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Departamento de Engenharia de Produção, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil

Abstract

We deal here with the issue of complex network evolution. The analysis of topological evolution of complex networks plays
a crucial role in predicting their future. While an impressive amount of work has been done on the issue, very little attention
has been so far devoted to the investigation of how information theory quantifiers can be applied to characterize networks
evolution. With the objective of dynamically capture the topological changes of a network’s evolution, we propose a model
able to quantify and reproduce several characteristics of a given network, by using the square root of the Jensen-Shannon
divergence in combination with the mean degree and the clustering coefficient. To support our hypothesis, we test the
model by copying the evolution of well-known models and real systems. The results show that the methodology was able
to mimic the test-networks. By using this copycat model, the user is able to analyze the networks behavior over time, and
also to conjecture about the main drivers of its evolution, also providing a framework to predict its evolution.

Citation: Schieber TA, Ravetti MG (2013) Simulating the Dynamics of Scale-Free Networks via Optimization. PLoS ONE 8(12): e80783. doi:10.1371/
journal.pone.0080783

Editor: Tobias Preis, University of Warwick, United Kingdom

Received June 11, 2013; Accepted October 7, 2013; Published December 6, 2013

Copyright: � 2013 Schieber, Ravetti. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The authors have no support or funding to report.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: tiagoschieber@eng-pro.dout.ufmg.br (TAS); martin.ravetti@dep.ufmg.br (MGR)

Introduction

The idea of understanding the principles driving the evolution

of complex networks has still a central place in the study of

complex systems. Even with huge amounts of information

available in the world, there are still many situations where access

to high quality data with specific properties is very difficult and

complicated. For example if we want to analyze the evolution of a

gene-network during the progression of a disease, we will probably

end with pieces of the puzzle, limited by the number of samples, or

a small number of snapshots of the network over time. If we want

to test an optimization algorithm to a specific network structure,

like a power grid or telecom network, is it possible to generate

instances with close-to-real characteristics, to help in the develop-

ment and the efficiency test of the methodology?

With these problems in mind, the goal of our work is to

introduce a novel model to analyze and reproduce complex

network evolution. With this model we are able to compare

different network dynamics, replicate them and even predict their

behavior.

The first attempt to capture and study a network’s evolution was

due to Erdös and Rényi in 1959 [1] and it is sometimes called

Classical Random Graph. The algorithm is based on a network

with a fixed number of nodes then allows the connection of two of

the nodes with probability p[½0,1�. The result is a network with

degree distribution taking a Poisson form.

In 1998 Watts and Strogatz [2] proposed a model that starting

from a regular network lattice in wich each edge can be rewired to

a randomly chosen vertex with a particular probability. After

rewiring a small group of edges the network rapidly changes its

topological properties as the average path length and its clustering

coefficient. At each step of the process, the probability is increased

and the network walks towards a random graph.

The first attempt to analyze the idea of growing networks

presenting scale-free features, was addressed by Barabási and

Albert [3] in 1999. They argued that the scale-free characteristic,

corresponding to a power-law degree distribution, was originated

by a concept known as preferential attachment, present in many

real networks. Basically, it consists in the idea that nodes with

higher degree tend to be more connected than nodes with lower

degree values. They presented a model that at each step, a new

node is included in the network and it connects to mw0 other

nodes to the network with probability: pi~
kiX

ki

, where, ki is the

degree of the node i and the summation is over all nodes of the

network. It can be proved that this network possess an average

degree equals 2m and a degree distribution following P(k)*k{3

[4,5].

The Barabási and Albert model can capture one mechanism

that generates a power law distribution but, when modeling real

networks, it has some drawbacks. For example, most real

networks, exhibits different exponents on the power law distribu-

tion (see [6] for a deeper discussion on the topic) and the clustering

coefficient of the generated network is usually lower than values in

real situations. In 2000, Dorogotsev and Mendes [7] proposed an

alteration on the preferential attachment equation. They ascer-

tained that in some systems the probability of a connection is not

only proportional to the node degree, but also depends on its age.

Since then, several modifications on preferential attachment have

been performed. In 2001, Barabasi et al. used direct measurements

on the available data of the social network of scientific

collaborations [8] and constructed a model that allows to
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investigate the large scale topology of the network and its

dynamical features. After that, increasingly sophisticated models

have been created (see [6] for deeper discussion on the topic).

