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Abstract

Whole slide scanners are novel devices that enable high-resolution imaging of an entire histological slide. Furthermore, the
imaging is achieved in only a few minutes, which enables image rendering of large-scale studies involving multiple
immunohistochemistry biomarkers. Although whole slide imaging has improved considerably, locally poor focusing causes
blurred regions of the image. These artifacts may strongly affect the quality of subsequent analyses, making a slide review
process mandatory. This tedious and time-consuming task requires the scanner operator to carefully assess the virtual slide
and to manually select new focus points. We propose a statistical learning method that provides early image quality
feedback and automatically identifies regions of the image that require additional focus points.
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Introduction

Whole slide scanners (WSSs) are novel devices that enable high-

resolution imaging of an entire histological slide. The scanner used

in the present study (Hamamatsu NanoZoomer) enables a

resolution of 0.23 mm per pixel, corresponding to a 400X

magnification. Furthermore, whole slide imaging (WSI) is achieved

in only a few minutes, which enables image rendering of large-

scale studies involving multiple immunohistochemistry (IHC)

biomarkers [1–3]. While current scanners, such as the NanoZoo-

mer, perform generally very well, whole slide images, usually

denoted as virtual slides (VSs), can present blurred regions due to

locally poor focusing. These artifacts should be avoided as much as

possible because they can affect the quality of subsequent analysis,

making a VS review process mandatory.

Most WSSs, such as the one used in this study, perform a

focusing step at a set of locations (focusing points) prior to WSI.

The number and position of these focusing points, which are either

chosen by a human operator or automatically selected by the

WSS, can strongly affect the resulting image quality because the

3D landscape of the slide is extrapolated from the chosen focusing

points. While too few focusing points may result in a partially

blurred VS, too many focusing points significantly increase the

scanning time. We estimated that the scanner used in this study

requires 2.8 s per focusing point. Therefore, a reasonable number

of focusing points should be selected to ensure image quality for a

majority of VSs. Typically, in our laboratory (DIAPath, CMMI),

we used 9 focusing points for each 100-mm2 region. With this

practical rule, approximately 75% of the slides are properly

scanned (out of more than 2500 4- or 5-mm thick slides); these

slides are obtained from various normal or pathological paraffin-

embedded tissue samples stained with different standard tech-

niques for brightfield microscopy, i.e., IHC and HE (hematoxylin-

eosin), excluding fluorescence labeling, for which our scanner is

not equipped. Under these conditions, the total scanning time is

approximately 6 minutes for a large slide (of approximately

443 mm2) at 20X magnification. These data represent a good

trade-off between scanning efficiency and time.

The complete scanning workflow process employed in our

laboratory is presented in Figure 1 and is detailed in the figure

caption. During the VS review process, the scanner operator has

the following responsibilities: (i) assess the VS and (ii) either accept

the slide if properly scanned or identify blurred regions for which

new focus points must be added. This time-consuming task

requires the scanner operator to carefully assess the entire slide

image to identify poorly focused regions. Automated methods for

VS quality assessment that identify blurred regions are therefore

strongly needed.

Image quality assessment (IQA) and, more particularly,

sharpness evaluation are well-studied fields of research [4–6].

Some of the proposed methods use a reference image to which the

current image is compared [7–9]. However, this approach is

unsuitable for VS quality assessment because such reference

images are not available. Alternatively, most methods estimate

image sharpness by characterizing the edges, contrast, or

information content of the image [4,10]. However, these methods

relate to autofocusing; these approaches evaluate the sharpness for

each z-position of the microscope stage during image acquisition
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Figure 1. Complete scanning workflow and sequence of processes. A. Illustration of the complete scanning workflow. The first step is the
"Prescan": the scanner starts by taking a low-resolution grayscale picture of all of the slides loaded by the operator. This grayscale image is used
during the second step by the automatic "Setup" process: a predefined set of rules (known as the "profile") is applied to detect the tissue and to split
large tissue regions in several regions with a maximum area of 100 mm2. Nine focusing points are then distributed across each piece of tissue to
compute a median focusing plane for each small tissue piece. The automatic setup can fail if the tissue is very faint (tissue detection error) or if
focusing points are placed on tissue folds or defects (focusing error). The operator is therefore asked to control the result of the profile and to correct
it if necessary (by moving or adding focusing points). The slide is then ready to be scanned and is placed in the scanning queue (step 3). Steps 1 to 3
can occur concurrently, until all of the slides in the batch are queued. During step 4, the scanner scans the regions of the slides defined by the profile
and produces the VS, which is saved on disk. The operator can then review the VS immediately while the scanner scans the next slide in the queue
(see frame B I.a) or can let the scanner work until more VSs are ready for review (see frame B I.b). The manual review process (path I) consists of a
thorough slide quality assessment. The method presented in this work (path II) consists of an automatic creation of a "blur map" showing the
improperly focused regions. This method reduces the reviewing time of the operator and helps him (her) decide whether the VS is of acceptable
quality. B. Sequence of operations for a hypothetical batch of five slides, with the time increasing from left to right along the horizontal axis. Without
the assistance of an automated image quality assessment method (corresponding to path I in frame A), different review sequences are possible,
ranging from continuous reviewing (I.a: the operator reviews each slide immediately after its acquisition) to batch reviewing (I.b: the operator waits
until the entire batch is scanned before reviewing all of the slides). Continuous reviewing requires the operator to be continuously present during the
scanning session (denoted by the dotted rectangle), while batch reviewing allows the operator to perform other tasks during imaging. The
automated sharpness evaluation method presented in this work (corresponding to path II in frame A) results in the creation of blur maps during the
scanning session, reducing the time needed for the manual review process (timeline II). In A-B, shaded boxes indicate the tasks carried out by the
operator. C. Sequence of states of a slide on which the complete workflow (path II) is applied. The "Prescan" step defined six focusing planes, with
nine focusing points each, and queued the slide for scanning. As soon as the VS is saved on disk, the automated sharpness evaluation method is
applied and produces a "blur map", showing potential improperly scanned regions (red arrow on second image). The operator manually adds new
focusing planes, and nine new focusing points are automatically distributed on each plane (the red rectangle targets the blurred region identified by
the arrow on the blur map). The slide is scanned again, and when the new VS is available, the sharpness assessment method verifies the new file and
shows that the blurred region disappeared (red arrow in the fourth image).
doi:10.1371/journal.pone.0082710.g001
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and choose the position maximizing the sharpness measure as the

correct focus plane [4,5,11]. In contrast, our application concerns

sharpness assessment of a VS after (and not during) imaging (cf.

