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Abstract

An RNA-Seq experiment was performed using field grown well-watered and naturally rain fed cotton plants to identify
differentially expressed transcripts under water-deficit stress. Our work constitutes the first application of the newly
published diploid D5 Gossypium raimondii sequence in the study of tetraploid AD1 upland cotton RNA-seq
transcriptome analysis. A total of 1,530 transcripts were differentially expressed between well-watered and water-
deficit stressed root tissues, in patterns that confirm the accuracy of this technique for future studies in cotton
genomics. Additionally, putative sequence based genome localization of differentially expressed transcripts detected
A2 genome specific gene expression under water-deficit stress. These data will facilitate efforts to understand the
complex responses governing transcriptomic regulatory mechanisms and to identify candidate genes that may
benefit applied plant breeding programs.
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Introduction

Limited water resources are one of the major environmental
pressures impacting global crop production [1]. As climate
change and decreases in arable land place increasing strain on
available resources, it is essential to develop methods to study
abiotic stress and its influence on the growth and development
of the world’s major crops. Water-deficit influences a wide
range of plant processes, from whole-plant growth and
development to the molecular regulation of essential
transcriptional pathways, and thus significantly impacts both
plant physiology and metabolism. Characteristic responses of
water-deficit stress can include wilting, decreased
photosynthetic rate [2,3] and stomatal closure [4–6]. These
responses negatively impact carbon metabolism. The
production of reactive oxygen species (ROS) is also commonly
found in water-deficit stressed plant cells, where they may

destroy lipids and interact with major cellular signaling
pathways [7].

The effects of water-deficit stress to the aerial portions of
plants, including leaf, stem and flower tissues, have been well
documented [8–10]. Recent research emphasized downstream
effects of stresses to the integral root system, responsible for
water uptake, on all plant tissues [11]. One root response is
altered root architecture that may counter a change in soil
properties by decreasing the development of lateral roots
[12–14]. Degradation of lateral root amyloplasts is associated
with increased hydrotropism in the main root [12,15]. The effect
of the plant hormones abscisic acid (ABA), auxin, cytokinins,
and gibberellin on root responses during water-deficit stress
are also well-documented [8,16–18]. Thus, complex
mechanisms contribute to root tissue responses to water-deficit
stress [14,19–21]. These mechanisms are mediated by altered
gene expression profiles in rice (Oryza sativa L.) [22,23], pine
(Pinus pinaster Ait) [24] and maize (Zea mays L.) [25].
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One crop influenced by the global reduction in available
water resources is upland cotton (Gossypium hirsutum L.).
Cotton is one of the world’s most valuable crops, providing
much of the planet’s natural fiber for the global textile industry.
Although additional economic value is captured from
cottonseed and its associated products, cotton fiber represents
about 90% of cotton’s total economic value [26]. China, the
United States and India provide most of the world’s cotton, a
combined total of more than 15.9 million metric tonnes of
cotton lint and 30.4 million metric tonnes of cottonseed, a value
of 22.8 billion and six billion dollars in 2011, respectively
(FAOSTAT, www.faostat.fao.org). Environmental stresses such
as extreme temperatures, soil salinity and water-deficit stress
occur in these regions, further exacerbating population
pressure as the effects of global climate change continue.
Cotton is a warm-climate plant whose aerial tissues have
evolved mechanisms conferring moderate tolerance to water-
deficit stress [27–29]. An extensive root system also allows the
plant to adjust to varying soil moisture levels. Plant breeding for
water-deficit tolerance in cotton has resulted in a wide variety
of adapted genotypes throughout the world [29–31].

Molecular processes in response to water-deficit stress have
been studied at great length in cotton. Studies include the
evaluation of global gene expression changes occurring during
water-deficit in cultivated tetraploid cotton [18,22,32–34] and
the diploid relatives G. arboreum L. and G. herbaceum L.
[2,35–38]. Many of these experiments were conducted using
microarray or cDNA-AFLP gene expression approaches.
Although a number of significant changes in gene expression
resulting from water-deficit stress were identified in these
studies, the development of next generation sequencing
technologies (NGS) offer opportunities to more accurately
quantify those differences [39]. The recent publication of the
whole genome sequence of the cotton diploid relative
Gossypium raimondii Ulbrich [40] has expanded the use of
NGS as a tool to study cotton development.