In 2007, Goshal and Newman proposed a model that grows a

network with any desirable degree distribution [9]. This model has

some drawbacks because two networks with the same degree

distribution are not necessarily isomorphic. Also in 2007,

Leskovec, Kleinberg and Faloutsos created a model, called Forest

Fire Model, based on the observation that densification power

laws and shrinking effective diameters are properties that hold

across a range of diverse networks [10]. In 2008, Leskovec,

Backstrom, Kumar and Tomkins also created a model based on

generation of triangles in the network (triangle closure) using the

maximum-likelihood principle [11]. In 2010, Barthelemy pro-

posed the tree growth model with local optimization [12] where

spatial networks were considered. In 2011, Herrera and Zufiria

proposed a model that creates networks with adjustable clustering

coefficient via random walks [13]. In recent publications [14,15],

the discussion about the processes underlying the preferential

attachment is revisited and a new model based on the popularity

versus similarity was presented by Papadopoulos et al. [14]. One

of the main questions behind this discussion is about the role of

optimization in the organization and evolution of scale-free

networks.

In [16] a methodology was proposed to study the evolution of

small-world networks based on Information Theory quantifiers.

Following that research approach, we proposed a model that use

the square root of the Jensen-Shannon divergence embedded on

an optimization algorithm to capture the evolution of scale-free

networks. To test our algorithm three theoretical models are

explored, the Barabasi-Albert (BA) [3], the Herrera-Zufiria (HZ)

[13] and the popularity vs similarity model (PS) [14]. When

considering real world networks, the Infectious Socio-Patterns

dataset [17], the Online Forum Network [18], the UC Irvine

message network [19] and the Hypertext 2009 dynamic contact

network [17] are analyzed.

It is important to notice that our goal is to demonstrate that our

model/methodology is able to capture and reproduce the growing

process of a given network. With that objective in mind, we choose

three theoretical models and four real networks, to prove how well

our methodology performs. We are not suggesting the introduction

of a theoretical model to mimic a real network. The comparison

Figure 1. BA m = 2 evolution. Evolution of Barabasi-Albert (.) model for m~2 and the average values for 30 ensembles of Copycat model (o). (a)
Square root of the Jensen-Shannon values (the % represents the mean of the square root of the Jensen-Shannon divergence values between the
degree distribution generated by the CP model and the degree distribution of the BA network); (b) Average Path Length; (c) Clustering Coefficient; (d)
Transient Clustering Coefficient. For exact values and confidence interval, see Table S1.
doi:10.1371/journal.pone.0080783.g001
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with theoretical models was performed to have a controlled

experiment. The selected models are well known and studied.

Methods

Metrics
The degree of a node in a network is the number of edges

incident to it. Given a network, we can define a probability

distribution function (PDF) associated with the probability that a

randomly selected node has degree k. This PDF gives the spread

in the number of edges that a node has. Many real networks

exhibit a degree distribution following, at least asymptotically, a

power law P(k)*k{c,cw0 [4,5].

Regarding the Information theory quantifiers, Shannon entropy

measures the degree of heterogeneity of the network [20]. Its zero

value corresponds to the state of having complete knowledge of the

process (regular lattice). On the other hand, the maximum entropy

value occurs when our knowledge of the system is minimized. The

Shannon entropy of the degree distribution P(k) is defined by

S½P�~{
X

k
P(k)lnP(k) .

The Jensen-Shannon divergence (J ) is a measure of the

dissimilarity between two probability distributions. For two

probability distributions P1 and P2, the J is given by,

J½P1,P2�~S
P1zP2

2

� �
{

S½P1�
2

{
S½P2�

2
. However, in order to

obtain a real metric to quantify and compare states during a

network evolution we use J1=2, and fix as reference the uniform

distribution (PU ) [21,22]. The major importance in using the

uniform distribution as reference is that it presents the biggest

value for S and there is no network that exhibits this degree

distribution, thus, the network’s value will never cross through the

state characterized by this PDF as illustrates proposition 1.

Proposition 1 Given a network G with size N and degree distribution

P then:

J(P,PU )~{
1

2N
:
XN{1

k~0

Df (nk)zln(2), ð1Þ

where, nk is the number of nodes with degree k and

Figure 2. HZ p = 1 evolution. Evolution of Herrera-Zufiria (.) model for p~1 and the average values for 30 ensembles of Copycat model (o). (a)
Square root of the Jensen-Shannon values (the % represents the mean of the square root of the Jensen-Shannon divergence values between the
degree distribution generated by the CP model and the degree distribution of the HZ network); (b) Average Path Length; (c) Clustering Coefficient;
(d) Transient Clustering Coefficient. For exact values and confidence interval, see Table S2.
doi:10.1371/journal.pone.0080783.g002
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Readers can refer to File S1 or [16] for a deeper discussion on

the topic.