Figure 1).

Studies related to VS sharpness assessment quantify sharpness

in high-resolution subregions, i.e., tiles. This methodology

identifies poorly focused subregions in the VS. The overall

sharpness quality of the VS depends on the quality of each

individual subregion. Zerbe et al. developed a distributed and

scalable image analysis framework and evaluated the gain in

processing time by applying it to a simple automatic quality

assessment of VSs, i.e., by classifying each tile of an image into

four sharpness categories: excellent quality, acceptable quality, to

be reviewed and defective quality [12]. For this task, the authors

used the well-known Tenengrad function to characterize the

image sharpness [13]. Haralick features (e.g., contrast and entropy

computed in a gray-level co-occurrence matrix) have also been

used as VS quality factors [10]. Recently, Hashimoto et al.

developed an image quality evaluation method based on a linear

combination of image sharpness and noise measurements [15].

This method evaluated a quality index based on either an

objective evaluation score, determined by comparing a perfect

reference image to its artificially degraded version, or a subjective

score given by human observers. These objective or subjective

scores were then used as targets to train a regression model. The

method efficiency was evaluated only on small regions sampled

from a single hematoxylin-eosin (HE)-stained mouse embryo slide

that was imaged by two different WSSs.

Similar features were also used in [16] for cytological VS

sharpness assessment. The authors proposed a complete automatic

workflow that resolves the challenging problem of imaging single-

layered cytological glass slides of sufficient quality. In-focus, single-

layered imaging is achieved through an iterative process involving

three steps: (1) semantic focusing, (2) imaging and automated

quality assessment, and (3) saving the image or returning to (1) if

the resulting VS is of poor quality. Semantic focusing (step 1)

ensures that the focus points target cells and thus avoid the

common artifacts encountered in a cytological glass slide. The

quality assessment procedure (step 2) relies on cell segmentation

and the computation of sharpness features on a sample of 200

isolated (or small clusters of) cells. Each cell or cluster of cells is

then classified as sharp or blurred by a support vector machine

(SVM). In step 3, the percentage of sharp cells is used to determine

whether the slide should be rescanned. The general problem of

correctly imaging a single-layered slide is more complex for

cytological samples than for histological samples because of the

higher variations in the 3D landscapes of cytological slides.

However, estimating the local sharpness of a histological tile can

involve particular problems due to the possible absence of tissue

borders or histological structure edges in the evaluated region (see

D - F, J - L in Figure 2). In contrast, the tiles from a cytological VS

have a high probability of displaying borders of isolated cells or cell

clusters in which the sharpness features are more sensitive. This is

particularly true for the semantic focusing technique introduced in

[16].

In addition to image sharpness or noise measurements, other

IQA methods have been proposed such as visual codebook-based

IQA and local dependency-based IQA [17]. These sophisticated

methods aim to solve a general and complex problem known as

non-distortion-specific IQA. This problem concerns images that

can be altered by multiple distortions, such as JPEG compression

artifacts, motion blur, focus blur, or the presence of white noise.

However, focusing blur remains an important distortion that can

affect VSs because other distortions are minimized by the

technology used in modern WSSs. Therefore, the present study

concentrates on the specific problem of sharpness evaluation for

large images in which the sole distortion considered is a blur due to

an incorrect (or suboptimal) focus during acquisition.

In the present study, we present various morphological and

staining patterns that are regularly encountered in research

activities applied to tissue-based biomarker evaluation [1,2,18,

19]. Figure 2 illustrates such a panel of tiles extracted from VSs,

with some presenting blurred regions. To significantly reduce the

operator time devoted to the VS review process, we developed

a supervised classification approach using multiple sharpness

features (which include or are similar to those used in [10,12,

15,16]) that identifies the blurred regions of a VS on a map. The

map thus efficiently informs the scanner operator regarding where

additional focus points are required (see Figure 1C).

In addition to tissue or slide defects (such as bubbles or tissue

folds), local focusing during WSI can be altered by other

characteristics. Indeed, local sharpness evaluation (conducted by

the scanner in small regions centered on the focusing points) is

more difficult for areas in which the tissue aspect is almost uniform

and presents very little texture (e.g., in the absence of tissue

borders, histological structure edges, or staining variations). We

thus applied and evaluated our methodology on large datasets in

order to cover different tissue aspects (in particular, the presence or

absence of histological structures) and staining patterns (excluding

fluorescence labeling) that can be encountered in HE and simple

IHC VSs. IHC VSs can present nuclear, cytoplasmic and/or

membranous expression of the targeted biomarkers. To the best of

our knowledge, this study is the first to analyze such a panel of

cases. This approach allows us to investigate whether the detection

of blurred regions is impacted by the presence of edges caused by

Figure 2. Examples of training samples. A - F. Examples of blurred
samples. G - L. Examples of sharp samples. A, B, C and G, H, I show
structured morphology (SM) samples. D, E, F and J, K, L show uniform
morphology (UM) samples. Each column corresponds to a different
staining pattern (HE, CS and NS, where CS includes membranous
staining samples). These illustrations show typical tiles included in the
training set.
doi:10.1371/journal.pone.0082710.g002

Blur Detection for WSI

PLOS ONE | www.plosone.org 3 December 2013 | Volume 8 | Issue 12 | e82710



histological structures in addition to contrast modifications caused

by IHC staining, which affect the high spatial frequencies used to

measure image sharpness.

