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Abstract

Wheat (Triticum aestivum L.) is one of the most important crops cultivated worldwide. Identifying the complete
transcriptome of wheat grain could serve as foundation for further study of wheat seed development. However, the
relatively large size and the polyploid complexity of the genome have been substantial barriers to molecular genetics and
transcriptome analysis of wheat. Alternatively, RNA sequencing has provided some useful information about wheat genes.
However, because of the large number of short reads generated by RNA sequencing, factors that are crucial to
transcriptome assembly, including software, candidate parameters and assembly strategies, need to be optimized and
evaluated for wheat data. In the present study, four cDNA libraries associated with wheat grain development were
constructed and sequenced. A total of 14.17 Gb of high-quality reads were obtained and used to assess different assembly
strategies. The most successful approach was to filter the reads with Q30 prior to de novo assembly using Trinity, merge the
assembled contigs with genes available in wheat cDNA reference data sets, and combine the resulting assembly with an
assembly from a reference-based strategy. Using this approach, a relatively accurate and nearly complete transcriptome
associated with wheat grain development was obtained, suggesting that this is an effective strategy for generation of a
high-quality transcriptome from RNA sequencing data.
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Introduction

Wheat (Triticum aestivum L.) is one of the most widely cultivated

crops because of its high yield and nutritional value [1,2,3].Wheat

has a very large and complex genome (17Gb, 40 times larger than

Oryza sativa), which contains three homoeologous genomes

(2n = AABBDD; AA from Triticum urartu, BB from a species that

is unknown but which maybe of the section Sitopsis,to which

Aegilops speltoides belongs, and DD from Aegilops Tauschii). Whole

genome sequencing of wheat has been considered too challenging

because of the relatively large size, proportion of repeat sequences

(,80%, primarily retroelements) and number of paralogs and

diverse alleles [1,4]. To date, no well-established wheat genome

sequence is available [5]. Transcriptome analysis could provide a

better understanding of wheat genetics, however, the relatively

high proportion of orthologs, paralogs and isoforms in wheat and

the relatively low levels of gene expression also presents several

unique challenges for transcriptome research [6]. RNA sequencing

(RNA-seq) with its unprecedented sensitivity and accuracy [7,8,9]

has been widely used for transcript profiling, Single nucleotide

polymorphism (SNP) detection and differentially expressed gene

analysis [10,11,12,13,14,15]. Reads obtained using RNA-seq are

often 35–500 bp, shorter than traditional expressed sequence tag

by Sanger sequencing technologies [7,8]. Therefore, it is necessary

to reconstruct full-length transcripts from these short reads [16].

The short read assembly programs, SOAPdenovo-Trans [17],

Trans-ABySS [18,19], Velvet-Oases [20,21] and Trinity [22] have

been successfully applied to assemble transcriptomes in many

organisms [10,22,23,24], with both the single k-mer (SK) and

multiple k-mer (MK, not for Trinity) methods. Previous studies

suggested that the specific characteristics of the different programs

and strategies could greatly affect the assembly [22,25,26,27]. Of

the four programs, Trinity was the most efficient and sensitive in

assembling full-length transcripts and isoforms in several model

organisms [22], and it with the SK strategy outperformed Trans-

ABySS with the MK strategy in assembling a hexaploid wheat

transcriptome [6].

Reference-based assembly strategies are often applied to

reconstruct a transcriptome for which a reference genome is

available [6,16]. However, this strategy is impractical for wheat,

which lacks a well-characterized genome. Fortunately, draft

genomes of the wheat A and D-genome progenitors were recently

established [28,29], which may serve as a good reference for wheat

short read assembly. On the other hand, de novo assembly of short

reads into a transcriptome can identify all transcripts, separate
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isoforms, and reconstruct full–length transcripts. However, de novo

transcriptome assembly requires a much higher sequencing depth

and ideal hardware than the reference-based strategy for the same

task. Furthermore, de novo transcriptome assembly programs are

very sensitive to sequencing errors and fail to distinguish highly

similar transcripts (for example, alleles or paralogs) [16]. These

observations suggested that a combinationof reference-based and

de novo strategies would be a superior approach that warranted

testing in wheat.

In the present study, sequence reads associated with grain

development of wheat were obtained using RNA-seq. To

reconstruct an accurate and nearly complete transcriptome,

several factors affecting read assembly were evaluated, including

k-mer values, programs (SOAPdenovo, Trans-ABySS, Velvet-

Oases and Trinity), methods (SK or MK) and overall assembly

strategies were evaluated. Determining the best strategy for wheat

transcriptome assembly from RNA-seq data could provide a

crucial guideline for reconstruction of high quality transcriptomes

from complex genomes. In addition, the reconstructed transcrip-

tome from this study will be useful for future expression profiling

and differential expression analysis of genes associated with wheat

grain development.

Materials and Methods

Plant materials and sampling
The common wheat variety P271 was cultured during the wheat

growing season (October to June) under natural conditions in

Yangling, Shaanxi province (34.26uN, 108.14uE), fertilized with

urea (60 kg/ha) and watered periodically. The mainstem ears were

tagged on the morning when the anthers first appeared outside the

florets of the spikelets. The labeled spikelets were harvested at 4, 8

and 12 days after pollination (DAP4, DAP8 and DAP12).

Developing grains were collected from the first florets of the four

central spikelets. The embryo of each grain was removed and the

remaining endosperm and seed coat were designated as EDAP4,

EDAP8 and EDAP12, respectively. Each group at this stage

consisted of at least 200 seeds from 30 spikes, which were

immediately frozen in liquid nitrogen. All materials were stored at

280uC until RNA extraction [30].