Here we propose the use of the square root of Jensen-Shannon

divergence to map the network evolution by the pair

(N,J1=2(P,PU )). Although different networks could, by proposi-

tion 1, exhibit same values of the Jensen-Shannon divergence, it

provides a remarkable help to characterize the network topology

in the sense that it could measure the distances between degree

distributions. Then, in order to capture the evolution of a network

we need additional information: the average degree and the

clustering coefficient.

One way to characterize the presence of triangles on the

network is through the clustering coefficient (C). There are two

different definitions of clustering coefficient: the first, also known

as transitivity [23], is defined by:

CT~
3:#D

#3

, ð3Þ

is the fraction of three times the number of triangles on the

network by the number of connected triple (three nodes

connected). The other one, is defined for each vertex of the

network as:

Ci~
3:#D(i)

#3(i)

where, #D(i) is the number of triangles involving vertex i and

#3(i) is the number of connected triples having i as the central

vertex. Thus, the global clustering coefficient, C, of the network is

the average of C(i) for every node i:

The Copycat Model
The model proposed here, from now on called the Copycat

model (CP) reproduces dynamical changes in the topological

properties, of a given network by considering the evolution of the

distance between its degree distribution and the uniform

distribution (reference).

Figure 3. PS m = 2 evolution. Evolution of Popularity vs Similarity (.) model for m~2 and the average values for 30 ensembles of Copycat model
(o). (a) Square root of the Jensen-Shannon values (the % represents the mean of the square root of the Jensen-Shannon divergence values between
the degree distribution generated by the CP model and the degree distribution of the PS network); (b) Average Path Length; (c) Clustering
Coefficient; (d) Transient Clustering Coefficient. For exact values and confidence interval, see Table S3.
doi:10.1371/journal.pone.0080783.g003
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By given the g(x), c(x), cT (x) and bJJ (x) functions that

respectively represent the mean degree, global clustering

coefficient, transitive clustering coefficient and distance to the

uniform distribution of a network with size x, the algorithm 1

creates a new random network that preserve the values of these

properties.

As input data, the algorithm also receives the initial network G0,

and the final number of nodes N which is also the highest the

network has in its evolution, considering the removal of nodes not

allowed.

At each iteration one node is added and, using a simple

computation procedure, it is decided how many links this new

node will gain to maintain the mean average degree. To choose

the nodes to which the new one is connected, the difference

between the distance J1=2(P,PU ) (new network to reference) and

the distance bJJ (x) (copied network to reference), is minimized. The

model chooses the node from a Restricted Candidate List (RCL),

this procedure is similar to a classic heuristic procedure to solve

combinatorial optimization problem called GRASP (Greedy

Randomized Adaptive Search Procedure) [24]. As the algorithm

randomly chooses a node to create the link, by controlling the

random number generator seed it is possible to create as many

different topologies which preserve the values of main properties,

as desired. The Algorithm 1 gives details about the methodology.

As it is possible to keep track of the degree distribution and by

proposition 1, it is not expensive to recompute the square root of

the Jensen-Shannon divergence.

After getting the information about the three theoretical models,

the Copycat Model was able to simulate their evolution,

maintaining complex network properties values. This type of

model opens a huge range of possibilities. It is possible to create

Figure 4. BA Graph vs One Ensemble. Graph representation of one ensemble of copycat model and the exact result for Barabasi-Albert Graph
(m = 2). The figure shows the histogram of degree distributions of BA and CP networks. G0 is the initial graph of CP model.
doi:10.1371/journal.pone.0080783.g004

Simulating Scale-Free Networks via Optimization

PLOS ONE | www.plosone.org 5 December 2013 | Volume 8 | Issue 12 | e80783



Figure 5. HZ Graph vs One Ensemble. Graph representation of one ensemble of copycat model and the exact result for Herrera-Zufiria Graph
(p = 1). The figure shows the histogram of degree distributions of HZ and CP networks. G0 is the initial graph of CP model.
doi:10.1371/journal.pone.0080783.g005

Figure 6. PS Graph vs One Ensemble. Graph representation of one ensemble of copycat model and the exact result for Popularity vs Similarity
Graph (m = 2). The figure shows the histogram of degree distributions of PS and CP networks. G0 is the initial graph of CP model.
doi:10.1371/journal.pone.0080783.g006
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specific functions (J(x)) to simulate changes in the system’s

evolution, simulate an sporadic event, and even create several

network instances to test special algorithms or approaches.