In this study, we report the first application of the diploid G.
raimondii whole genome sequence and Illumina NGS
technology to pursue RNA-seq analysis of global gene
expression changes in field grown tetraploid cotton root tissue.
Several genes and major biochemical pathways were up
regulated in root tissue under water-deficit stress, confirming
the success of this technique for transcriptome evaluation of
tetraploid cotton species. Using NGS to assess global gene
expression patterns in polyploid plant species is complicated;
short reads found in several related loci can align to a single
transcript or be removed from analysis, impacting accurate
quantification of expression levels [41]. Gene duplication and
genome reorganization events contribute to such complexity. In
order to minimize the effects of genome complexity, we used
the new PolyCat annotation pipeline [42] which assigns
putative genome localization for many of the identified
differentially expressed transcripts. Our objective was to use
NGS to measure global gene expression profiles in field-grown
tetraploid cotton root tissues under water-deficit stress to
identify candidate genes for future research in molecular cotton
breeding. Our results will provide an improved understanding of

the putative transcriptional mechanisms involved in root
responses to water-deficit stress in this important global crop.

Materials and Methods

Ethics Statement
The field studies did not involve any human, animal, or

endangered species. The corresponding author is an Adjunct
Professor with North Carolina State University and has
unrestricted access to field research facilities.

Plant Materials
Root tissues from G. hirsutum cultivar ‘Siokra L-23’, selected

for its previously established high level of water-deficit
tolerance [27–29], were collected from field-grown plants under
water-deficit and well-watered conditions at the North Carolina
State University Sandhills Research Station near Jackson
Springs, NC, USA according to the method described by 18.
Roots were collected from three independent plants within
each of the two water treatments. Samples were harvested
during the third week of flowering on a single sample date,
when significant differences in xylem water potential of the
uppermost fully expanded leaves between treatments
occurred, as determined by a pressure bomb (Model 600, PMS
Instrument Company, Albany, OR). Plants were considered
water-deficit stressed when leaf water potentials were -2.0 MPa
or greater and well-watered when leaf water potentials were
-1.9 MPa or lower [43]. Average water potential of well-watered
and water-deficit stressed plants is presented in Table 1. Total
RNA was isolated as previously described [18,44] using the XT
buffer system with the addition of chloroform/iso-amyl alcohol
extraction and LiCl precipitation steps [45].

RNA-Seq library construction and sequencing
Six individual barcoded libraries were created with the

Illumina RNA TruSeq kit (Illumina) as per manufacturer's
instructions using 2 µg of total RNA from three individual root
RNA samples for each treatment. Library quality was assessed
with an Agilent Bioanalyzer 2100 (Agilent) and the
concentration of each individual library was calculated using
qPCR. Libraries were pooled together so that each barcode

Table 1. Leaf water potential values of upland cotton plants
used in RNA-seq evaluation.

Treatment Plant Leaf water potential (MPa)
Well-watered 1 -1.60
 2 -1.35
 3 -1.45
Water-deficit 1 -2.20
 2 -2.70
 3 -2.85

Leaf water potential values of selected upland cotton plants from both well-watered
and water-deficit treatments.
doi: 10.1371/journal.pone.0082634.t001
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was represented in equimolar amounts and sequenced in a
single lane of 50bp Illumina HiSeq 2000.

Read trimming and mapping
Reads were trimmed with Sickle (https://github.com/najoshi/

sickle) with a quality cutoff of 20. Genomic Short-Read
Nucleotide Alignment Program (GSNAP) [46] was used to map
reads to the G. raimondii 2.1 whole genome reference
sequence [40], with SNP-tolerant mapping using a SNP index
based on deep coverage of G. arboreum and G. raimondii, as
described in [42]. The "-N 1" option was used for GSNAP to
identify novel splice sites. Putative AT and DT genome
localization of the differentially expressed transcripts was
conducted using the PolyCat pipeline [42] which categorizes
and maps DNA sequence reads of allotetraploid G. hirsutum to
progenitor diploid genomes of G. arboreum (A2) and G.
raimondii (D5) [47–49].