RNA isolation and library preparation
Total RNA samples from the three sample groups (EDAP4,

EDAP8 and EDAP12) were isolated using the Trizol reagent

(Invitrogen) and then treated with Dnase I (Promega) at a

concentration of 1 U/mg. The Mix-RNA sample was composed

of equal amounts of RNA from EDAP4, EDAP8 and EDAP12.

The quality and quantity of the RNA samples were examined

using the Agilent 2100 Bioanalyzer (Agilent Technologies). The

RNA samples were then purified using the TruSeq RNA Sample

Preparation Kit (Illunima). Briefly, the poly-A mRNA was purified

from 10 mg of total RNA using poly-T oligo-attached magnetic

beads. The mRNA was fragmented using divalent cations at 95uC.

The fragmented RNA was used for the first and second strand

cDNA synthesis. The cDNA fragments were end-repaired and

ligated to adapters for PCR purification and enrichment to create

the final cDNA libraries. The number of PCR cycles was

minimized to avoid amplification bias. Fragments from 250 to

350 bp were selected by agarose gel purification to produce the

libraries for cluster generation and sequencing. Paired-end

sequencing of the four cDNA libraries (EDAP4, EDAP8, EDAP12

and Mix) was performed using the Illumina sequencing platform

(GAII).

Raw reads filtering
Paired-end (PE) raw reads from the four libraries (EDAP4,E-

DAP8,EDAP12 and Mix) were trimmed using the

NGSQCToolkit (version 2.2.3) without primer/adaptor filtering,

with a read length cutoff of 50% and with a base Phred quality

scores threshold of Q30 (P-value#0.001) [31]. The low-quality

base calls at the ends of each read were filtered and reads that were

,50 bp or singletons were discarded to generate the final high

quality (HQ) read libraries. The data were deposited into SRA

archive with accession number SRP029372.

De novo assemble with four assemblers
To evaluate the performance of the four assembly programs, all

of the four read libraries HQ reads were de novo assembled using

SOAPdenovo-Trans (release 1.01) with average insert size = 300

bp [17], Trans-ABySS (version 1.3.2) [19], Velvet (version 1.2.07)

with library insert length = 300 and minimum contig length =

100 [20], Oases (version 0.2.08) [21], Trinity (release 20120608)

with minimum contig length = 100 [22]. Similar assembly

parameters were adopted in the four programs.

The k-mer length (k) is one of the most important parameters

because it defines the sequence overlap between two reads forming

a contig and can substantively affect the final assembly product

[19]. Shorter k values tend to be better for less expressed

transcripts, whereas larger k values are more practical for highly

expressed sequences [20,32]. A single k-mer value is therefore

unlikely to yield an optimal overall assembly. Alternatively,

compiling assemblies with multiple k-mer values improves

accuracy, sensitivity, and specificity of the overall de novo

transcriptome assembly [19,32].

SK and MK approaches were adopted in the SOAPdenovo-

Trans, Trans-ABySS and Velvet-Oases assemblies. SK length

ranged from 25 to 97 bp with a length interval of 6. Only the SK

approach with k of 25 bp was used in the Trinity assembly. For the

MK methods, Trans-ABySS merged all of the SK assemblies in

the first step of the analysis pipeline. Oases merged all of the

Velvet SK assemblies using an array of hash lengths and a

dynamic noise filtering process [21]. SOAPdenovo-Trans merged

all the SK assemblies and then removed redundancy. For each

assembly program, the performance at different SK lengths was

compared, and the k-mer value of the best assembly was selected.

Next, the best SK assembly of each program was compared to the

MK assembly for that program (Figure 1). To examine overlap/

similarity among the seven assemblies, pairwise alignment was

performed using the Basic Local Alignment Search Tool like

(BLAST-Like) Alignment Tool (BLAT) [33]. Similarity was

defined as the percentage of the two assemblies with .95%

identity and .80% overlap.

All the assemblies were performed on a Linux server with an 80-

core processor and 512 GB of memory. HQ transcripts over 300

bp were used for the downstream analysis.

Assembly statistics metrics calculation
To compare the assemblies generated by different programs and

methods, assembly statistics were calculated using the N50Stat.pl

tool of the NGSQCToolkit [31]. Statistics metrics used in this

study included the total number of sequences$300bp, the average,

median, and N50 sequence lengths, the guanine-cytosine (GC)

content and the proportion of ambiguous base calls (Ns). N50 was

defined as the contig length where 50% of the assembly was

represented by contigs of this size or longer [34].

Evaluation of Assembly Strategies Using RNA-Seq
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Mapping reads back to transcripts
Mapping reads back to transcripts is one of the most important

methods to assess assembly quality. To obtain reads mapped back

to transcript (RMBT) values for each assembly, Bowtie (version

0.12.7), with default parameters [35], was applied to map PE short

reads back to the assembled contigs. The mapping metrics

included reads that aligned concordantly exactly 1 times (ACE1),

reads that aligned concordantly .1 times (AC.1), and the overall

alignment rate (OAR).

Mapping assembly transcripts to reference genes
Criteria to comprehensively assess transcriptome assemblies has

been difficult to establish and is still in development. Recent

studies have reported several important evaluative metrics for both

simple and complex transcriptomes, including completeness (the

degree to which the references gene is covered by the assembled

contigs), contiguity (the likelihood that a full-length transcript is

represented as a single contig) and accuracy (a measure of the

correctness of an assembly) [16,36]. However, it is difficult to

assess assembly quality by these metrics without a set of well-

established expressed reference transcripts that, ideally, includes

transcripts of varying length and expression levels [16]. For our

purposes, a full-length common wheat cDNA data set was

available (TriFLDB-6137, http://trifldb.psc.riken.jp/download.

pl) with perfect replacement for a reference transcript that

contains 6137 sequences ranging from 131 to 8930 bp (N50

length = 1996 bp and average sequence length = 1753 bp). The

fact that the data set contains many long transcripts makes it

particularly useful in estimating contiguity and completeness [37].