Materials

1. Training samples
For training in the classification methods, 27 histological slides

of 4 or 5 mm thickness were digitized at 20X magnification

(0.46 mm/pixel) using the NanoZoomer HT Scan System

(Hamamatsu Photonics, Japan). This scanner uses the line-

scanning method (i.e., the slide is scanned by lines of 4096 pixels)

and time delay integration (i.e., each line is scanned 64 times and

averaged) to improve the signal to noise ratio. As mentioned in the

introduction, the image sharpness is evaluated on high-resolution

subregions of the VS, also denoted as tiles. We thus collected a

total of 48,000 tiles of 2006200 pixels sampled from the 27 VSs

taken at 20X magnification, which represented typical histological

samples. The tile size enabled us to target specific VS regions,

which presented different tissue and staining patterns and

displayed either sharp or blurred areas.

As detailed in Table 1 and illustrated in Figure 2, tiles were

sampled from VSs to account for two morphologic patterns:

structured morphologies (SM, i.e., presenting well-defined histo-

logical structures such as colonic glands) and unstructured

morphologies (UM, i.e., lacking clear histological structures such

as brain tissue). These morphologic characteristics were combined

with three staining patterns: HE, nuclear IHC (NS) and

cytoplasmic IHC (CS), presenting variable expression levels of

the targeted markers. We also included membranous staining

patterns in the CS category (see Figure 2H), considering that

(trans)membranous antigens, such as receptors, are also often

expressed in the cytoplasm (due to internalization and protein

trafficking).

The combination of morphologic and staining patterns resulted

in six categories (see Table 1). For each category, we selected 4000

blurred and 4000 sharp tiles from a panel of VSs showing the

patterns of interest (see Table 1). These different tile categories

were included in the supervised dataset to best represent the large

diversity of patterns that are encountered in HE and IHC slides.

2. Validation samples
To validate the method using independent slides, we selected

another 97 VSs from our daily routine and imaged from 4- or 5-

mm-thick tissue samples. For each slide, an expert randomly

selected up to 20 blurred tiles and up to 20 sharp tiles. This new

dataset of 3438 tiles (1462 from 39 HE slides and 1976 from 58

IHC slides) was then used as a validation set to estimate the

performance of the classification algorithms (see section 3). This

validation set included tiles that covered at least the six pattern

categories included in the training data. The tiles were sampled

from various tissue origins (e.g., skin, bladder, colon, pancreas,

brain tumor, liver, and thyroid) and various IHC markers (e.g.,

KI67, glucagon, insulin, IGF1R, E-cadherin, CD79A, FHL2,

GFAP, EGFR, HER2, etc.), including samples different from

those encountered in the training set (see Table 1).

In addition to quantitative validation, we illustrate an applica-

tion of this method to complete VSs (included in the independent

set of 97 VSs), as detailed in section 3.3.

Methods

1. Tile blur characterization
A set of 16 different blur features was determined per tile to

locally evaluate the image sharpness of histological VSs.

In [15], the authors presented two image analysis metrics:

sharpness (SH) and noise (NO). SH was computed for tiles that had

been converted to grayscale (i.e., the Y component of the CIE

XYZ color space). The gradient direction was determined for each

pixel whose gradient was larger than a threshold value (determined

by Otsu’s method [14]). The edge width (w) was defined as the

distance (in pixels) between the local minimum and local

maximum of the gradient. As described in [15], the edge width

is modified as follows:

Table 1. Tile origins.

Tissue morphology Hematoxylin and eosin (HE) Nuclear IHC (NS) Cytoplasmic IHC (CS)

(tissue; IHC marker) (tissue; IHC marker)

Blurred SM VS1: Endometrium VS1: Salivary gland; Ki67 VS1: Colon; E-cadherin

VS2: Parotid gland VS2: Salivary gland; Ki67 VS2: Bladder; CD34

VS3: Thyroid (Papillary carcinoma) VS3: Lymph node; Ki67

UM VS1: Brain VS1: Brain; Ki67 VS1: Brain; Galectin-1

VS2: Brain (Meningioma) VS2: Brain; Ki67 VS2: Pancreas; Glucagon

VS3*: Brain; Ki67

Sharp SM VS1: Endometrium VS1: Lymph node; Ki67 VS1: Colon; E-cadherin

VS2: Colon (Adenocarcinoma) VS2: Lymph node; Ki67 VS2: Colon; E-cadherin

UM VS1: Liver VS1: Brain; p53 VS1: Brain; Galectin-1

VS2: Joint (Synovitis) VS2: Brain; p53 VS2: Brain; VEGFR-1

VS3*: Brain; Ki67

SM = structured morphology; UM = unstructured morphology; HE = hematoxylin-eosin; IHC = immunohistochemistry; NS = nuclear staining; CS = cytoplasmic and/
or membranous staining. A set of 27 VSs was used with different tissue origins and different IHC biomarkers in the NS and CS categories. The VSs with an asterisk
correspond to different tissue pieces of the same VS (one tissue piece was blurred while the other was sharp). The CS category includes biomarkers with membranous
expression (e.g., CD34 and VEGFR-1). A total of 4,000 blurred and 4,000 sharp tiles were selected for each combination of morphology and staining pattern by targeting
specific regions in the VSs (as illustrated in Figure 2).
doi:10.1371/journal.pone.0082710.t001
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was then averaged across the tile to yield SH:
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1

N
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where wc(i) is the edge width of the i-th edge.