Differential expression
The total count of mapped reads for each library was

converted to a CSV file and imputed into the DESeq (Version
1.9.12) package in R to test for significant differential
expression between water-deficit and well-watered treatments
[50] using a false discovery rate (FDR) of 5%. Data quality
analysis was conducted by calculating and visualizing the
Euclidean distance and principle component analysis of well-
watered and water-deficit treatment samples using the DESeq
(Version 1.9.12) package. Read count data was deposited in
the National Center for Biotechnology Sequence Read Archive
(NCBI SRA) (Accession No. PRJNA210770) and will be made
available through CottonGen.

Functional annotation
Significant differentially expressed transcripts identified by

DESeq analysis, and additional splice variants identified from
the Gossypium raimondii v. 2.1 sequence [40] in Phytozome
[51], were further evaluated for functional gene ontology
annotation using default parameters in Blast2Go software [52].
Annotation was enhanced by merging the output of an
additional InterProScan [53] analysis with the initial BLAST
annotation so that additional transcripts without initial gene
ontology association could be functionally characterized. The
Blast2GO ANNEX program and an optional validation step
were used to confirmed sequence annotation for each
transcript [52]. Gene ontology enrichment analysis was
conducted using AgriGO [54]. Differentially expressed
transcripts with Kyoto Encyclopedia of Genes and Genomes
(KEGG) Orthology IDs provided by Phytozome were mapped
to specific pathways using the “Search and Color” Pathway
tool, searching against the reference pathway (KO).

RT-qPCR RNA extraction and cDNA synthesis
Due to limited tissue amounts of the samples used for RNA-

seq, root tissues were harvested from additional plants grown
in the same plots and experimental conditions. Tissues were
flash frozen in liquid nitrogen and stored at -80°C until being
processed for RNA extraction. Individual root tissues from each

plant per treatment were homogenized in liquid nitrogen and
total RNA was extracted from 100 mg of homogenized tissue
using the Spectrum Plant Total RNA kit with the On-Column
DNase I Digest Set column DNAse (Sigma Aldrich) according
to the manufacturer’s protocol. RNA was quantified using a
NanoDrop spectrophotometer (ThermoFisher Scientific) and
quality was examined using the Bioanalyzer 2100 (Agilent,
Santa Clara, CA). A no-reverse transcription control on all RNA
samples was used to determine DNA contamination using G.
hirsutum alpha-tubulin (TUA11) gene (Gorai.010G125700), a
reference gene identified from the RNA-seq data in this study.
cDNAs were synthesized from 1 µg of total root RNA using the
SuperScript® III First-Strand Synthesis SuperMix (Invitrogen)
kit according to the manufacturer’s specifications. cDNA was
diluted 10-fold for use in RT-qPCR reactions. Synthesized
cDNAs were stored at -20°C.

RT-qPCR
Transcript sequences from G. raimondii were used in NCBI

BLAST to identify the closest G. hirsutum sequence for primer
design. Primers were designed using NCBI-Primer BLAST and
diluted to a concentration of 5µM (Table 2). Template DNA for
primer efficiencies was obtained through PCR using the
primers specifically designed for RT-qPCR. PCR products were
purified from agarose using the Wizard SV Gel and PCR Clean
Up System (Promega) and DNA was quantified using the
Qubit® dsDNA HS Assay Kit (Invitrogen). Two independent 10-
fold dilutions of DNA for each dilution series were split into
three reactions (12.5 µl per well). RT-qPCR was performed
using Maxima SYBR Green/Rox qPCR Master Mix (2X) and
the iCycler PCR Detection System with the standard two-step
amp + melt protocol (Bio-Rad). Efficiencies were calculated
using the protocols as described by 55,56.

To confirm that each primer set used in RT-qPCR was
accurately amplifying the correct G. hirsutum sequence, each
purified PCR amplicon was cloned using either the TOPO Zero
Blunt or TA Cloning Systems (Invitrogen), with OneShot Top10
competent cells (Invitrogen). PCR amplification using T3/T7
primers was used to confirm fragment insertion and correct
orientation. Four individual colonies were bi-directionally
sequenced as previously described in [44]. Sequence
evaluation of inserted amplicons was conducted with Geneious
software version 6.1 (Biomatters Ltd.) and homology-based
BLAST search of amplicons was used to confirm sequence
identity.

