falling
within the range between the maximum and minimum expression
levels induced by reference standard for that probe, for any given
tolerance threshold the number of probes failing to meet this this
threshold is displayed for both generic and GA (B), showing that in
almost all cases more probes fail to meet tolerance following induction
by generic.
doi:10.1371/journal.pone.0083757.g001
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sample basis whether the same subset of generic samples induced

low levels of both genes, or whether FOXP3 was low in some

generic samples and GPR83 was low in other generic samples. We

confirmed that the same generic samples that were low in FOXP3

were also low in GPR83 (Figure 2C).

When the genes differentially expressed in response to different

medicines are also transcription factors (e.g. FOXP3), we can

further test the observation by examining the expression of genes

known to be targets of that transcription factor. In this case, we

sought to determine whether genes downstream of FoxP3 are

upregulated following activation by GA as compared to generic.

Through Gene Set Enrichment Analysis (GSEA), [30] we found

that FoxP3 targets genes were enriched in GA samples compared

to medium (FDR-adjusted q = 0.008) to a more significant degree

than in generic samples compared to medium (FDR-adjusted q

= 0.036, Figure 2D and Figure S2A).

For the list of genes with significantly higher expression induced

by GA than generic by the non-parametric Wilcoxon rank-sum

test, we utilized the Molecular Signature Database (MSigDB) [30]

to determine that the same list of genes bound by FoxP3 was

significantly enriched (adjusted p,1.5961028, Table S6).

Comparing Potential Efficacy-related Impacts on Key
Immune System Cell Types: GA Induces Tregs More
Effectively than Generic

We wanted to systematically determine how two different

medicines differentially impact immune system cells, using gene

expression data. We first utilized an ANOVA-based pattern

analysis method to identify a list of genes that are significantly

downregulated only by generic compared to medium, and not by

GA or GA reference standard compared to medium (Table S7,
Methods). We then tested this list for immune system cell type

enrichment via a novel approach (Methods). The genes

downregulated only by generic are enriched in genes specific for

a variety of T cells including Tregs (Table S8). From this same

approach, genes significantly upregulated by GA and GA

reference standard relative to medium, but not by generic relative

Figure 2. GA induces Tregs more effectively than generic. (A) GA induces significantly higher expression of FoxP3 than generic. FoxP3 is a key
marker of Tregs, and (B) another key Treg marker Gpr83 shows a similar pattern of expression. (C) Both FoxP3 and Gpr83 are low in the same samples
as indicated by scatter plot, further strengthening the case that generic fails to induce a strong Treg response in some patients. (D) As further
evidence of the difference in FoxP3 induction, GSEA analysis found a significantly stronger upregulation of FoxP3 target genes in GA-activated
samples than in generic-activated samples. (E) GSEA analysis also found a significant enrichment of Treg-specific genes among the genes with higher
expression in GA than in generic. NS = not significant.
doi:10.1371/journal.pone.0083757.g002
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to medium (Table S7) again yielded T cells, including Tregs, as

the most enriched cell types (Table S8). Finally, genes that have

significantly higher expression in samples activated by GA than

generic as determined by the 4 parametric methods (Table S5)

were, again, enriched for T cells, including Tregs (Table S8).

To further examine the impact of each medicine on specific

immune system cells, we generated a list of genes with high cell-

type specificity for Tregs, and utilized GSEA to determine the

extent to which these Treg-specific genes were overrepresented at

the top of the ranked list of genes differentially expressed between

the two medicines. We confirmed that these Treg-specific genes

were overrepresented at the top of the ranked list with higher

expression in GA-activated samples than generic-activated sam-

ples (FDR-adjusted q = 0.00, Figure 2E and Figure S2B).

Taken together, these findings emphasize that GA upregulates

FoxP3+ Tregs more consistently and to a higher level than

generic. This finding has implications for efficacy (Discussion).

Comparing Potential Safety-related Impacts on Key
Immune System Cell Types: Generic may Upregulate
Myeloid Lineage Cells to a Greater Extent than GA

Using the ANOVA-based pattern analysis (Methods), we

identified a list of genes that are significantly upregulated only by

generic compared to medium, and not by GA or GA reference

standard compared to medium (Table S7). Cell type enrichment

yielded a variety of stromal cells, macrophages, and monocytes

(Table S8). Similarly, genes that were significantly downregulated

by GA and GA reference standard relative to medium, but not by

generic relative to medium (Table S7) were most enriched for

macrophages, monocytes, and granulocytes (Table S8). Finally,

genes that have significantly higher expression in samples activated

by generic than in samples activated by GA by 4 different

parametric methods (Table S5) were enriched primarily in

macrophages and monocytes (Table S8).