This, and another reference dataset (TriallCDNA) containing

97481 sequences ranging from 100 to 10382 bp, representing

nearly all wheat genes [4], were used to assess the completeness,

contiguity and accuracy of each of our assemblies. BLAT [33] with

default parameters was applied to map each assembly to the

reference sequences [16,36]. Completeness is the percentage of

reference sequences for which .80% of the length is covered by

assembled contigs. Contiguity is the percentage of complete

reference sequences for which .80% of the length is covered by a

single assembled transcript. Accuracy is the percentage of the

assembly that shares $95% identity with the reference sequences.

Perfect accuracy is the reference sequences for which .80% of the

length is covered by a single assembled transcript and shared

$95% identity with the transcript.

To assess the new transcripts detection capability of each

assembly program, we aligned each assembly to the reference

sequences using BLAST with the requirement of .100 bp match.

The number and percentage of assembled contigs that aligned to

the reference sequences with identity $95% or $70% were used

for assessment.

Different data assembly strategies
Reconstruction of a comprehensive transcriptome from short

reads involves many complex assembly issues. This study

compared several different data assembly strategies including

mixing of RNA samples (EDAP4, EDAP8, EDAP12, Mix-RNA),

merging of reads from different libraries (EDAP4, EDAP8,

EDAP12, Mix-reads) and merging of single library assemblies

then removal of redundancies (Mix-assembly). The quality of the

Figure 1. Analysis process flow diagram. This analysis process mainly consisted of four steps: (1) evaluation of raw and HQ read assembly, with
HQ reads chosen as input for the next step; (2) evaluation of the performance of four assembler programs using SK and MK methods, with Trinity
selected for downstream analysis; (3) evaluation of different data volume assembly strategy; and (4) evaluation of two hybrid assembly strategies; (5)
evaluation of two combined assembly strategy.
doi:10.1371/journal.pone.0083530.g001

Evaluation of Assembly Strategies Using RNA-Seq
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output from the different strategies was measured by the total

number of sequences obtained, the average length of reads, the

N50 length, and the ACE1, AC.1, and OAR values).

Hybrid assembly with wheat cDNA
TriallCDNA data was used to improve assembly quality [4].

HQ reads were mapped to TriallCDNA using Bowtie2 with

default parameters [37]. The sequences of TriallCDNA which

were mapped at least once by the HQ reads, were extracted and

used to design the MappedTriallCDNA data set. The unmapped

HQ reads were de novo assembled usingTrinity and then merged

with MappedTriallCDNA using CD-HIT-EST [38] with 100%

identity to generate an overall assembly. This strategy is termed

merging unmapped transcripts with TriallCDNA (MUTT).
Another strategy was to firstly de novo assemble the HQ reads,

then assemble the resulting transcripts with MappedTriallCDNA

using CAP3 [39] with 50 bp overlat and share at least 98%

identity. We termed this strategy assemble de novo transcripts with

TriallCDNA (ADTT).

Combined strategies
To create an even more comprehensive transcriptome, we next

combined the reference-based and de novo assembly approaches.

This strategy brings together the high sensitivity of reference-based

assembly with the greater ability of de novo assembly to detect novel

transcripts [16]. Firstly, the HQ reads from the four libraries

(EDAP4, EDAP8, EDAP12 and Mix) were assembled by Cufflinks

[40] using the draft A- and D-progenitor genomes as references

[28,29,40]. The assemblies were then combined with the MUTT

or ADTT assembly by CD-HIT-EST [38] with 95% identity to

generate overall assemblies. These strategies termed combined

reference-based assembly with MUTT assembly (CMUTT) and

combined reference-based assembly with ADTT assembly

(CADTT), respectively.

Final transcriptome assembly and annotation
Through a series of analyses, the best strategy was selected to

assemble the wheat grain development transcriptome. The contigs

from the EDAP4, EDAP8, EDAP12 and Mix libraries assembled

by CADTT strategy were merged and clustered by CD-HIT-EST

with identity of 95%. To obtain annotation information about the

assembled transcript, the final transcriptome was aligned by

BLAST searched against the non-redundant protein sequence

database with default parameters.

Statistical analysis
All statistical analyses were performed by Excle (Microsoft). An

a value of 0.05 was used as the criterion for statistical significance

Results

Overview of analysis
Raw RNA-seq data and Q30 filtered HQ data of four wheat

developmental libraries were firstly de novo assembled using the

Trinity assembler to assess the Q30 quality control effect on

assembly. Then four assembler programs and several different

assembly strategies were evaluated and compared using these data

to select the most accurate and comprehensive approach to re-

construct the wheat transcriptome (Figure 1). Assembly evaluation

metrics included descriptive statistics, RMBT, novel gene detec-

tion capability and computing resource usage. The raw and HQ

reads (Q30 filtered) from the four libraries were statistically

analyzed separately. However, since there were large differences in

sequencing depth among the four libraries, and it has a profound

impact on assembly quality statistical analysis, the paired t-test

method was used instead of analysis of variance (ANOVA) to

assess the effect of Q30 on assembly quality. For the same reason,

two-way ANOVA without replication was applied in the other

statistical analyses.