RT-qPCR was performed in duplicate 12.5 µl volumes with
cDNAs from two independent cDNA superscript reactions and
Maxima SYBR Green qPCR Master Mix (Fermentas). All
reactions were analyzed with the iCycler Real Time PCR
Detection System (Bio-Rad) with the default two-step
amplification plus melt curve protocol for each reaction (Bio-
Rad). Target transcripts included mRNA from ten genes
identified as differentially expressed between water-deficit and
well-watered treatments according the DESeq analysis of RNA-
seq data. Transcript Gorai.012G141300 was selected internally
from the RNA-seq data as a reference transcript and validated
using the RefFinder program http://www.leonxie.com/
referencegene.php). Relative Expression Ratios (RER) were
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calculated using the ΔCt method [55]. RT-qPCR protocols
followed the MIQE guidelines [57].

Results

Total number of sequenced reads
To assess global transcriptome changes occurring in the root

tissue of tetraploid upland cotton during water-deficit stress,
total RNA samples from three individual cotton plants of the
cultivar Siokra L-23 under both water-deficit and well-watered
conditions were used to create six independent libraries that
were sequenced using the Illumina HiSeq 2000 sequencing
platform. Approximately 109.6 million 50 bp reads from all six
libraries were trimmed with Sickle and mapped to 33,930
transcripts from the G. raimondii 2.1 whole genome reference
sequence [40]. Over 90% of identified transcripts had between
0 and 1000 mapped reads. Fifty percent of transcripts had
fewer than 100 mapped reads, 50% of transcripts had more
than 100 reads, and 7 % had more than 1000 mapped reads.
Data quality was assessed using heatmap visualization of
Euclidean distances and principle component analysis of all
samples, conducted using DESeq (Version 1.9.12) [50] (Figure
1).

Global Transcriptome Changes during Water-Deficit
Stress

The total number of mapped sequenced reads for all
identified transcripts was used for differential expression
analysis in DESeq with an FDR of 0.05. A total of 1530 genes
were either up or down regulated between water-deficit and
well-watered upland cotton root samples. Of those 1530 genes,
913 were up-regulated under water-deficit stress and 617
down-regulated. A subset of differentially expressed genes is
shown in Figure 2. Differentially expressed genes were
distributed across all 13 chromosomes in the diploid progenitor

genome of G. raimondii, determined by Gorai transcript IDs
provided by Phytozome [40] (Figure 3). Several genes
identified by a previously published gene expression study
using cDNA-AFLP [18] were also found by RNA-seq. Although
the total number of differentially expressed genes was different
between the studies (304 in cDNA-AFLP and 1530 in RNA-
seq), similar transcripts were involved in water uptake, heat
stress and carbohydrate metabolism, including aquaporin water
uptake protein PIP 1;3, Heat Shock Protein 26, and
mannose-6-phosphate isomerase.

Functional annotation of differentially expressed
transcripts

Following differential expression analysis with DESeq, all
significant transcripts and associated splice variants, a total of
2942 transcripts, were annotated using the Blast2Go
application [52] . Of the 2942 total sequences, 2416 were
successfully annotated; 102 genes were not analyzed because
they exceeded the maximum size allowance (>8000bp) and 74
had no sequence homology in BLAST. After enhancing the
annotation by including the results of an InterProScan
database search and the ANNEX augmentation procedure, 112
additional annotations were added and 1821 annotations were
confirmed.

Genome localization of differentially expressed
transcripts

NGS and gene expression analyses are complicated in
polyploid plants [58–61]. In order to putatively identify genome
localization of the 1530 differentially expressed transcripts
identified by RNA-seq, we used the PolyCat read mapping
pipeline [42]. PolyCat uses SNPs identified between the related
diploid genomes of G. arboreum (A2) and G. raimondii (D5) to
map total NGS reads to either the A genome (AT) or D genome
(DT) of the allopolyploid (AD1) G. hirsutum. Genes up-regulated

Table 2. RT-qPCR target and reference gene primers for RNA-seq confirmation.