To illustrate the cell-type specificity among the genes differen-

tially expressed between GA and generic, we created a heat map of

the differentially expressed genes showing the relative expression

of Treg-specific genes, macrophage-specific genes, and monocyte-

specific genes in samples activated by GA compared to samples

activated by generic (Figure 3 and Table S9). Consistent with

our findings, generic appears to upregulate macrophage and

monocyte-related genes while GA appears to upregulate T cell

related genes including Tregs.

To further investigate discrepant cell type activation between

the GA and generic, we utilized the non-parametric Wilcoxon

rank-sum test to determine which genes had significantly higher

expression from generic than from GA, and performed an

enrichment using MSigDB (Methods). The TLR signaling

pathway was significantly enriched (adjusted p,1.2761026,

Table S6). Among the overlap genes significant by Wilcoxon

and present in this pathway were CD14 (adjusted p,4.7761022),

a monocyte marker, and TLR2 (adjusted p,3.6561022). Kernel

density plots (Figure 4A), which can be likened to a smoothed

histogram and effectively illustrate differences identified by non-

parametric tests such as the Wilcoxon, show the differences in

expression between generic and GA for these two genes. The

boxplots for these two genes can be found in Figure S3.

Hypothesizing that both CD14 and TLR2 are associated with

the same cell type (monocytes), we confirmed that the same

generic samples had unusually high expression of both CD14 and

TLR2 (Figure 4B).

Investigating the Mechanisms Underlying Observed
Differences: Why Does Generic Upregulate Tregs Less
Effectively than GA?

Because monocytes may play a role in the mechanisms by which

GA induces Tregs, [34] we sought to compare the expression of

FOXP3 and CD14 in individual samples. Generic samples with low

FOXP3 also have high CD14 (Figure 4C). This suggested that the

differential impact on monocytes may be one mechanism by which

GA and generic differentially impact Tregs.

Another mechanism by which GA and generic may differen-

tially impact Tregs involves interferon gamma, which is known to

induce FOXP3 expression [35] and to be necessary for GA-

induced FOXP3 expression. [36] IFNG is upregulated dramatically

by GA compared to generic: probes for IFNG are the #1 and #3

ranked probes by fold change for higher expression from GA

(Table S5 and Figure S4). Indeed, those generic samples with

Figure 3. Cell-type specific differences in the biological impact
of GA and generic. The heat map depicts relative expression of
specific genes in GA-activated samples and generic activated samples.
Each of the rows within the Treg section represents a gene with a high
cell-type specificity scores for Tregs, while each of the rows in the
macrophages and monocyte sections represents genes with high cell-
type specificity scores for each of those cell types. The associated gene
lists appear as supplementary information. Overall, GA induces higher
expression of Treg-associated genes than generic, while generic
induces higher expression of macrophage and monocyte-associated
genes than GA.
doi:10.1371/journal.pone.0083757.g003
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unusually low in FOXP3 are also unusually low in IFNG (Figure
S4).

Investigating the Mechanisms Underlying Observed
Differences: Why Does Generic Upregulate Monocytes?