Effect of Q30 on assembly quality
Four cDNA libraries (EDAP4, EDAP8, EDAP12 and Mix)

associated with wheat grain development were constructed for PE

sequencing. A total of 88.145 million 100 bp PE raw reads,

representing 17.63 Gb, were generated (Table 1). After filtering of

low-quality bases (quality score,Q30), short reads (,50 bp) and

singletons, 70.864 million HQ PE reads remained for downstream

analyses. The proportion of HQ reads from the four libraries

varied from 77.22 to 83.35%, with an average of 79.19%.

Raw and HQ reads of the four libraries were de novo assembled

using Trinity [22] to assess the effect of sequencing errors on

assembly quality. T-test analysis indicated that the number of

contigs $500bp) assembled from the HQ reads was significantly

lower (P-value,0.05) than from the raw reads. However, the N50

and average sequence lengths were slightly higher for the HQ read

assembly (Table 2), indicating that the Q30 quality control results

in longer and fewer transcripts.

RMBT results indicated that the Q30 quality control improved

assembly quality and mapping percentage. The total number of

HQ reads was 19.61% lower than raw reads, and the percentages

of reads that could be mapped back to the assembled contigs was

higher for the HQ reads, with ACE1, AC.1 and OAR 2.09, 1.22

and 1.96% higher for HQ than raw reads, respectively (Figure 2,

Table S1).

Assemblies from the raw and HQ reads were separately aligned

against the wheat reference databases TriFLDB-6137 and

TriallCDNA, using BLAT [33]. The completeness and contiguity

of the HQ read assemblies were lower than that for the raw read

assemblies. In contrast, the accuracy of the HQ read assemblies

was much higher than the raw read assemblies, especially when

using TriallCDNA as the reference (Table 3).

Assembly performance of programs with SK vs. Mk
methods

The HQ reads from the four libraries were then de novo

assembled using four different software programs and evaluated by

assembly statistics. Two-way ANOVA showed that for some

programs, as k increased from 25 to 91 bp, the average contig

length and N50 length gradually increased, peaked at a k = 61 bp

for SOAPdenovo and at a k = 37 bp for Velvet, and then dropped

off sharply (Figure 3A, Tables S2 and S3). In contrast, the average

and N50 lengths in the ABySS assembly firstly decreased with k

increase and then increased slightly. The corresponding SK peaks

of each value metric were different, ranging from k of 25 to 61bp

(Figure 3A, Table S4). The total number of sequences decreased

from 62515 (at k = 43) to 280 (at k = 97), from 28792 (at k = 31)

to 164 (at k = 97), and from 33698 (at k = 25) to 1070 (at k = 97)

in the SOAPdenovo, Velvet and ABySS assemblies, respectively

(Tables S2 and S4). The percentage of Ns decreased with

increasing k in all three programs(Figure 3, Tables S2, S3 and S4).

Comprehensive comparison showed that SOAPdenovo and

ABySS achieved the best results at k = 43, with more and longer

transcripts, whereas Velvet produced better results at k = 37.

Therefore, we compared the assemblies at these k values with the

Trinity assembly at k = 25. The comparison revealed that there

were no significant differences among the four programs with

respect to total number of sequences. Trinity produced relatively

longer transcripts. However, compared with the SK method, the

Evaluation of Assembly Strategies Using RNA-Seq
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MK method could significantly increase the total number of

sequences (Figure 4A, Tables 4 and S5). Trinity assembly (SK)

obtained fewer and relatively longer transcripts to other three

programs MK assembly (Figure 4A, Table S5). RMBT was an

important benchmark for evaluating the performance of each

assembler. Theoretically, the optimal program would have the

highest RMBT percentage. We found that the RMBT percentage

of SK and MK (except for Trinity) assemblies of the four programs

varied considerably. The proportion of ACE1 varied from 2.67%

(SOAP-Trans, k = 43) to 35.21% (Trinity, K = 25), the

proportion of AC.1 varied between 3.06% (ABySS, k = 43) and

11.53% (SOAPdenovo, k = 43), and the OAR varied from

10.63% (ABySS, k = 43) to 49.95% (Trinity, K = 25). Although

the MK assemblies produced more transcripts than SK methods,

the proportion of ACE1 was not significantly higher (P-value

.0.05). The proportion of AC.1 in the MK assemblies and the

OAR were significantly higher than that in the SK assemblies

(Figure 4B, Table S6). The proportions [of AC.1] were 24.67%

for Trans-ABySS MK, 43.49% for Velvet-Oases MK and 35.58%

for SOAPdenovo-Trans MK (Figure 4B, Tables 4 and S6). MK

methods generated more transcripts and better alignment

proportions than SK methods (Figure 4B, Table S6), similar to

previous studies [22,25]. Comparison the Trinity(SK methods)

assembly to other three programs (MK methods) indicated that no

obvious differences for OAR. However, Trinity assembly was

significantly higher in ACE1 and lower in AC.1. The results

suggested more redundance in the other programs assemblies (MK

methods) (Figure 4B, Table S6). The perfect alignment achieved

by Trinity may be attributable to its conservative k-mer-based

assembly approach. Trinity had a consistently better performance

in all cases than other programs, especially in ACE1 and OAR,

while the Trans-ABySS k43 was the worst in OAR

Program capability in ideal transcript assembly
Although assembly statistics and RMBT metrics could evaluate

the performance of programs, the assessment was incomplete

without support of reference sequences. Seven assemblies from the

four programs were mapped against wheat reference sequence

databases (TriFLDB-6137 and TriallCDNA) using BLAST to

assess the assembly completeness, contiguity and accuracy. Two-

way ANOVA indicated a significant improvement in the

completeness and contiguity when the MK strategy was applied

to each program (except for SOAPdenovo and Trinity).