Figures 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 and Tables S1,

S2, S3, S4, S5, S6, S7 depict how the CP replicates the evolution

of studied models for a given set of parameters. It is noticeable that

some networks characteristics from the original networks remain

in a close range by the model’s network, without using this

information in the copycat procedure.

Data: G0, N, g(x), c(x), cT (x) ĴJ (x)

Result: Network topology with N nodes and the desired metric

values

for i = jG0j to N do

Compute the mean degree of the network, (Gi);

Add a new node;

m : ~max 1,t
(iz1):g(iz1){i:Gi

2
s

� �

while mw0 do
Create a list of candidates (RLC) with of nodes vj ,

such that if a connection between viz1 and vj is per-

formed, the difference between the distances of

their degree distributions to the reference is minimized

Randomly choose a node from RCL

m = m-1

Compute the clusterings coefficients of the resulting

network (Ci+1 and );

CT
iz1 Define d~jCiz1{c(iz1)j and dT~jCT

iz1{

cT (iz1)j;
if d§dT then

C�~C and c�~c

end

if dvdT then

C�~CT and c�~cT

end
if mw0 and C�iz1{c�(iz1)v0 then

Create a list of candidates (RLC) with of nodes vj

such that the distance

Figure 7. IS Evolution. Evolution of Infectious Socio-Patterns (.) network and the average values for 30 ensembles of Copycat model (o). (a) Square
root of the Jensen-Shannon values (the % represents the mean of the square root of the Jensen-Shannon divergence values between the degree
distribution generated by the CP model and the degree distribution of the IS network); (b) Average Path Length; (c) Clustering Coefficient; (d)
Transient Clustering Coefficient. For exact values and confidence interval, see Table S4.
doi:10.1371/journal.pone.0080783.g007
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between viz1 and vj equals 2, and the clustering

coefficient of the resulting

network, after connection viz1 and vj is performed,

possess its maximum

value;

Randomly choose a node from RCL;

m = m-1

end

end

end

Algorithm 1. Pseudo-code of the Copycat Model. The

algorithm receives as input parameters, an initial graph, the

number of nodes, the mean degree (g(x)), the average clustering

coefficient (c(x)), the transitive clustering coefficient (cT (x)) and its

distance to the reference to copy the evolution of the network

(J(x)). It is important to notice that the fastest convergence of the

mean degree and the average clustering coefficient to specific

values, allows us to use constant values instead of functions when

analyzing bigger networks.

Results and Discussion

Here we simulate the copycat model for three artificial networks

(BA, HZ and PS models) and four real networks: Infectious Socio-

Patterns (IS), Online Forum Network (OF), UC Irvine messages

network (UCI) and Hypertext 2009 contact network (HT). For

each network tested, the copycat model was run 30 times

independently (different seeds). These ensembles were generated

considering as the initial graph, G0, as the graph obtained by the

evolution network until 30% of its final size: for example, for the

BA graph we consider G0 as the graph obtained by the model until

size of 300 and then we copy its evolution until the size of 1000.

We then plot the average of the square root of Jensen-Shannon

Divergence values (J1=2), average path length (l – see [23] for more

details), global clustering coefficient (C) and transitive clustering

coefficient (CT ) as networks evolves over time and the average of

the result of the 30 ensembles of Copycat model approximation

(Figures 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14). Moreover, we

consider other networks characteristics: centrality measures [25],

diameter, average neighbor degree, graph energy, spectrum, link

density (see File S1 for more information) comparing the average

Figure 8. OF Evolution. Evolution of Online Forum (.) network and the average values for 30 ensembles of Copycat model (o). (a) Square root of
the Jensen-Shannon values (the % represents the mean of the square root of the Jensen-Shannon divergence values between the degree
distribution generated by the CP model and the degree distribution of the OF network); (b) Average Path Length; (c) Clustering Coefficient; (d)
Transient Clustering Coefficient. For exact values and confidence interval, see Table S5.
doi:10.1371/journal.pone.0080783.g008
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Figure 9. UCI Evolution. Evolution of UC Irvine messages (.) network and the average values for 30 ensembles of Copycat model (o). (a) Square root
of the Jensen-Shannon values (the % represents the mean of the square root of the Jensen-Shannon divergence values between the degree
distribution generated by the CP model and the degree distribution of the UCI network); (b) Average Path Length; (c) Clustering Coefficient; (d)
Transient Clustering Coefficient. For exact values and confidence interval, see Table S6.
doi:10.1371/journal.pone.0080783.g009