NO was computed by first subtracting a Gaussian-filtered (s= 2)

tile from the original tile. Using the resulting tile, NO was defined

as the mean square of the minimum difference between each pixel

and its eight nearest neighbors (in a 363 window). In contrast to

SH, NO is the average of the NO value determined for the

individual red, green and blue channels.

NO~
1

3RC

X3

c~1

XR

i~1

XC

j~1

min
k[fi{1,i,iz1g
l[fj{1,j,jz1g

(k,l)=(i,j)

I(k,l,c){G2(k,l,c)ð Þ2
� �

where I(i, j, c) and G2(i, j, c) are the intensity values of channel c

at row i and column j of the original and Gaussian-filtered tile

(with s= 2), respectively. R and C are, respectively, the numbers of

rows and columns in the tile (i.e., R = C = 200 in our

application).

We added three other features. The first two used the difference

image, (I - G2), generated during NO computation and computed

the mean value, or mean blur difference (MBD), and standard

deviation, or standard blur difference (SDBD), across the difference

image, respectively. The third feature is the mean value of the

gradient, or the mean gradient magnitude (MGM), of a Gaussian-

filtered tile (previously converted to gray-scale) with s= 0.5 (G0.5).
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Similar to SH and MGM, the following features were computed

for tiles converted to gray-scale. As suggested by [10], we

computed a set of Haralick features, namely, the correlation and

entropy features, computed on five gray-level co-occurrence

matrices (GLCM). For a given tile I of size n x m, the GLCM

computed for the offset (nx, ny) is defined as follows:

CDx, Dy(i,j)~
Xn

p~1

Xm

q~1

1, if I(p,q)~i and I(pzDx,qzDy)~j

0, otherwise

�

The normalized GLCM, labeled P, is obtained by dividing each

element of C by the sum of all the elements of C:

PDx, Dy(i,j)~
CDx, Dy(i,j)P

k,l

CDx, Dy(k,l)

The contrast feature is then calculated as follows:

HCDx, Dy~
XL

i~0

XL

j~0

(i{j)2PDx, Dy(i,j)

with L being the maximum possible gray value (for our images,

L = 255).

Similarly, the entropy is calculated as follows:

HEDx, Dy~
XL

i~0

XL

j~0

PDx, Dy(i,j) log (PDx, Dy(i,j))

For each tile in our database, we computed the contrast and

entropy values corresponding to the GLCMs for the set of offsets

(Dx,Dy)[ 1,0ð Þ, 1,1ð Þ, 0,1ð Þ, 2,0ð Þ, 0,2ð Þf g, resulting in ten Haralick

features.

For thoroughness, we also used the Tenengrad function (TGt), as

described in [12]. TGt sums the square of the gradient values

above a threshold t [13]. Because all of the tiles are the same size,

the difference between TG0 (i.e., TGt with t = 0) and MGM is that

the gradient is computed for the original and Gaussian-filtered

tiles, respectively. To prevent a strong correlation between the TGt

and MGM values, we altered the threshold of each tile by applying

Otsu’s method to the squared norm of the gradient of the tile.

All of the features had larger values for sharp images compared

to blurred images, with the exception of SH, which had larger

values for blurred images [15]. All image features were computed

in Python using SciPy [20] and the scikit-image image processing

toolkit [21]. For performance purposes, we optimized the

computation of the SH, NO, MBD, SDBD, MGM, HEDx,Dy and

TGt features by compiling the corresponding code to LLVM

bytecode using the Numba library [22].

To compare the discriminatory abilities of the 16 features

between sharp and blurred images, we used the h measure, a non-

parametric measure of effect size used to characterize the degree of

separation of two distributions. This measure is easily estimated by

U/mn, i.e., the Mann–Whitney U statistic divided by the product

of the two sample sizes [23]. This normalized statistic ranges

between 0 and 1, with values near 0.5 indicating similar

distributions and values near 0 and 1 indicating strong separation.

To simplify the comparison, we ranked the features by means of

their discriminatory ability (or separation degree) evaluated by

max(U/mn, 1-U/mn), which ranges between 0.5 (complete

distribution overlap) and 1 (no overlap).

Blur Detection for WSI
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2. Tile classification and model selection
We used two different approaches of supervised classification:

the decision tree (DT) approach, for which we tested three

different split criteria, and the SVM approach which has been

shown to be very efficient in cell classification [16] and for which

we tested different kernels and hyper-parameter values. As detailed

below, the DT approach enabled us to include feature selection in

the classification process. Another advantage of this approach is

that it generates relatively simple classification rules as a series of if-

then statements, which are easy to implement in a decision process

and are especially fast to apply in production (a particularly

beneficial property). We also tested the SVM, which is a powerful,

state-of-the-art algorithm with strong theoretical foundations that

is particularly well adapted for binary classification in a numerical

space [24]. This latter classifier enabled us to approximate the best

results we could expect for our classification problems. As detailed

below, for each classifier, we used a nested (5-fold x 5-fold) cross-

validation to choose the hyper-parameters (inner 5-fold cross-

validation) and to estimate the performance of the resulting model

(outer 5-fold cross-validation), as is usually recommended to avoid

overfitting [25].

The DT approach executes recursive partitioning of the feature

space until it identifies subspaces in which the training cases

predominantly belong to the same class (i.e., the majority class,

which is allocated to the corresponding subspace). The DT was

implemented using the classification tree module of the Statistica

package (StatSoft, Tulsa, OK), except when the complete training

set (i.e., grouping HE and IHC tiles) was considered. For this very

large set (48,000 tiles), we used the QUEST Classification Tree

software (version 1.10) [26]. These software packages allowed for

the testing of different split criteria (for recursive partitioning),

including univariate and multivariate split options. The univariate

options are based either on an exhaustive search evaluated by the

Gini index of node impurity [28] or on discriminant-based split

criteria (based on ANOVA and k-means in the case of quantitative

predictors, see [29]). The univariate split options resulted in a

selection of the most discriminating features. The multivariate

option determined a discriminant-based linear combination of all

of the quantitative predictors provided for the model. In addition,

minimal cost-complexity cross-validation pruning [28] was used to

generate the ‘‘right-sized’’ tree for each split criterion. The

complexity of a DT model is usually determined by its maximum

depth, i.e., by the maximum number of splits required to

determine the majority class in any region of the feature space.