GA is known to reduce CD40 expression levels on monocytes,

[34] which is consistent with our observation that CD40 is among

the list of genes with significantly lower expression (Wilcoxon,

Methods) following activation by GA than following activation

by generic (Figure S5). GA has a different impact on monocytes

stimulated by T cell contact versus LPS: in the former case GA

causes a decrease in monocyte IL1B production while in the latter

case GA causes its increase. [37] This was notable because

performing an MSigDB enrichment (Methods) on genes with

higher expression from generic (Wilcoxon, Methods) also yielded

significant enrichment in an LPS response pathway (adjusted

Figure 4. The generic’s impact on monocytes may differ from GA’s impact. (A) generic induces significantly higher expression of CD14 and
TLR2, as determined by a Wilcoxon rank sum test and depicted as kernel density plots, which can be likened to a smoothed histogram. (B) CD14 and
TLR2 expression are both unusually high in the same (mostly generic) samples. (C) FoxP3 expression is unusually low in the sample samples in which
CD14 expression is unusually high, suggesting that the generic’s different impact on monocytes may be related to its different impact on Tregs and
consistent with literature suggesting that monocytes play a role in GA-induced FoxP3 expression. (D) FoxP3 expression is unusually low in the sample
samples in which IL1B expression is unusually high, suggesting that the generic’s different impact on monocytes may be related to the differences
between LPS-activated monocytes and T-cell contact activated monocytes, which have been described in the literature as having opposite impacts
on IL1B production. (E) GSEA analysis found a significant enrichment of monocyte and macrophage-specific genes among the genes with higher
expression in generic than GA. NS = not significant.
doi:10.1371/journal.pone.0083757.g004
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p,4.9661026, Table S6). Moreover, we show that those generic

samples with low levels of FOXP3 also have high levels of IL1B

(Figure 4D). GSEA analysis indicated that genes specific to

monocytes and macrophages were significantly enriched among

those genes with higher expression in generic than GA

(Figure 4E). IL1B also appears to be associated with monocytes,

as it is highly correlated with CD14 (Figure S6). Finally, IL1B

levels are significantly higher in generic than GA both by ANOVA

(adjusted p,0.043) and LIMMA with background subtraction

(adjusted p,0.037) (Table S5).

In order to determine if GA and generic were influencing

different subtypes of monocytes, we performed a GSEA analysis

using gene lists from literature examining human CD16+ and

CD16dim monocytes. [38] We found that among the genes

upregulated by generic relative to medium, there was a significant

enrichment in CD16dim monocytes (FDR q = 0.132, where the

significance threshold is 0.25). Among the genes upregulated by

GA relative to medium, there was a significant enrichment in

CD16+ monocytes (FDR q = 0.052, where the significance

threshold is 0.25)(Figure S7).

Discussion

We have developed a set of computational methods for

comparing the immunological impact of a branded medicine with

that of a generic.

The first set of methods involves comparing the variability of

samples in expression of certain genes. We applied a broad range

of computational methods including a variance ratio analysis that

identifies specific genes for which one medicine is very consistent

and the other is highly variable. We compared variability for

individual genes directly using an F-test, plotted the coefficient of

variation as a function of intensity to determine the relationship

between variability and probe intensity, and investigated variabil-

ity across batches. We also developed a new method using

principles from chemical/process engineering to determine

variability using acceptable ranges defined by a reference

standard.

These methods produced multiple lines of evidence suggesting

that generic has a significantly more variable biological impact

than either GA reference standard or GA. For instance, 34

samples representing 30 different GA batches were found to be

highly consistent and similar to GA reference standard. In

contrast, more probes have higher variability in expression

following stimulation with 11 samples representing 5 different

generic batches. This variability itself is cause for concern among

physicians and regulators, since the batch-to-batch variability of

generic could manifest itself in ways that are harmful to patients.

One possibility is that a patient could experience benefit from a

particular batch of generic but not from a subsequent batch,

preventing the patient from achieving the maximum benefit

possible. Another, more disconcerting, possibility is that the

variability could lead to a particular batch of generic causing

adverse events. Due to the generic’s heterogeneity, such adverse

events could be intermittent and therefore difficult to detect,

monitor, and report.

The next set of methods involved identifying immunological

impacts that differ between two medicines. We identified

differentially expressed genes using a variety of methods (multiple

parametric tests, non-parametric tests, and an ANOVA-based

pattern matching method). We then explored the immunological

relevance of these differentially expressed genes using a newly

developed method for determining enrichment in genes specific to

particular immune cell types. We further investigated the resulting

hypotheses using established methods including hypergeometric

enrichment with MSigDB [30] and GSEA [30] on lists of cell-type

specific genes and transcription-factor target genes.

These methods identified specific genes and immune cell types

that are upregulated significantly more by the GA than by generic.

In this case, there is a preponderance of evidence suggesting that

GA upregulates FoxP3+ Tregs more consistently and more

effectively than generic. We have shown that the expression of

FoxP3 itself, genes downstream of FoxP3, other known Treg

markers, and Treg specific genes are all enriched from activation

by GA relative to generic. This dramatic difference in biological

impact on Tregs is certainly of note to physicians and regulators. It

is well established that FoxP3+ Tregs induce beneficial tolerance

in MS patients by suppressing harmful myelin reactive T cells, [39]

so the more variable and reduced Treg induction raises questions

about the potential efficacy of generic especially given recent

findings demonstrating Copaxone’s impact on Tregs [36] and

linking Tregs to clinical response in MS patients [40].