Genename  
G. raimondii transcript
name  G. hirsutum sequence with greatest homology Forward (5'-3') Reverse (5'-3')

GhPIP1;8 Gorai.013G019300 Gossypium hirsutum cultivar des119 aquaporin PIP1;8 GTTTTCAGAGAGGCAACCTA CCCAGCTCTATAAAAGGACC
GhAQP1 Gorai.003G158100 Gossypium hirsutum aquaporin 1 (AQP1) TGGTTGTTAAGTGGGTGAAA TAGTCCTTGTCTGTTTGAGC
GhNIP6;1 Gorai.009G124500 Gossypium hirsutum aquaporin (NIP6.1) TCTCACTCACAAGAAAGGTG ATCAGAGTTTCAGAGCCTTG
GhPIP2;8 Gorai.009G107200 Gossypium hirsutum PIP protein (PIP2;8) ATTTGTGGTTGTGGGTTAGT CAACCCAGTTCCCTTATTGA
GhTIP2;3 Gorai.003G064000 Gossypium hirsutum cultivar TM-1 aquaporin TIP2;3 GCATCTTTTACTGGATTGCC GATGATCTCCATCACCACTC

GhPOD6 Gorai.012G141300
Gossypium hirsutum bacterial-induced class III peroxidase
(pod6)

GCTCGTGATTCTGTAGTTCT CTGCAAATTTTTGCTTCTGC

GhPOD9 Gorai.004G265900 Gossypium hirsutum POD9 precursor (pod9) CAAACACACTCAAACAACGA TCTTGGTCTGTTTGAAGCAA
GhLea3 Gorai.007G199900 Gossypium hirsutum dehydrin (Lea3-D147) gene GGACTGAAACAGAGGCTAAA CCATCACTCCTTTCTTCTCG
GhCloMX Gorai.002G078800 Gossypium hirsutum clone MX019A11-jhj ATCAGGCTTAGAAACACAGG ATCTTCCTTTCCATGTTCCC
GhLOX1 Gorai.006G238200 Gossypium hirsutum bacterial-induced lipoxygenase (Lox1) ATCCTATCAAGGCATTCGTC TCTCTACAATCCGTTCCTCT
GhTHIA Gorai.009G176400 Gossypium hirsutum thiazole biosynthetic enzyme ATGGACATGATCACCTATGC AACAGACTGCTCGACAATAG
GhTUA11 Gorai.010G125700 Gossypium hirsutum alpha-tubulin (TUA11) TTGGGATCTTTGTTGTTGGA GTTCAAGAAGCGAATGAGTG

Target and reference gene primers for RT-qPCR confirmation of RNA-seq results in tetraploid upland cotton. Primers were designed using NCBI-BLAST and diluted to 5 μM
with annealing temperatures at 55 °C.
doi: 10.1371/journal.pone.0082634.t002
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under water-deficit predominately contained AT genome
specific reads, with 407 (44.6%) of both the water-deficit and
comparative well-watered transcripts having a majority of reads
that mapped to the AT genome. Genes down-regulated in
water-deficit were more evenly distributed, where transcripts

from both treatments were comprised of reads mapping to
either the AT (225, 36.5%) or DT (217, 35.4%) genomes. Only
two (0.2%) of the up-regulated transcripts contained reads
mapping only to the AT genome, and three (0.3%) transcripts
contained reads mapping only to the DT genome. Only five

Figure 1.  Data quality evaluation of mRNA-seq data.  A) Measurement of Euclidean distances and B) Principle Component
Analysis (PCA) of all samples to assess data quality. Color key indicates level of similarity between libraries. Analysis was
conducted using DESeq (Version 1.9.12) [50]. .
doi: 10.1371/journal.pone.0082634.g001
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(0.8%) genes down-regulated under water-deficit stress had
reads that mapped to the AT genome only, and five transcripts
were comprised of reads that mapped only to the DT genome.
Of the total number of differentially expressed transcripts
identified by RNA-seq, 101 could not be associated with a
specific genome within tetraploid cotton (Table 3).