Finally, outer cross-validation (with inner cross-validation pruning

performed on each training set) was used to evaluate the predictive

performance of each algorithm.

The SVM approach aims to identify the boundary that

represents the largest separation, or margin, between two classes.

Initially developed for linear separation, the method was extended

to solve non-linear problems by transforming the initial feature

space (using kernels) into a new space in which the classes are

(nearly) linearly separable [24]. Training a SVM classifier requires

the selection of a kernel type (and its parameters) and a soft-margin

parameter C, i.e., a penalty parameter for allowing some

classification errors inside the margin (for nearly linearly separable

classes in the transformed space). It can be shown that the SVM

classification rule is a function of a subset of the training data that

lie on the margin, i.e., the support vectors that determine the

complexity of the class boundary implemented by the model [24].

The SVM was implemented using the SVC (Support Vector

Classification) scikit-learn Python module [30]. A grid search was

performed to identify the optimal hyper-parameters set by cross-

validation. The grid search space was defined as

- kernels: { linear, rbf }

- C: {1, 2, 5, 10, 50, 100, 500, 1,000}

- c: {1025, 1024, 1023, 1022, 1021},

where c is the coefficient of the radial basis function (rbf) used as

the kernel [24].

Outer cross-validation was used to evaluate the predictive

performance of the optimal SVM classifier (defined by the set of

hyper-parameter values that gave the best predictive performance

in the inner cross-validation step).

As detailed in the results, the different classification algorithms

were trained with different feature sets as inputs. We thus

implemented a model selection process based on a trade-off

between the predictive performance (evaluated by means of nested

cross-validation, see above) and model complexity to favor both

accurate and quick decision-making in the application phase.

Candidate models were first selected on the basis of a tolerance of

0.5% applied to the best accuracy observed among all the

generated models. Among these successful candidates, we kept the

model(s) that required the lowest number of blur features for

computation (which is the most time-consuming task during the

application). If several models remained in the resulting selection,

we then chose the model with the lowest complexity, evaluated by

the maximum depth for the DT and by the number of support

vectors for the SVM. This complexity criterion also prevented

overfitting in the model selection [25].

3. Quality map production and VS annotation
The map image was initialized by thresholding the image at

0.1X magnification of the entire slide. In the image, each pixel

corresponds to a tile of 2006200 pixels at 20X magnification. To

avoid computing the features and classifying tiles outside the tissue

area, we first performed an Otsu thresholding procedure on the

map image. Pixels corresponding to tiles outside versus within the

tissue are were set to 0 versus 1. Tiles whose corresponding pixels

were set to 1 were extracted at 20X magnification to compute the

blur features and were then classified as being sharp or blurred. As

illustrated in Figure 3, this classification resulted in a raw map

showing black pixels (out-of-tissue area), grey pixels (sharp tiles)

and white pixels (blurred tiles). This raw map may be difficult to

interpret, especially in the case of scattered misclassification errors.

Therefore, a post-processing tool, known as an alternate sequential

filter [27] and consisting of a combination of a gray-scale

morphological closing followed by a gray-scale morphological

opening (with a 363 square as the structuring element), was

applied to smooth the raw map and to ease the work of the

operator. The contours of the blurred regions on the smoothed

blur map were converted to an annotation compatible with

NDP.View, the Hamamatsu annotation viewer. This conversion

enables one to outline the blurred regions on the navigable VSs

(Figure 3).

Results

1. Feature analysis and selection
Table 2 shows the ranking of the features (in decreasing order)

based on the discriminatory ability between blurred and sharp

tiles. The discriminatory indices were evaluated by max(U/mn, (1–

U)/mn) and ranged between 0.5 and 1 (see section 3.1). These

indices and their rankings were computed for the complete

training set as well as for the HE and IHC groups, taken

separately. The results in Table 2 demonstrate high discriminatory

ability for the HCDx,Dy family, followed by the gradient-based

features (MGM and TG), NO and the HEDx,Dy family. SDBD, SH

and MBD exhibit the weakest discriminatory ability. Interestingly,
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the feature ranking carried out for the complete training set is

equivalent to the ranking average for the HE and IHC groups.

This group distinction highlights some slight variations. For

example, TG is more discriminatory in the HE tile group, whereas

MGM is slightly more discriminatory in the IHC group.

Figure 4 details the data distributions of four discriminatory

features across the six pattern categories constituting the training

set. It should be noted that the level of discrimination between

sharp and blurred images allowed by these features can vary from

one category to another for a given staining group. These data

demonstrate the benefit of including these different patterns in the

dataset.

We also observed that the HCDx,Dy features obtained for the

different GLCMs were highly correlated among themselves

(Spearman’s rank correlation coefficients rS . 0.95 for all training

data). Even higher correlations were observed for the HEDx,Dy

features (rS . 0.98 for all training data). We thus selected the most

discriminant feature in each family (i.e., HC11 and HE10, cf. Table

2) for further analysis.

We ultimately kept a set of eight features (HC11, MGM, TG, NO,

HE10, SDBD, SH and MBD) to train the classification models.

Because some classification algorithms do not include a feature

selection process (see section 3.2), we trained the models with

different feature sets provided as input. To generate these feature

sets, we implemented a backward elimination procedure, which is

based on the discriminatory ability shown in Table 2 (i.e.,

beginning with the complete set and then removing the features,

one by one, from the least to the most discriminatory feature).