Compared with the SK strategy, the MK approach produced

more total sequences, but the accuracy was not enhanced,

especially in SOAP-Trans. For the SK assemblies, Trinity had

the best performance in terms of completeness and contiguity. The

Trans-ABySS assembly had the highest accuracy rate. However,

Table 1. Statistics of raw and HQ reads.

Metrics EDAP4 EDAP8 EDAP12 Mix Total Average

Number of raw reads 24863171 11317131 11964057 40001060 88145419

GC content (%) 41.83 46.23 45.39 53.1 46.6375

Gb 13.2 6 6.4 22 47.6

Number of HQa reads 19467396 8815361 9239158 33342047 70863962

GC content (%) 41.22 45.49 44.81 52.63 45.18

Gb 10.4 4.8 5 17.8 38

HQ reads proportion 78.30% 77.89% 77.22% 83.35% 79.19%

aQ30 filtered reads.
doi:10.1371/journal.pone.0083530.t001

Table 2. Statistics of the Mix raw and HQ read assemblies.

Metrics
MeanD-
valuea Sdb t Stat P-value Sig

Total reads 24320364 2039492 24.24 ,0.05 *

Total sequences$300 bp 22742 2063 22.66 .0.05

Total sequences$500 bp 21235 670 23.69 ,0.05 *

Total bases –1521587 697164 –4.37 ,0.05 *

Average sequence length 10.66 25.28 0.84 .0.05

N50 length 22.75 47.32 0.96 .0.05

GC content OR (G + C)s –0.01 0.00 –3.45 ,0.05 *

aThe difference between the raw and HQ read assemblies.
bStandard deviation.
*Mean significant at 5% level.
doi:10.1371/journal.pone.0083530.t002

Figure 2. Comparison of raw and HQ read assembly by
mapping reads back to assembled contigs. Raw and HQ reads
were mapped back to the raw readand HQ read assemblies (contigs
.300 bp), respectively. The assessment metrics included ACE1 and
AC.1 percentagesandOAR. Statistical analysis was performed using
paired t-tests and P-valuesrefer todifferences between the two
assemblies.
doi:10.1371/journal.pone.0083530.g002

Evaluation of Assembly Strategies Using RNA-Seq
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there was very little difference in accuracy among the assembly

results of Trinity (k = 25), SOAP-Trans (k = 43), and Velvet-

Oases (k = 37) (Figure 4, Table 4 and Table S7).

To assess the detection capability for novel transcripts of the

four programs, seven assemblies were aligned to TriallCDNA

using BLAST. The highest numbers of reference sequences were

detected by Trinity (k = 25) and SOAPdenovo (k = 43) (Figure

4C). The percentages of alignments with identity .95% were

59.18% for Trinity (k = 25) and 52.57% for SOAPdenovo (k =

43). The MK strategy detected more reference sequences than the

SK strategy for the same program. However, the relatively

increased number was very small compared to total assembly

increased many times generated by MK method (Figure 4C, Table

S7). Trinity (SK methods) assembly could detected more

references than other three programs. Similarity analysis indicated

that there were large differences among the seven assemblies. The

Trans-ABySS assembly had the most similarity with the other six

assemblies, whereas the SOAPdenovo-Trans assembly had the

least overlap. The results suggested that the Trans-ABySS

program had the most reliable performance (Figure 5, Table

S8). Take together, compared other three programs MK method

to Trinity assembly, the Trinity could get relative fewer and lower

redundancy transcripts. But these transcripts with significantly

higher ACE1, lower AC.1 and more identity with reference

sequences.

Table 3. Quality of assemblies mapped to wheat reference
genes.

Metrics
Mean D-
valuee Sdf t Stat P-value Sig

Aligned to TriFLDB-6137

Completenessa 21.88% 0.01 23.40 ,0.05 *

Contiguityb 21.41% 0.01 23.64 ,0.05 *

Perfect accuruacyc 21.38% 0.01 22.90 .0.05

Accuruacyd 2.11% 0.01 3.86 ,0.05 *

Aligned to TriallCDNA

Completeness 21.14% 0.01 22.64 .0.05

Contiguity 21.03% 0.01 23.40 ,0.05 *

Perfect accuracy 0.03% 0.01 0.09 .0.05

Accuracy 2.18% 0.01 4.30 ,0.05 *

aPercentage of reference sequences covered by the assemblies ($80% of the
length).
bPercentage of complete reference sequences covered by a single assembled
contig (80% of the length).
cPercentages of reference sequences covered by a single assembled contig
(80%) that share $95% identity with the contig.
dPercentage of assembled contigs that share $95% identity with the reference
sequences.
eThe mean difference between the HQ and raw read assemblies.
fStandard deviation.
*Mean significant at 5% level.
doi:10.1371/journal.pone.0083530.t003

Figure 3. Performance of three programs using the SK method. The statistics of HQ read assembly by SOAPdenovo (red), Velvet (blue) and
ABySS (green) with different single k-mer lengths (x axis). Assembly statistics metrics included the average contig length (squares), the N50 length
(triangles), total sequences (circles) and percentage of Ns (stars).
doi:10.1371/journal.pone.0083530.g003
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Different data volume assembly strategies
Analysis of assemblies constructed from different amounts and

variety of starting sequence data showed that, compared with the

Mix-RNA strategy, the total reads resulting from the Mix-reads

and Mix-assembly approaches were 12.54%, with 4179868 reads,

however, the total numbers of contigs of the assemblies were

22.46% (15636) and 49.6% (34532), respectively. Although the

total number of contigs was increased, the average and N50

lengths for the Mix-assembly approach were less than for the Mix-

RNA approach. When the Mix-HQ-reads and Mix-EDAP-reads

were mapped back to the assemblies from the three approaches

(Mix-RNA, Mix-read, Mix-assembly), there was little difference in

the OAR among the three assemblies (Figure 6, Tables S9 and

S10). However, compared with the other two strategies, the Mix-

assembly strategy assembled a larger number of contigs. The

percentage of AC.1 was high for this strategy and ACE1 was very

low, indicating that there was a high degree of redundancy. There

was little difference in the mapping metrics between the Mix-RNA

and Mix-reads assemblies, but the ACE1 percentage and OAR

were increased relative to the Mix-assembly approach, indicating

that the Mix-RNA strategy could obtain ideal transcripts. The

RAM requirement and runtime for the Mix-RNA and Mix-reads

Table 4. Evaluation of quality of assemblies from the four programs by BLAST alignment with wheat reference genes.