These methods also identified specific genes and immune cell

types that are upregulated significantly more by generic than by

GA. In this case, generic had a significantly higher impact on cells

of the myeloid lineage such as monocytes and macrophages than

GA did. Genes with significantly higher expression in generic than

in GA include key monocyte markers such as CD14, enrich to

macrophage and monocyte cell types, and are enriched in related

pathways such as TLR signaling. The stronger upregulation of

monocyte-specific genes warrants further investigation by physi-

cians and regulators, especially given that monocytes are

‘‘prominent contributors’’ to neuroinflammation in MS [41] and

given recent reports that one of GA’s mechanisms of action

involves its impact on monocytes [37], [12].

The potential safety concerns stemming from the generic’s

impact on monocytes were heightened by our GSEA analysis

finding that the gene expression patterns following activation by

generic more closely resemble the gene expression patterns of

CD16dim monocytes, while the expression patterns following GA

activation more closely resemble the gene expression patterns

associated with CD16+ monocytes. This is consistent with

literature reports showing that Copaxone positively impacts

CD16+ monocytes, [42] and is particularly concerning from a

safety perspective because the CD16dim monocytes favored by

generic are known to play a different biological role.

The difference in impact on monocytes could also help explain

the observed differences in Treg upregulation, since GA-treated

monocytes are known to upregulate FoxP3 expression. [34] GA

had an opposite impact on monocytes stimulated by LPS (resulting

in increased IL1B production) as opposed to monocytes stimulated

by T cell contact (resulting in decreased IL1B production). [37]

The same generic samples that have unusually high levels of IL1B

also have unusually low FoxP3. generic also shows upregulation in

LPS response pathways. Together, these findings suggest that

some component of generic, either deliberate or due to

contamination, may trigger an LPS response pathway in

monocytes leading to excessive IL1B production and unusually

low induction of FoxP3+ Tregs. This possibility warrants further

investigation with regard to safety.

One clear caveat to any gene expression study in mice lies in the

inherent differences between healthy mouse models and human

MS patients. Yet, there are clear differences in biological impact of

GA and generic. One step to further address this lies in linking the

differentially impact genes to markers and processes known to be

linked to Copaxone response in humans with MS. [43,44] Our

study design sought to model the situation in which a patient is

initially treated with GA, and later switched to a generic. A variety
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of other experimental designs could be explored in future studies,

including priming in vivo with generic and reactivating with

generic, then comparing the resulting transcription profiles to

those that result from priming in vivo with GA and reactivating

with GA. Such studies may demonstrate even more dramatic

differences between GA and generic. Given the batch-to-batch

variability that we identified in the generic, such studies should

explore priming and reactivating with the same batch of generic,

as well as priming and reactivating with different batches of

generic. Further studies could also be conducted in human cell

lines or PBMC, and could build upon the previously identified

physiochemical differences between GA and generic [45] by

assaying for mechanistically relevant immunological processes

such as Treg activity, binding affinity to HLA class II molecules,

Th1 to Th2 shift, and TCR modulation.

In these studies, we have sought to develop a broadly applicable

set of computational methods for comparing branded medicines to

generics (Figure 5A). We found higher variability in gene

expression following activation by generic compared to GA, and

the significant differences in impact on key biological processes

including Tregs and monocytes (Figure 5B). These differences

raise questions for physicians and regulators seeking safe and

effective treatments for MS patients, and suggest that clinical

studies are warranted, using appropriate safety and efficacy

endpoints to compare generic to GA. More generally, the data

analysis methods described here can be utilized in a variety of

situations to compare the biological impacts of other branded and

generic therapies, in order to ensure that patients receive the best

possible medicines.

Supporting Information

Figure S1 Principal Component Analysis (PCA) was
utilized to check for outliers, (A). (B) Plot illustrating that

the findings in Figure 1A still hold when the 11 generic samples

are compared to 11 randomly selected GA samples. (C) Plot of the

coefficient of variation (CV) as a function of intensity for each of

the probes when activated by generic (black) and GA (red),

showing the smaller range of CVs in GA and the wider range in

generic at any given intensity. (D) Plot of the difference of

CV(GA)-CV(generic) for each probe as a function of intensity,

showing more probes with negative values indicating higher CV

values in generic.