2. Supervised classification models
While detailed results are provided in the supplementary data

(Table S1), the top of Table 3 summarizes the characteristics of the

DT classifiers selected on the basis of their performance (evaluated

by nested cross-validation) and complexity (see section 3.2). This

table describes the results obtained with and without consideration

of the two staining groups (i.e., HE and IHC vs. ALL), together

with the results pooled for the two staining groups (see row

‘‘Pooled’’).

The accuracies (i.e., the percentage of correctly classified tiles) of

the HE and IHC classifiers were 98.11% and 96.38%, respec-

tively. Training only one classifier on all the data resulted in a

global drop of approximately 1% in accuracy and sensitivity (i.e.,

the percentage of blurred tiles correctly classified as blurred by the

classifier) (see lines ‘‘ALL’’ and ‘‘HE + IHC Pooled’’ in Table 3).

All of these classifiers (selected for providing a good trade-off

between accuracy and complexity) were trained with the Gini

(univariate) split criterion. The difference between the HE and

IHC classifier accuracies can be explained by the higher

heterogeneity encountered in IHC slides. In addition, HE staining

helps to introduce contrast in VSs because hematoxylin colors all

Figure 3. Application to complete HE and IHC VSs. The first row
shows the raw classification results obtained by classifying all of the
tiles constituting an HE and an IHC VS, by means of the HE-specialized
DT and the IHC-specialized DT (see results for details), respectively. Gray
or white pixels correspond to tiles classified as being sharp or blurred,
respectively. The second row shows the final blur map obtained after
grayscale morphological closing followed by an opening. In the third
row, the borders of the blurred (gray) regions identified in the map are
transferred as annotations on the VS view provided by our scanner
viewer. Magnified details for the small rectangles (see arrows) are
provided in the last line. In these two magnified fields (scale bar =
200 mm), the red lines indicate the boundary between a sharp and a
blurred region. The blurred region is located in the left-hand region for
HE and at the bottom for IHC.
doi:10.1371/journal.pone.0082710.g003

Table 2. Discriminatory ability of the blur features.

Feature Max(U/mn, 1-U/mn) Rank Mean Rank

ALL HE IHC ALL HE IHC HE-IHC

HC11 0.99032 0.99441 0.99228 1 1 1 1

HC02 0.99027 0.99350 0.99134 2 3 2 2.5

HC20 0.98866 0.99423 0.99118 3 2 3 2.5

HC01 0.98777 0.99117 0.98821 4 4 5 4.5

HC10 0.98600 0.98941 0.99020 5 5 4 4.5

MGM 0.98186 0.98523 0.98386 6 7 6 6.5

TG 0.97710 0.98530 0.97831 7 6 8 7

NO 0.97123 0.97845 0.98025 8 8 7 7.5

HE10 0.94974 0.94504 0.95993 9 9 9 9

HE01 0.94926 0.94264 0.95882 10 10 10 10

HE11 0.94299 0.93918 0.95236 11 11 11 11

HE02 0.93177 0.92389 0.94154 12 14 12 13

HE20 0.93088 0.92497 0.94046 13 13 13 13

SDBD 0.81631 0.92933 0.88149 14 12 14 13

SH 0.78591 0.81661 0.77058 15 15 16 15.5

MBD 0.72515 0.74058 0.85791 16 16 15 15.5

U = Mann-Whitney statistic, m = n = blur and sharp sample sizes.
ALL = complete training set (m = n = 24,000); HE = HE training set (m = n =
8,000); IHC = IHC training set (m = n = 16,000).
HC = Haralick contrast, MGM = mean gradient magnitude, TG = Tenengrad
function, NO = noise, HE = Haralick entropy, SDBD = standard deviation of
blur difference, SH = sharpness, MBD = mean blur difference.
doi:10.1371/journal.pone.0082710.t002
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cell nuclei in blue, whereas eosin stains most of the cell cytoplasm

(and other extracellular eosinophilic structures) in various shades

of pink (or even red). In contrast, IHC VSs mix IHC staining (with

variable locations) with hematoxylin counterstaining, making the

cell cytoplasm nearly invisible in areas in which the IHC

biomarker is not expressed (see Figure 2). This difference may

explain the increased difficulty for distinguishing between blurred

and sharp tiles in the IHC group.

We also tested the impact of training more specialized classifiers

for IHC VSs, one for nuclear staining and another for cytoplasmic

and/or membranous staining (denoted NS and CS categories in

Table 1, respectively). The accuracies of the selected classifiers (see

Table S1) were 96.68% (NS) and 97.34% (CS). Their pooled

performance (97.01%) was slightly higher than that of the IHC

classifier (see Table 3). However, the specialized NS classifier

required a computation of the eight blur features for the tiles (see

Table S1), instead of only three for the generic IHC classifier (see

Table 3). In addition, this generic classifier requires no distinction

between staining locations. This latter property is interesting for

future applications because subcellular antigen locations may vary

in a single VS (e.g., due to possible protein translocation between

the cell cytoplasm and the cell nucleus, as we observed in a

previous study [31]).

The six pattern categories constituting the training set enabled

us to identify which pattern(s) contributed the most to the

classification errors. When using the HE-specialized DT to classify

the HE tile group, the SM (structured morphology) pattern

exhibited the largest (but acceptable) misclassification rate (slightly

more than 2%, with a similar impact on the sensitivity), whereas

the tiles presenting an UM (unstructured morphology) pattern

were nearly always correctly classified (less than 1% of error) with

a sensitivity near 100% for the blurred tiles. It should also be noted

that the unspecialized DT strongly deteriorated the results for the

SM-HE tiles (classification accuracy of approximately 93% and

sensitivity of approximately 88%), whereas the results for the UM-

HE tiles remained nearly similar (with a slight decrease in

specificity). In the IHC group, the IHC-specialized classifier had

the greatest difficulty in correctly classifying tiles presenting a

combination of the UM pattern and the nuclear staining (NS)

location (approximately 6% of errors relatively equidistributed

between sharp and blurred tiles). In contrast, the UM-CS

combination presented the best classification rate (near 99%).