Gene ontology
Gene ontologies most highly represented for molecular

function were “catalytic activity (1176)”, “binding (1196)”,
“transporter activity (164)” and “nucleic acid binding
transcription factor activity (189)”. Gene ontologies for cellular
component were “cell (1664)”, “organelle (1142)” and

“membrane (720)”. Gene ontologies for biological process were
“metabolic process (1317)”, “cellular process” (1371), and
“response to stimulus” (871). Not surprisingly, many of the
enriched biological process ontology terms were “response to
temperature stimulus (P-value: 1.40E-10), “response to high
light intensity” (P-value: 1.70E-09), “response to heat” (P-value:
4.40E-09) “response to water (P-value: 3.2E-05)” and
“response to water depravation (P-value: 6.2E-05)”. Enriched
molecular function terms were “glycogen debranching enzyme
activity” (P-value: 7.80E-08), “hydrolase activity, hydrolyzing O-
glycosyl compounds” (P-value: 0.00022), “transcription
regulator activity” (P-value: 0.00035) and “hydrolase activity,
acting on glycosyl bonds” (P-value: 0.00064). Enriched cellular

Figure 2.  Visualization of thirty most differentially expressed genes.  Hierarchical clustering and heatmap visualization of the
thirty most differentially expressed genes between well-watered and water-deficit treated upland cotton root samples, using variance
stabilization with a FDR of %5 using DESeq (Version 1.9.12) [50]. Color key indicates transcript abundance for each gene.
doi: 10.1371/journal.pone.0082634.g002
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component were “protein serine/threonine phosphatase
complex” (P-value: 0.0048), “stromule” (P-value: 0.0066) and
“anchored to membrane” (P-value: 0.015).

KEGG pathway analysis
The primary pathways impacted in root tissue of upland

cotton plants during water-deficit stress were starch and
sucrose metabolism (109 sequences, 23 enzymes), glycolysis-
gluconeogenesis (37 sequences, 11 enzymes), amino sugar
and nucleotide sugar metabolism (35 sequences, 14 enzymes),

and galactose metabolism (31 sequences, 14 enzymes). Other
major plant pathways impacted included flavonoid biosynthesis
(15 sequences, 6 enzymes), carotenoid biosynthesis (9
sequences, 2 enzymes), and oxidative phosphorylation (8
sequences, 2 enzymes) (Figure 4).

RT-qPCR of specific genes of interest
To further investigate the expression patterns of specific

genes of interest from the RNA-seq experiment, we conducted
RT-qPCR using 10 transcripts, representing a range in the

Figure 3.  Chromosomal distribution of all differentially expressed transcripts.  Distribution of differentially expressed
transcripts, as determined by the alignment of G. hirsutum RNA-seq reads to the thirteen chromosomes of diploid relative G.
raimondii.
doi: 10.1371/journal.pone.0082634.g003
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number of reads per transcript, that were associated with
specific aspects of stress physiology and water transport.
Transcripts were also selected based on availability of G.

hirsutum EST sequence, to simplify primer design and
amplification in tetraploid cotton. Of the 10 transcripts selected,
six (60%) were expressed in the pattern identified by RNA-seq.

Table 3. Putative genome localization of transcripts according to the PolyCat annotation pipeline.

Total up-regulated transcripts AT both DT both AT Water-Deficit, DT Well-Watered DT Water-Deficit, AT Well-Watered AT only DT only None
913 407 315 72 74 2 3 40
Percentage of Total 44.6 34.5 7.9 8.1 0.2 0.3 4.4

Total down-regulated genes AT both DT both AT Water-Deficit, DT Well-Watered DT Water-Deficit, AT Well-Watered AT only DT only None
617 225 217 50 54 5 5 61
Percentage of Total 36.5 35.2 8.1 8.8 0.8 0.8 9.9

Putative genome localization of water-deficit stressed and well-watered associated transcripts based on SNP evaluation and comparison to diploid progenitor genomes,
according to the PolyCat annotation pipeline [42]. “Both” denotes transcripts in which both water-deficit stressed and well-watered reads predominantly mapped to a specific
genome, “AT Water-Deficit, DT Well-Watered” and “DT Water-Deficit, AT Well-Watered” denote those transcripts in which the predominant genome differed by treatment, “AT

only and DT only” denote genes for which all reads mapped to a specific genome for both treatments. “None” denotes transcripts that could not be associated with a specific
genome.
doi: 10.1371/journal.pone.0082634.t003