Figure 10. HT evolution. Evolution of Hypertext (.) network for and the average values for 30 ensembles of Copycat model (o). (a) Square root of
the Jensen-Shannon values (the % represents the mean of the square root of the Jensen-Shannon divergence values between the degree
distribution generated by the CP model and the degree distribution of the HT network); (b) Average Path Length; (c) Clustering Coefficient; (d)
Transient Clustering Coefficient. For exact values and confidence interval, see Table S7.
doi:10.1371/journal.pone.0080783.g010
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Figure 11. IS Graph vs One Ensemble. Graph representation of one ensemble of copycat model and the exact result for IS network. The figure
shows the histogram of degree distributions of IS and CP networks. G0 is the initial graph of CP model.
doi:10.1371/journal.pone.0080783.g011

Figure 12. OF Graph vs One Ensemble. Graph representation of one ensemble of copycat model and the exact result for OF network. The figure
shows the histogram of degree distributions of OF and CP networks. G0 is the initial graph of CP model.
doi:10.1371/journal.pone.0080783.g012
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of final results of the 30 ensembles of copycat model and the real

values obtained in the network evolution. For every metric

analyzed the distribution of the computed values presented a

symmetric shape, thus we compute the confidence interval for

95% of confidence, using the Student’s t-distribution (Tables S1,

S2, S3, S4, S5, S6, S7).

Artificial Networks
Figures 1, 2, 3 presents the comparisons between BA (m = 2),

HZ (p = 1) and PS (m = 2) with copycat model evolution. It is

important to notice that in all three cases, the copycat model

considerably fits the square root of Jensen Shannon Divergence

values, average path length, and clustering coefficient values of

these artificial networks. Tables S1, S2, S3 depict the other

network quantifiers computed.

In order to illustrate a possible result of the copycat model,

Figures 4, 5, 6 show the generation of one ensemble of copycat

model and comparisons between the desirable network and the

histogram of degree distributions.

Real Systems
The Infectious Socio-Patterns dataset (IS) contains the

daily cumulated networks represented in the Infectious Socio-

Patterns visualization [17]. The nodes represent visitors of the

Science Gallery while the edges represent close-range face-to-face

proximity between the concerned persons for each of the sixty-

nine covered days. The network is undirected and we consider it

unweighted. For convenience, we have chosen the day with the

higher number of nodes (417 nodes) and the time evolution was

considered by the increasing order of the node id. The data are

distributed to the public under a Creative Commons Attribution-

NonCommercial-ShareAlike license (http://creativecommons.

org/licenses/by-nc-sa/3.0/) and can be found at http://www.

sociopatterns.org.

The Online Forum Network network (OF) represents not

the private messages exchanged among users, but the users’

activities in the forum [18]. The forum represents an interesting

two-mode network among 899 users and 522 topics in which a

weight can be assigned to the ties based on the number of

messages or characters that a user posted to a topic. The two-

Figure 13. UCI Graph vs One Ensemble. Graph representation of one ensemble of copycat model and the exact result for IS network. The figure
shows the histogram of degree distributions of IS and CP networks. G0 is the initial graph of CP model.
doi:10.1371/journal.pone.0080783.g013
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mode networks are projected onto one-mode networks using the

procedure outlined on the projecting two-mode networks onto

weighted one-mode networks-page (http://toreopsahl.com/tnet/

two-mode-networks/projection/) and analyzed as an undirected

network. Again the arrival time of edges is known, thus, it is

possible to reconstruct the state of the network at any previous

point in time. The data are freely distributed to the public through

the webpage http://toreopsahl.com/datasets/#online_forum_ne

twork.

The UC Irvine messages network (UCI), part of the

Koblenz Network Collection, is the the Facebook-like Social

Network originate from an online community for students at

University of California, Irvine [19]. The original dataset includes

the users that sent or received at least one message (1,899). For

simplicity, for each of the directed graphs, we create their

undirected counterparts by taking into account only bi-directional

links between the users resulting in an undirected network with

1,265 nodes. The arrival time of edges is known, then, it is possible

to reconstruct the state of the network at any previous point in

time. The data are freely distributed to the public through the

webpage http://toreopsahl.com/datasets/#online_forum_network.