(TIFF)

Figure S2 The GSEA enrichment plots for the FoxP3 and
Treg GSEA analyses reported in Figure 2D–E.

(TIFF)

Figure S3 Box plots of CD14 and TLR2, depicting the
lower expression levels in GA and Reference compared
to generic. This is an additional way of visualizing the differences

depicted by kernel density plots in Figure 4A.

(TIFF)

Figure S4 Scatter plots showing that the same generic
samples with unusually low FoxP3 expression also had
unusually low IFNG expression, by two different probes
of IFNG. Scatter plots illustrating that for two different probes of

IFNG, GA and Reference standard upregulated IFNG to a greater

extent than generic did.

(TIFF)

Figure 5. Flow chart of process for comparing a branded medicine to a generic, and model of key differences between GA and
generic. (A) Overview of the methods for analyzing gene expression data to compare the immunological impact of GA to that of generic. After
processing, direct differences are identified by multiple parametric methods, non-parametric methods, as well as ANOVA-based pattern analysis, and
variability analysis. The genes identified by these methods are analyzed using a variety of enrichment-based methods, which result in hypotheses
that are then verified through additional methods. (B) The key hypotheses emerging from our studies involve the greater heterogeneity in the
generic’s biological impact compared to GA’s, and the fact that GA appears to more effectively upregulate FoxP3 expression and promote tolerance-
inducing Tregs, while generic appears to upregulated myeloid lineage cells such as monocytes and macrophages which may impair tolerance. Given
these findings, it is reasonable to hypothesize that GA may suppress harmful cytotoxic cells more effectively than generic, and this hypothesis
warrants further investigation.
doi:10.1371/journal.pone.0083757.g005
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Figure S5 Kernel density plot of CD40, illustrating the
fact that this gene had higher expression in generic
activated samples than in GA activated samples, con-
sistent with the determination by the Wilcoxon rank-
sum test and consistent with literature.
(TIFF)

Figure S6 Scatterplot illustrating the high degree of
correlation between CD14 and IL1B, lending support to
the hypothesis that the IL1B is expressed primarily by
monocytes.
(TIFF)

Figure S7 GSEA analysis showing that genes with higher
expression in generic than medium are enriched in
genes specific to CD16dim monocytes, while genes with
higher expression in GA than medium are enriched in
genes specific to CD16+ monocytes.
(TIFF)

Figure S8 Illustration of the tolerance method for
comparing variability. The expression of genes following

activation by GA and generic are assessed to determine the

percentage of samples following within a tolerance defined by the

maximum and minimum expression levels induced by the

reference standard (top and bottom of the red box for Gpr83,

left and right sides of the red box for FoxP3).

(TIFF)

Table S1 Sample assignments on chip, illustrating
randomization to avoid batch effects.
(PDF)

Table S2 Genes utilized for the tolerance method
illustrated in Figure 1B.
(PDF)

Table S3 The highly variable probes that were signif-
icant by F-test in either GA or generic (see methods
section) and are depicted in Figure 1A.
(PDF)

Table S4 Ranked list of probes by ratio of the variance
in generic-activated samples to the variance in GA-
activated samples.
(PDF)

Table S5 Comparison of expression in GA to expression
in GA for each probe, including fold change, ANOVA,
LIMMA with background subtraction, comparative
marker selection by signal-to-noise ratio, comparative
marker selection by t-test, and the Wilcoxon non-
parametric method.
(PDF)

Table S6 MSigDB enrichment results for the list of
genes with significantly different expression between GA
and generic by the Wilcoxon rank sum test, including
FoxP3 targets among the enriched signatures for genes
higher in GA than generic, and TLR and LPS pathways
among the enriched signatures for genes higher in
generic than GA.
(PDF)

Table S7 Output of the ANOVA pattern matching
method utilized to identify genes upregulated or down-
regulated only in generic or only in GA and reference
standard.
(PDF)

Table S8 Outputs of cell-type enrichment analyses for
various lists of genes (higher expression in GA than
generic, higher expression in generic than GA, upregu-
lated only by generic, downregulated only by generic,
upregulated only by GA and reference standard, down-
regulated only by GA and reference standard).
(PDF)

Table S9 List of genes depicted in the heat map in
Figure 3.
(PDF)
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