Completeness Contiguity Accuracy

Programs Mean Sd Sig 5%* Mean Sd Sig 5%* Mean Sd Sig 5%*

TriFLDB-6137

Trinity k25 36.99% 18.42% a 27.71% 12.61% ab 32.65% 10.20% cd

Velvet k37 25.14% 19.30% b 19.76% 18.92% abc 36.11% 11.13% c

ABySS k43 14.01% 8.23% c 7.50% 2.44% c 52.47% 2.38% a

SOAPdenovo k43 14.51% 23.79% c 15.67% 26.13% bc 33.02% 9.13% cd

Velvet-Oases 34.76% 20.10% a 31.77% 18.21% a 30.01% 6.88% d

Trans-ABySS 38.78% 18.92% a 24.89% 10.12% ab 44.43% 2.72% b

SOAPdenovo-Trans 42.26% 24.06% a 15.04% 28.94% bc 23.89% 7.89% e

TriallCDNA

Trinity k25 33.16% 15.26% ab 25.88% 12.19% a 37.44% 12.84% cd

Velvet k37 21.55% 16.17% c 18.79% 14.19% ab 42.99% 15.53% bc

ABySS k43 15.16% 9.27% d 10.65% 5.34% b 54.66% 5.22% a

SOAPdenovo k43 14.89% 20.11% d 15.07% 21.05% b 35.70% 9.40% d

Velvet-Oases 29.59% 16.82% b 27.32% 15.99% a 33.39% 9.74% d

Trans-ABySS 34.18% 16.09% ab 27.56% 12.63% a 47.03% 5.30% b

SOAPdenovo-Trans 38.50% 19.97% a 13.08% 25.28% b 33.65% 10.46% d

Assembled contigs and reference sequences ,300bp were excluded from all assemblies.
*Different lower case letters within this column indicate that the means were significantly different at the 5% level.
doi:10.1371/journal.pone.0083530.t004

Figure 4. Performance of four programs and SK and MK strategies. Performance measures evaluated included assembly descriptive statistics
(A), RMBT percentage (B) and match with wheat reference genes (C). Lower case letters indicate significant differences (at 5% level) among the means
for the different programs of the same-colored bars.
doi:10.1371/journal.pone.0083530.g004
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strategies were similar, but the Mix-assembly approach used the

least amount of RAM and runtime (Figure 6C). When the Mix-

EDAP-reads were used for mapping, the results were very similar,

but the proportion of alignment was greatly reduced (Figure 6,

Table S10 and S11).

Hybrid assembly with wheat cDNA
TriallCDNA represents nearly all of the wheat genes [4]. To

assess the effect of incorporating TriallCDNA into the wheat

transcriptome assembly, HQ reads from the four libraries were

mapped to TriallCDNA. The distribution of mapped reads

showed that the reads that mapped to the reference ,4 times

accounted for 39.86% of the total reads (Figure 7, Table S12).

Two hybrid assembly strategies, MUTT and ADTT, were

assessed by two-way ANOVA. MUTT generated 81506 assem-

bled sequences with an average length of 1058 bp. ADTT

generated 77531 assembled sequences with an average length of

1030 bp (Table 5). In contrast, de novo assembly generated 40519

sequences with an average length of 816 bp, indicating that the

hybrid strategies produce more and longer contigs. RMBT results

showed that the MUTT and ADTT strategies had significantly

lower proportions of ACE1, higher proportions of AC.1, and

higher OARs than the de novo assembly. Overall, there were no

significant differences between the two hybrid strategies (Table 5).

Combined assembly with the wheat A- and D-genome
progenitors

Combined strategies were applied to assemble reads from the

four libraries using the draft genomes of the wheat A-genome

progenitor T. urartu and D-genome progenitor A.tauschiias refer-

ences. Two-way ANOVA indicated that all of the assessment

metrics were significantly higher for the combined strategies

(CMUTT and CADTT) compared to the de novo assembly. The

Figure 5. Similarity among the seven assemblies. Pairwise comparison among seven assemblies. Row and column intersections indicated that
the two assemblies were more similar.
doi:10.1371/journal.pone.0083530.g005

Figure 6. Performance of three assemble strategies. The performance was evaluated by (A) assembly descriptive statistics, (B) RMBT
proportion, and (C) longest runtime and largest RAM usage.
doi:10.1371/journal.pone.0083530.g006

Figure 7. Distribution of HQ reads mapped to TriallCDNA. HQ
reads from the four libraries were aligned to the TriallCDNA reference
set. Shown is the percentage of mapped reads (y axis) vs. copies (x axis).
doi:10.1371/journal.pone.0083530.g007
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total number of sequences increased from 45,019 for the de novo

assembly to 75526 (CMUTT) and 80495 (CADTT). The average

contigs and N50 lengths were increased .200bp and the RMBT

increased by an average of 5% (Table 5 and S13). Compared to

the MUTT and ADTT strategies, CMUTT and CADTT

increased the number of contigs significantly, whereas the other

metrics, including length and RMBT, were not obviously

improved.

