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Abstract

Human monoclonal antibodies have been identified which neutralize broad spectra of influenza A or B viruses. Here, we
dissect the mechanisms by which such antibodies interfere with infectivity. We distinguish four mechanisms that link the
conserved hemagglutinin (HA) epitopes of broadly neutralizing antibodies to critical processes in the viral life cycle. HA-
stem binding antibodies can act intracellularly by blocking fusion between the viral and endosomal membranes and
extracellularly by preventing the proteolytic activation of HA. HA-head binding antibodies prevent viral attachment and
release. These insights into newly identified ways by which the human immune system can interfere with influenza virus
infection may aid the development of novel universal vaccines and antivirals.

Citation: Brandenburg B, Koudstaal W, Goudsmit J, Klaren V, Tang C, et al. (2013) Mechanisms of Hemagglutinin Targeted Influenza Virus Neutralization. PLoS
ONE 8(12): e80034. doi:10.1371/journal.pone.0080034

Editor: Paul Digard, University of Edinburgh, United Kingdom

Received June 28, 2013; Accepted September 27, 2013; Published December 11, 2013

Copyright: � 2013 Brandenburg et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This project has been funded in whole or in part with Federal funds from the National Institute of Allergy and Infectious Diseases, National Institutes of
Health, Department of Health and Human Services, under Contract No. HHSN272200900060C. The funders had no role in study design, data collection and
analysis, decision to publish, or preparation of the manuscript. No additional external funding was received for this study.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: RFriesen@its.jnj.com

Introduction

Influenza viruses continue to be a major cause of morbidity and

mortality due to shortcomings of currently available vaccines and

antivirals. Despite the well-established role of neutralizing

antibodies in the defense against influenza virus infection [1,2]

there is a lack of evidence on how such antibodies interfere with

infection. Further understanding of their mechanisms of action,

correlated to the structures involved, may guide the design of

better vaccines and antivirals.

Neutralizing antibodies mainly target the hemagglutinin (HA)

protein, the major envelope glycoprotein of influenza viruses. The

HA protein is synthesized as a single precursor protein (HA0) and

requires cleavage by host serine proteases into two disulfide-linked

subunits, HA1 and HA2, for the virus to be infectious [3,4]. The

HA1 ‘‘head’’ subunit mediates attachment of the virus to target

cells through interactions with sialic acid receptors. After

endocytosis of the virus, acidification of the endosomes triggers

large conformational changes in the HA2 ‘‘stem’’ subunit leading

to fusion of the viral and endosomal membranes and release of the

viral genome into the cytoplasm, allowing the infection to

progress.

The vast majority of neutralizing antibodies in infected or

vaccinated individuals interferes with attachment of the virus to

cellular receptors by binding to exposed, highly variable loops

that surround the receptor binding site. Antibodies binding to

these regions are typically strain-specific and immunity

following natural exposure or vaccination is mostly restricted

to closely related strains. However, in the last five years, several

human antibodies with remarkably broad neutralizing activity

against influenza virus have been generated and characterized.

Most of these broadly neutralizing antibodies (bnAbs), such as

CR6261, F10, CR8020, FI6, and CR9114, were shown to bind

to epitopes in the HA stem which are highly conserved among

various influenza virus subtypes and have heterosubtypic

neutralizing activity [5,6,7,8,9,10]. Others, like CH65, 5J8,

CR8033, and C05, bind (close) to the receptor binding site on

the HA head and show broad neutralizing activity within one

subtype, or neutralize selected isolates from several subtypes

[10,11,12,13]. Many of these bnAbs have been shown to have

therapeutic efficacy in animal models [5,7,8,9,10,12,14,15]

and several are being developed as monoclonal antibody

therapies. The broad activity of both groups of bnAbs is a

result of the high level of conservation of their respective

epitopes, which in turn appears to be caused by structural

constraints imposed on the HA protein by the necessity to

retain its key functions; receptor binding and fusion. To

understand the structural basis of the broad activity, much

effort has been focused on the molecular characterization of

the bnAbs and their epitopes with the ultimate goal of

developing a universal vaccine against influenza virus

[1,16,17,18]. Stem binding antibodies as well as head binding

antibodies have multiple ways by which they can interfere

with the viral life cycle [19,20,21]. Detailed knowledge on the

mechanisms of action of bnAbs, as is presented here, is critical

for understanding how the human immune system interferes

with processes that are pivotal for influenza virus infection

and spread.
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Results

Stem-binding bnAbs are internalized by live cells in
complex with viral particles, reach late endosomes, and
prevent infection