The two other categories (SM-NS and SM-CS) presented

Figure 4. Distributions of HC11, MGM, TG and NO values. The feature values are computed for the training set. The results distinguish blurred
and sharp tiles and are displayed by morphological patterns (structured vs. unstructured, i.e., SM vs. UM) in rows and staining types (HE, CS and NS) in
columns. The data are shown by the following markers: median (black squares), 25–75% percentiles (boxes), non-outlier minimum and maximum
(whiskers), and outliers (open dots).
doi:10.1371/journal.pone.0082710.g004
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intermediate error contributions. In contrast to the HE group, the

unspecialized classifier provided similar performances for all

categories in the IHC group, without particular deterioration.

For completeness, we compared the DT approach to the SVM,

a state-of-the-art classification approach. The SVM showed

slightly improved performances compared to the DT approach,

at the cost of a higher model complexity. Indeed, the best SVM

classifiers, which were separately trained on the HE and IHC

groups (with all of the features as input), exhibited classification

accuracies of 99.06% and 97.23%, respectively. However, these

two SVM models (kernel: rbf, C = 1000 and c = 0.0001) required

the computation of dot products with 510 and 2216 support

vectors, respectively, to classify a tile. Comparatively, the most

accurate DT models, which were generated with all of the features

as input, provided similar performances (i.e., 98.56% and 96.63%

classification accuracy, respectively) but with maximal DT depths

of only 6 and 8, respectively (see Table S1). These results imply

that DT algorithms provide very simple classification rules, which

allow for accurate and quick decision-making in tile classification.

In view of all these results, we therefore chose to use the DT

approach for blur detection application and selected the two

generic DT classifiers, one for each staining type (HE vs. IHC), as

described in Table 3. The resulting models were tested on an

independent set of VSs, as described in section 4.3.

3. Validation on an independent tile set and application
to entire VSs

We first verified that the ability to discriminate blur features was

conserved in the validation set of 3438 tiles. We obtained a

ranking similar to that previously observed for the training set (see

Table 2), with a decrease in the discriminatory indices, i.e.,

between 0.96109 for HC11 and 0.65573 for MBD (evaluated on a

much smaller dataset than the training set).

Table 3 (at the bottom) details the results obtained with the

selected HE and IHC DTs on this completely independent dataset

extracted from our daily routine in WSI and including samples vey

different from those used for classifier training (see section 2.2).

These results show an accuracy of near 90% for the two DTs (with

a better sensitivity in the case of the HE DT). As previously

observed on the training set, these performances decreased when

the unspecialized (ALL) DT was used (in particular, the sensitivity

for the HE tiles decreased to 82.54%).

In the final application (see Figure 3), all of the tiles constituting

a VS should be classified. A post-processing step that considers the

spatial consistency of the resulting tile labels (i.e., sharp or blurred)

is then applied, withdrawing scattered classification errors. We

found that this complete process takes approximately 15 minutes

per image (averaged for the 97 slides of the validation dataset).

After transferring blurry region borders as annotations in the VS

view, the operator then only needs to verify consistently blurry

regions to identify those that require additional focusing points to

improve the VS quality (as shown in Figure 1C). This information

may thus strongly reduce the manual reviewing time by focusing

the operator’s attention on regions identified as blurry and for

which the addition of new focusing points could be beneficial for

locally improving the VS sharpness. If the operator confirms that

the regions outlined in the VS are blurry, he/she can redistribute

the focusing planes and the focusing points around the blurry

regions and can then queue the slide for a rescan (see Figure 1C).

Discussion and Conclusions

Compared to the previous studies mentioned in the introduction

[10,12,15,16], the present study achieved the following objectives:

N considered various morphological and staining patterns usually

encountered in histological samples,

N developed an extended set of descriptive features and

evaluated their effective contribution, and

N evaluated the systematic performance of various classification

algorithms (i.e., DT and SVM approaches, various split

criteria for DT and kernels for SVM) using different feature

sets as inputs.

Table 3. Characteristics of the DT models selected on the basis of both their performance with the training set and their
complexity and results obtained on the validation set.

Set N tiles DT algorithm B -. S S -. B Accuracy Sensitivity (blurred) Features in DT model

Training

HE 16000 Gini criterion 115 188 0.9811 0.9856 HC11, MGM, TG, NO, HE10

IHC 32000 Gini criterion 567 592 0.9638 0.9646 HC11, MGM, TG

Pooled (HE + IHC) 48000 682 780 0.9695 0.9716 (HC11, MGM, TG, NO, HE10)

ALL 48000 Gini criterion 927 1006 0.9597 0.9614 HC11, MGM, TG, NO

Validation

HE 1462 HE DT 27 126 0.8953 0.9632

IHC 1976 IHC DT 99 104 0.8973 0.8919

Pooled (HE + IHC) 3438 HE DT or IHC DT 126 230 0.8965 0.9236

ALL 3438 ALL DT 211 173 0.8883 0.8720

Classification performances are shown in terms of accuracy (the percentage of correctly classified tiles) and sensitivity (the percentage of blurred tiles correctly classified
as blurred by the DT). Columns "B -. S" and "S -. B" show the number of false negative decisions (i.e., the blurred tiles classified as being sharp) and the number of false
positive decisions (i.e., the sharp tiles classified as being blurred), respectively. Concerning DT training, the classification performances resulted from a nested cross-
validation (5-fold x 5-fold) carried out either on the HE and IHC groups separately or on all of the training data (see column ‘‘Set’’). Columns "DT algorithm" and "Features
in DT model" describe the choices resulting from the model selection method (i.e., DT split criterion and selected features, respectively). All of the results leading to the
presented selections are detailed in the supplementary data (Table S1). Concerning the quantitative validation step, the models selected during the training step (see
column ‘‘DT algorithm’’) were applied to independent sets of tiles (see column ‘‘Set’’). The resulting classification performances are indicated as for training. The number
of tiles in each set is specified in column ‘‘N tiles’’. Rows ‘‘Pooled’’ indicate the results obtained by pooling the two previous rows (HE and IHC) to allow for comparisons
with the results in rows ‘‘ALL’’ below.
doi:10.1371/journal.pone.0082710.t003
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A statistical analysis of the blur features showed that the most