Final transcriptome assembly and annotation
A final comprehensive transcriptome was generated using what

this study determined to be best program (Trinity) and the best

strategy (CADTT) for our data. A total of 127083 sequences were

generated with an average length of 991 bp and N50 length of

1353 bp. BLAST alignment to NR database showed that

90935(,71.56%) of the assembled contigs were annotated (Table

S14).

Discussion

Q30 quality control is necessary
In general, RNA-seq data contains large numbers of low quality

reads, which originated during library preparation and the

sequencing process. Although variation in the amount of DNA

contamination, in the composition of sequencing kits, and in PCR

parameters can induce sequencing errors, PCR is the most likely to

produce bias [41]. Therefore, maximal initial mRNA amounts

and minimal PCR cycle numbers were used to reduce potential

bias in the present study. Poor quality reads could lead to

fragmented assemblies or false transcripts. Therefore, filtering low

quality reads pre-assembly could improve the accuracy and the

length of contigs. Conventional quality control threshold are Q13

or Q20, however, comprehensive comparison showed that use of a

more stringent quality control threshold (Q30) filtered a large

number of sequences, but greatly improved the assembly quality.

The GC content of the raw and HQ reads in this study ranged

from 41.83 to 53.1% and from 41.22 to 52.63%, respectively. The

difference suggested that there may be a bias in coverage between

the different libraries (Table 1). The bias could be introduced at

several stages of the standard Illumina sequencing process. For

example, high cluster densities in the Illumina flow-cell can

suppress GC-rich reads [41]. However, this bias gave us the

opportunity to study the effect of GC content on assembly quality,

and we found that low GC content in the library leads to more and

shorter assembled sequences (EDAP4; Tables 1 and S1). The GC-

content bias describes the dependence of read coverage on

sequencing data [42]. Previous studies have found that reducing

GC-content bias leads to more accurate estimates of fold changes

in expression [43]. The present study revealed that Q30 filtering

could reduce the GC bias and improve assembly quality (Table

S1).

Program performance
Trinity, SOAPdenovo-Trans, Trans-ABySS and Velvet-Oases

were developed specifically for RNA-seq assembly, and have been

applied successfully in many previous studies [10,19,23,24,44].

Other recent studies have compared the performance of these four

assemblers using both SK and MK methods [22,25]. However,

test data for this comparison was from species with relatively small,

simple, and well-characterized genomes (Drosophila melanogaster,

Shizosaccharomyces pombe, and the tea plant, Camellia sinensis). The

length of D. melanogaster genome is ,122Mb with ,17,000 genes.

The length of genome of S. pombe is ,12Mb with ,5000 genes.

The length of diploid C. sinensis genome is ,4 Gb [45]. Therefore,

the conclusion from these previous assembler assessments may not

apply to all situations, especially to wheat, with its relatively large

(17Gb), complex allohexaploid genome and abundance of

repetitive elements. Duan et al. (2012) optimized de novo assembly

of a common wheat transcriptome from RNA-seq data. However,

this work focused only on the Trinity (SK) and Trans-ABySS (MK)

programs. The lack of comparison to other programs, and

consideration of hardware requirements, and statistical analysis

of results in that study maybe limited for the reliability of their

program select in.

The statistical analyses in the present study indicated that the

quality of transcriptome assembly was highly dependent on the

user-defined k-mer length. The lower the k-mer length, the more

transcripts were assembled, although k-mer length did not affect

transcript length. The optimal k-mer length for a given data set

was associated with the sequencing depth, the base call error rate,

and the complexity of the organism from which the transcriptome

is being constructed. Higher sequencing depth captures more

weakly expressed gene. Base call error interrupts contigs, leading

to more and shorter transcripts and, consequently, HQ reads

generate longer contigs. Genome characteristics need to be

carefully considered, especially for a relatively complex genome

like wheat. Longer k-mer length would theoretically lead to a more

contiguous assembly of highly expressed transcripts [18], but more

moderately expressed transcripts would be better assembled with

lower k-mer length [20].

The performance of SOAPdenovo-Trans, Velvet-Oases, and

Trans-ABySS was far superior to the SK-based versions of these

programs, especially in terms of AC.1 and OAR [25]. Trinity

outperformed the other three programs using SK methods in all of

Table 5. Statistics of de novo, MUTT, ADTT, CMUTT and CADTT assemblies.

Metrics De novo MUTT ADTT CMUTT CADTT

Mean Sig 5%* Mean Sig 5%* Mean Sig 5%* Mean Sig 5%* Mean Sig 5%*

Number of sequences 45019 c 58537 b 64926 b 75526 a 80,495 a

Average length 816 b 989 a 1011 a 1059 a 1061 a

N50 length 1035 b 1279 a 1330 a 1348 a 1369 a

AC$1a 44.20% b 47.64% a 48.51% a 50.02% a 50.44% a

OARb 49.95% b 53.29% a 53.88% a 54.79% a 55.11% a

aAligned concordantly $1 time is a combination of ‘‘ACE1’’ and ‘‘AC.1’’.
bOverall alignment rate.
*Different lower case letters within this column indicates that the means were significantly different at the 5% level.
doi:10.1371/journal.pone.0083530.t005
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metrics. Therefore, assembly could be further improved if an MK

strategy was applied in Trinity. However, the application was

limited due to its long runtime and fixed k-mer length, and the

current version of Trinity would be impractical.