Figure 4.  KEGG pathway visualization of starch and sucrose associated differentially expressed transcripts.  KEGG search
and color pathway analysis of significant differentially expressed transcripts in starch and sucrose metabolism pathways in upland
cotton root under water-deficit stress. Enzymes coded red are up regulated under water-deficit, blue genes are down regulated, and
purple genes denote the reference pathway.
doi: 10.1371/journal.pone.0082634.g004
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These six encoded thiazole biosynthetic enzyme (THIA),
plasma membrane intrinsic aquaporin proteins PIP1;3 and
PIP2.8, dehydrin (LEA3-D147), clone MX019A11-jhj (CLOMX),
and bacterial-induced lipoxygenase (LOX1). In contrast, four
genes (40%) had RT-qPCR gene expression patterns that
differed from RNA-seq results, and were not differentially
expressed between treatments. These were aquaporins
PIP1;8, NIP6;1, and TIP2;3 and peroxidase precursor POD9.
Overall, a majority of transcripts selected for RT-qPCR were
expressed in the same manner as identified using RNA-seq
(Figure 5).

Discussion

Cotton is a major crop with global economic significance that
requires specific environmental factors suitable for plant
growth, development and production. As global climate change
continues to increase demand for the world’s water resources,
it is essential to identify approaches to improve our
understanding of how crop plants including cotton respond to
water-deficit stress. In the present study, we applied NGS
technology to profile transcriptome changes in root tissue of
upland cotton undergoing field water-deficit stress. A total
number of 1530 differentially expressed genes were identified.
In contrast from a previous study that found more genes to be
down-regulated [18], most transcripts were up-regulated under
water-deficit stress. To our knowledge, this is the first published
use of the G. raimondii whole genome sequence and RNA-seq
to measure transcriptome differences in field grown, tetraploid
cotton. With this approach we have identified gene expression
changes in root tissues under water-deficit stress, and many
will serve as potential targets for future research and the
development of molecular breeding tools for cotton breeding
programs.

Many biochemical pathways are associated with root
response to water-deficit

Results of the present study generally confirm previously
identified biochemical mechanisms modulating the adaptation
of cotton to water-deficit stress and demonstrate the utility of
our methods in cotton genomics. Specifically, the induction we
observed in genes associated with starch and sugar
metabolism is similar to results obtained by other researchers
[18,22,32–34] (Figure 4). As root tissues undergo water-deficit
stress, increases in carbohydrate metabolism and other
osmolyte concentrations alter the osmotic potential of the cell
[9]. Water-deficit also induces several hormone responses,
including cytokinins, auxin and abscisic acid [8,16–18].
Abscisic acid is an important signaling molecule in the
development of root system architecture under water-deficit
[12,14,62]. Genes upstream and within the abscisic acid
pathway can be up-regulated under water-deficit and one gene
specifically, β-carotene hydroxylase, has been shown to be
induced under water-deficit stress [63]. The detection of the up
regulation of the carotenoid biosynthesis ABA precursor gene
9-cis-epoxycarotenoid dioxygenase (NCED) and ABA pathway
gene ABA 8'-hydroxylase in this RNA-seq data set identifies

target candidate genes for further studies of water-deficit
tolerance in the root system of upland cotton.

Other plant responses to water-deficit stress involve proteins
responsible for cellular water uptake. Aquaporins are a large
major intrinsic protein family consisting of 71 members in
cotton [44] that have been shown to facilitate the movement of
water and other small molecules across cell membranes
[18,44,64]. Our results confirm differential aquaporin gene
expression in response to water-deficit stress, as has been
observed in many plant species, including cotton [18,65–68].
Specifically, we observed differential expression of aquaporin
genes in both RNA-seq and RT-qPCR. These examples serve
as additional evidence for the potential role of aquaporin
expression in mediating water deficit stress tolerance in cotton
root tissues.