discriminatory features were the Haralick contrasts, followed by

the gradient-based features (MGM, TG), NO, and, finally, the

Haralick entropies. These properties were observed when consid-

ering the entire dataset and persisted in each of the IHC and HE

groups (in the training and validation sets). This feature ranking

resulted from univariate analyses and was confirmed from a

multivariate point of view by our classification results. Indeed, the

less discriminatory features (such as SBD, SH and MBD) were

systematically omitted in the best DT models. In addition, NO was

also discarded for classifying IHC VSs. Consequently, a method

that uses only the NO and SH features (such as in [15]) should be

less effective in distinguishing blurred from sharp image regions, in

particular in IHC VSs.

In the present study, we opted for a classification approach in

contrast to Hashimoto et al. who developed a regression model

[15]. This latter model requires training data with a quantitative

score to characterize tile sharpness. A thresholding step should

thus be added to distinguish between blurred and sharp tiles. We

preferred a more direct approach based on supervised tile

classification ("sharp" vs. "blurred"). Our approach directly

provides a binary result for each tile, which is easier and more

rapid to interpret by the operator than the score provided by a

regression model. As discussed below, our method includes an

additional post-processing step that considers the spatial consis-

tency of the resulting tile labels.

Concerning the classification algorithms, we observed no

significant performance improvement when using the SVM, a

powerful and state-of-the-art algorithm, when compared to the

DT approach. For this reason, we deemed it unnecessary to test

other state-of-the-art classification algorithms, such as the weak

classifier assembly [32] or random forest [33]. Indeed, these latter

algorithms generate more complex classification rules than DT,

whereas the expected performance improvement appeared to be

low. An increase in rule complexity would require more

computational resources and would slow the application phase

(which requires the classification of thousands of tiles).

Our analysis identified two efficient DT classifiers, one for HE

tiles and one for IHC tiles, based on a reduced number of features

(four for HE and three for IHC). We also observed that some tissue

patterns induced more difficulties in blurred tile detection. Hence,

the IHC tiles were more difficult to classify than the HE tiles, with

a particular contribution of UM-NS patterns (i.e., nuclear IHC

staining in unstructured tissue regions) to classification errors.

These data illustrate the effects of the combination of tissue

morphology and staining patterns on the ability to detect blurred

image regions. The DT results also indicate that different types of

blur features (such as those related to the co-occurrence matrix

and the image gradient) are required to accurately detect blurred

regions in VSs.

The application to complete VSs consists of generating a raw

classification map by using the appropriate (HE or IHC) DT. This

raw map is then submitted to post-processing to generate a

smoothed blur map that considers spatial consistency. Blurred

regions are then outlined on the (navigable) VSs, strongly easing

the VS review process. We designed the blur detection method to

begin with a batch scanning process. Blur detection of one slide

can be performed during the scanning of other slides. The WSS

operator does not have to wait until the end of the scan (of dozens

of slides) before reviewing each slide and rescanning if necessary.

To further automate the workflow, we also plan to integrate our

method with the scanner control routines through the use of the

application programming interface (API), such as that described in

[16]. We could enhance the first focusing step by implementing

semantic focusing that can detect tissue folds [34]. Finally, we

concentrated the present study on HE and simple IHC VSs.

Extensions to special histological staining and double IHC are also

included in future research plans.

Code Availability
The source code for the Python tool presented in this work can

be found at:

https://bitbucket.org/diapath/sharpa-lite.

Supporting Information

Table S1 Characteristics of the DT models produced
during the training phase. For each training set of tiles we

ranked the DT models according to their respective accuracy.

Column "Set" gives the name of the dataset used (HE =

hematoxylin and eosin, NS = nuclear staining, CS = cytoplasmic

staining, IHC = immunohistochemistry, ALL = complete

training set) and column "N" the number of tiles in the dataset.

Column ‘‘DT-Algorithm’’ indicates the split criterion used to

create the DT (Discri multi = discriminant-based multivariate

split, Discri uni = discriminant-based univariate split, Gini =

exhaustive search for univariate split evaluated by the Gini index

of node impurity). Column ‘‘Features’’ lists the set of features used

for training (HC = Haralick contrast, MGM = mean gradient

magnitude, TG = Tenengrad function, NO = noise, HE =

Haralick entropy, SDBD = standard deviation of blur difference,

SH = sharpness, MBD = mean blur difference). Columns "B -.

S" and "S -. B" show the number of false negative decisions (i.e.,

the blurred tiles classified as being sharp) and the number of false

positive decisions (i.e., the sharp tiles classified as being blurred),

respectively. The classification performances provided in column

‘‘Accuracy’’ resulted from a nested cross-validation (5-fold x 5-fold)

on each training set. For each dataset, we examined the DT

models whose accuracy was higher than the maximum accuracy

minus 0.005. DTs satisfying that condition are surrounded by a

bounding box. For these models, additional columns detail the

number of nodes in the tree (N nodes in tree), the number of tests

in the tree (N tests in tree), the maximum depth of the tree (Tree

depth), the number of features selected in the final DT model and

the corresponding set of ignored features. The DT model finally

selected is outlined in green (see main text for details).
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