Trinity also outperformed the MK assemblies of the other

programs. Compared to the three MK assemblies, Trinity (SK)

assembled fewer total sequences with lower redundancy and

longer transcripts, but with nearly equal OAR (Figure 4A,B),

similar to what was observed by Duan et al [6]. Performances of

other programs with MK strategy were not satisfactory given the

number of low quality assembled transcripts and more redun-

dance.

The amount of sequencing data from the Illumina platform is

often very large. Velvet-Oases required the most memory, and

Trinity required a runtime .20 fold longer than the other

programs. Alternatively, the programs Trans-ABySS and SOAP-

denovo-Trans required less memory and had shorter runtime.

Taken together, our results indicated that the program used has

great effect on assembly outcome.

Data volume may determine assembly strategies
With the rapid decline in the cost of sequencing, a large amount

of wheat RNA-seq data from various tissues and developmental

stages has become available. To effectively use this data, it is

necessary to choose a suitable assembly strategy based on the

sequence volume and hardware requirements. An appropriate

assembly strategy could improve transcriptome coverage and

accuracy, and save time and money.

The Mix-RNA and Mix-read assembly strategies produced

good RMBT values, but because of the large amounts of data

generated by these strategies, the computing requirements and

runtime (weeks or even months) may be prohibitive to many

researchers. Mix-RNA improved the detection of less highly

expressed transcripts because of the increased sequencing depth

and uniformity in transcript level produced by mixing equal

amounts of RNA from the different samples. The Mix-read

strategy can also improve uniformity of transcripts because it

involves a mix of samples from different development stages or

tissues. Therefore, both strategies could improve the assembly

quality. The strength of the Mix-assembly strategy is that it has

relatively low computer hardware requirements and can be

performed in less time. However, owing to lower sequencing

depth, a large number of transcripts could not be detected or

assembled. Greater sequencing depth in the individual libraries

could potentially alleviate this issue. Although the test data was

from the same experiment and the same species in this study, the

strategies had universality and could be extended to species which

have smaller differences on evolution, theoretically. Overall, Mix-

RNA and Mix-read are the best strategy when computing

capabilities are not a limitation, whereas the Mix-assembly

strategy maybe more practical for many researchers.

Improving assembly quality using public databases
In the present study, stringent quality control and an optimized

assembly program were applied to reconstruct a wheat grain

development transcriptome. However, many genes were not

detected or assembled because of insufficient sequencing depth.

Supplementing our data with TriallCDNA improved the tran-

scriptome quality, but 53.2% of our HQ reads mapped to

TriallCDNA ,11 times (Figure 7, Table S12), and therefore it

would not, theoretically, be assembled into full-length transcripts.

Even though the contig length threshold was set to 300 bp, there

were still many (39.86%) reads that were difficult to assemble

because they appeared ,4 times. Compared with de novo assembly,

the two hybrid assemblies (MUTT and ADTT) significantly

improved the assembly quality in terms of both statistics and

RMBT (OAR = 53.9%). In addition, removal of contigs ,300 bp

allowed more reads to be mapped back to the assemblies. The

ideal RMBT metrics for the Mix sample indicated that a credible

wheat grain development transcriptome was assembled.

Combined strategy
Reference-based assembly is the ideal strategy for transcriptome

reconstruct. The lack of a well-established full wheat genome

sequence makes reference-based assembly impractical. De novo

assembly of the wheat transcriptome can reconstruct full-length

transcripts, detect novel transcripts and achieve reasonable results

[6]. However, this methods lack of the genome and gene structure

information. Also, it can not distinguish the paralogs and alleles.

The draft genomes of the wheat A- and D-genome progenitors

provided the opportunity for reference-based assembly [28,29].

Unfortunately, the reference is still incomplete because the B-

genome sequence is not available. Combining reference-based and

de novo assembly strategies can bring together the advantages of

these two complementary approaches and create a more

comprehensive transcriptome [16], as we found in this study (with

both CMUTT and CADTT). Slight difference between the two

combined strategies (CMUTT and CADTT) showed that all of

these two strategies could get ideal assmebly. Substantial increase

in total assembled sequences and the smaller increase in RMBT

indicated that more alleles and paralogous genes were assembled

by the combined process.

Evaluation metrics
It is difficult to comprehensively evaluate assembly quality

because assembly statistics tend to emphasize coverage and contig

length rather than accuracy. Many criteria for systematically

assessing assembly quality have been established [16,36], but these

standards are only applicable to a simple transcriptome. The

TriFLDB-6137 data set was a particularly useful reference for

estimating the completeness, contiguity and accuracy of our

assemblies. For wheat transcriptome assembly, it is necessary to

identify orthologous genes in the A, B and D subgenomes, paralogs

and alleles. This auxiliary data set (including 51 WRKY

transcription factors and 23 orthologous gene groups from the

A, B, and D subgenomes) has been used as a reference to assess

redundancy parameters [6]. Removing the majority of this

redundancy from the primary library improved assembly quality

[6]. Therefore, a large well-characterized reference set that

includes transcripts of variable length and expression levels,

orthologs, paralogs, and multiple alleles needs to be collected to

assess assembly chimerism metrics and variant resolution. The

current assessment methods and datasets are insufficient for

constructing a wheat transcriptome and new evaluation metrics

and algorithm are still needed.

In conclusion, deep sequencing and stringent quality control

together with the Trinity SK program and CADTT strategy

enabled reconstruction of a relatively accurate and essentially

complete transcriptome associated with wheat grain development.

These studies could provide aguidance strategy for future wheat

transcriptome assembly using RNA-seq data.

Data Access

The sequence data from this study have been submitted to the

NCBI Sequence Read Archive (SRA)(http://www.ncbi.nlm.nih.

gov/sra), with accession number is SRP029372.
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