The Hypertext 2009 dynamic contact network (HT) the

dynamical network of face-to-face proximity of 113 conference

attendees over about 2.5 days [17]. The nodes represent a person

while the edges represent a contact of, at least, 20 seconds between

two persons. The network is undirected and we consider it

unweighted. For convenience, the time evolution is considered by

the increasing order of the node id. The data are distributed to the

public under a Creative Commons Attribution-NonCommercial-

ShareAlike license (http://creativecommons.org/licenses/by-nc-

sa/3.0/) and can be found at http://www.sociopatterns.org.

After getting the information about the three real networks, the

Copycat model was able to simulate their evolution, maintaining

some complex network properties values.

Figures 7, 8, 9, 10 presents the comparisons between IS, OF,

UCI and HT with copycat model evolution. Moreover, Tables S4,

S5, S6, S7 depict other network quantifiers values.

In order to illustrate a possible result, Figures 10, 11, 12 show

the generation of one ensemble of copycat model and the

graphical comparisons of final result of histogram of degree

distributions.

Final Remarks
In this article we propose a novel methodology to capture the

dynamic behavior of scale-free networks. The methodology is

based on Information Theory quantifiers, that, when embedded in

an optimization algorithm creates a model able to reproduce the

behavior of networks’ evolution. The main difference against other

models is its ability to capture oscillations during its evolution.

Most models must be previously adjusted to create a network with

fixed properties. The proposed model has the ability to

dynamically adjust the topological properties step by step during

Figure 14. HT Graph vs One Ensemble. Graph representation of one ensemble of copycat model and the exact result for HT network. The figure
shows the histogram of degree distributions of HT and CP networks. G0 is the initial graph of CP model.
doi:10.1371/journal.pone.0080783.g014
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the network’s creation. Its main drawback when compared with

the abovementioned models is that, the decisions at each node

inclusion are computationally more expensive: at each node

inclusion the model has to solve an optimization problem, that

consists in determining how many and which links are necessary to

reach the stage of the copied network. To improve its computa-

tional time, a heuristic-like procedure was included.

By using this copycat model, the user is able to analyze the

network’s behavior over time, and also to conjecture about the

main drivers of its evolution. Last but not least, it provides a

framework to predict its evolution.
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File S1 Contains the proof of Proposition 1 and
measurements on complex networks.
(PDF)

Table S1 Comparisons of the desired value and confi-
dence interval for 30 copycat results to other measures
on complex networks for the Barabasi-Albert Graph
with m = 2.
(TIF)

Table S2 Comparisons of the desired value and confi-
dence interval for 30 copycat results to other measures
on complex networks for the Herrera-Zufiria Graph
with p = 1.
(TIF)

Table S3 Comparisons of the desired value and confi-
dence interval for 30 copycat results to other measures
on complex networks for the Popularity-Similarity
Graph with m = 2.
(TIF)

Table S4 Comparisons of the desired value and confi-
dence interval for 30 copycat results to other measures
on complex networks for the Infectious SocioPatterns
Graph.

(TIF)

Table S5 Comparisons of the desired value and confi-
dence interval for 30 copycat results to other measures
on complex networks for the Online Forum Network
Graph.

(TIF)

Table S6 Comparisons of the desired value and confi-
dence interval for 30 copycat results to other measures
on complex networks for the UC Irvine Network Graph.

(TIF)

Table S7 Comparisons of the desired value and confi-
dence interval for 30 copycat results to other measures
on complex networks for the HT network.

(TIF)
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21. Österreicher F, Vajda I (2003) A new class of metric divergences on probability
spaces and its applicability in statistics. Annals of the Institute of Statistical

Mathematics 55: 639–653.

22. Endres DM, Schindelin JE (2003) A new metric for probability distributions.
IEEE Transactions on Information Theory 49: 1858–1860.

23. Rodrigues L, Travieso G, Villas Boas PR (2006) Characterization of complex
networks: A survey of measurements. Advances in Physics 56: 167–242.

24. Feo TA, Resende MG (1989) A probabilistic heuristic for a computationally

difficult set covering problem. Operations Research Letters 8: 67–71.
25. Iyer S, Killingback T, Sundaram B, Wang Z (2013) Attack robustness and

centrality of complex networks. PLoS ONE 8: e59613+.

Simulating Scale-Free Networks via Optimization

PLOS ONE | www.plosone.org 13 December 2013 | Volume 8 | Issue 12 | e80783