Putative genome localization of water-deficit related
genes in tetraploid cotton

Many agriculturally important plant species, such as wheat
(Triticum aestivum L.), potato (Solanum tuberosum L.), and
sugarcane (Saccharum officinarum L.) are polyploid [60].
Polyploidzation makes NGS technologies (such as RNA-seq)
challenging. NGS depends on read mapping in which large
amounts of nucleotide sequence are associated with genome
localization; however, due to gene duplication and genomic
restructuring events common in polyploids, it is difficult to
accurately map reads to their genome of origin [41,42,58,69].
The development of annotation pipelines capable of assigning
tetraploid transcript reads accurately to related diploid
genomes is a significant improvement in the effort to assess
gene expression in polyploidy plant species. In this study, we
employed the use of PolyCat, a new NGS annotation pipeline
capable of assigning reads from tetraploid G. hirsutum (AD1) to
progenitor diploid A2 genome G. arboreum and D5 genome G.
raimondii. Putative genome localization was provided by the
comparison of SNP data from the sequence of the progenitor
genomes to the NGS reads created by this study.

Gene expression responses to water-deficit stress have
been studied extensively in a variety of cotton tissues
[18,28,29,32,35,36]. While informative, to our knowledge, no
previous study has reported potential genome specific
responses to water-deficit. A majority of transcript reads
mapped to the AT genome among genes that were up-
regulated in response to water deficit; while genes that were
down-regulated were represented evenly by both the A and D
genomes. The up-regulation of AT genome-specific transcripts
indicates the importance of the A genome diploid relative G.
arboreum in water-deficit response, which has been previously
identified to be a source of other stress-related genes [36–38].
Interestingly, transcripts from several genes that were either
up- or down-regulated under water-deficit stress had reads that
mapped to a single genome. Further investigation of these
genome-specific transcripts is called for among AT and DT

specific responses to water-deficit stress in tetraploid cotton.
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Figure 5.  RT-qPCR confirmation of RNA-seq results.  RT-qPCR confirmation (left Y-axis, green bars) and normalized RNA-seq
read count values (right Y-axis, purple bars) of differentially expressed genes between well-watered and water-deficit treatments.
RT-qPCR was calculated using the ΔCt method [55]. Error bars represent standard error of genotype means.
doi: 10.1371/journal.pone.0082634.g005
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Future considerations for transcriptome evaluation in
tetraploid cotton

This study represents the first reported use of NGS
technologies in combination with the recently published G.
raimondii sequence to evaluate differential transcriptome
profiles in upland cotton. Over 1500 genes were differentially
expressed between water-deficit stress and well-watered root
treatments. Expression patterns for genes associated with
sugar metabolism, ABA synthesis, and water uptake were
similar to those found in other published reports of gene
expression analyses under water-deficit stress. Substantial up-
regulation of genes associated with water-deficit, including
those associated with responses to changes in temperature,
high light intensity, heat, and water was detected in concert
with gene ontology enrichment analysis with AgriGO [54].
Transcriptome profiling of tetraploid cotton using the G.
raimondii published sequence successfully detected global
gene expression changes during water-deficit stress. However,
further considerations should be made when choosing genes
for RT-qPCR analysis, as a majority of genes assayed by RT-
qPCR had very low read count values. Very low read counts
may exceed the level of accurate detection by the RT-qPCR or
by other statistical methods [70–72]. Additionally, evaluating
highly- conserved gene families, such as the aquaporins, may
be more complicated due to gene duplication and sequence
similarity, and this should be considered prior to evaluation
[41]. Further comparison of RNA-seq studies using alignments
to both the G. raimondii diploid genome and G. hirsutum
transcriptome sequence, as it becomes more available, will be
of significant interest.

Conclusions

Differentially expressed transcripts were associated with the
up-regulation of important biochemical pathways needed for

cellular osmotic balance, abscisic acid and cellular water
uptake. Similar results from water-deficit stress research with
microarray and cDNA-AFLP confirm the use and accuracy of
this technique for future research in cotton genomics. An
additional analysis of genome localization based on available
SNP data identified AT up regulation of genes in response to
water-deficit, the first discussion of a high throughput
sequencing approach to quantify water-deficit responsive
genome expression patterns within tetraploid cotton. Results
from this study advance our current understanding of water-
deficit response in the root tissue of upland cotton, opening
new areas of research in cotton breeding and genomics.
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