Stem-binding neutralizing antibodies have been postulated to

inhibit the fusion process based on their interaction with the HA2

subunit and lack of activity in hemagglutination-inhibition (HAI)

assays, which specifically detect antibodies that interfere with

attachment of the virus to sialic acid receptors. Indirect evidence

supporting this notion comes from biochemical studies showing

that such antibodies can block the conformational changes of

recombinant HA required for membrane fusion [6,8,10], or

prevent the formation of syncytia in HA-expressing cells [7,22].

Such a mechanism of action implies that these antibodies are

internalized together with the virus and reach late endosomes, but

this has so far not been shown. By using fluorescence single

particle tracking methods we investigated the fate of viral particles

and bound antibodies during infection of live cells (Figure 1A)

[23]. Movies of cells incubated with fluorescently labeled CR8020

mixed with H3N2 virus, and CR6261 mixed with H1N1 virus

(CR8020 and CR6261 specifically bind Group 2 and Group 1

influenza A viruses, respectively. Table S1), reveal that stem-

binding antibodies are indeed internalized in complex with the

virus and transported along the microtubule cytoskeleton

(Figure 1B, 1C; Movies S1, S2). The joint and directed movement

of internalized viruses and bound antibodies is evident from their

high degree of co-localization over consecutive frames. This

behavior was exclusively observed for viruses and bound stem-

binding antibodies since head-binding antibodies prevent viral

internalization to begin with and no evidence for the internaliza-

tion of unbound antibody could be found (Figure S1A, S1B;

Movies S3, S5). Furthermore, pulse-labeling with a dye sensitive

for low-pH vesicles, combined with single particle tracking in cells,

demonstrated that virus-antibody complexes reach acidic late

endosomes (Figure 1D, 1E). Prolonged tracking of cells that had

internalized virus-antibody complexes allowed us to determine

their individual fate. Following a pre-incubation with H3N2 virus,

stem-binding bnAb CR8020 was observed co-localizing with viral

particles inside cells at early time points (Figure 1F, Table S2).

Cells were imaged every 30 minutes for 15 hours after which they

were fixed and probed for the expression of influenza nucleopro-

tein (NP), which was used as an indicator for infection. In cells that

had internalized CR8020 in complex with the virus, no NP

expression was detected (Figure 1G), indicating that the bound

bnAb successfully prevented infection. In contrast, a comparable

number of particles led to full infection in the control experiment

in which H3N2 virus had been pre-incubated with a non-binding

control antibody (Figure 1H, 1I). Similar results were obtained for

the inhibition of infection by H1N1 virus following pre-incubation

with CR6261 (Figure S2).

Stem-binding bnAbs prevent membrane fusion
The finding that stem-binding bnAbs reach late endosomes in

complex with the virus is congruent with the assumption that such

antibodies can prevent infection by blocking fusion of the viral and

endosomal membranes. To directly observe the interference of

viral fusion by bnAbs, a single particle fusion assay was applied

(Figure 2A). Hereto, the envelope membrane of virus particles

were fluorescently labeled at a density of lipophilic dye molecules

that led to fluorescence self-quenching [24,25]. Labeled viruses

were subsequently incubated with various concentrations of stem-

binding bnAbs (optionally fluorescently labeled). Virus-antibody

complexes were then bound to receptor proteins embedded in a

target membrane and imaged. Upon lowering of the pH, HA

molecules of individual viral particles incubated with a non-

binding control antibody or low concentrations of bnAbs undergo

conformational change and mediate membrane fusion. This event

is observed as a rapid temporary increase in fluorescence signal

(Figure 2B, 2C, yellow triangles; Movie S5). Increasing bnAb

concentrations dramatically decrease the number of fusing virus

particles (Figure 2D–G, Movie S6), demonstrating the direct

inhibition of membrane fusion by stem-binding bnAbs.

Preventing proteolytic cleavage of HA is an additional
mechanism of neutralization for some stem-binding
bnAbs

The inhibition of the fusion between the virus and the

endosome is a mechanism shared by all neutralizing stem binding

bnAbs described to date. Inhibiting the cleavage of HA0 into HA1

and HA2 fragments removes the fusogenic potential of HA and is

a second mechanism adding to the potency of some of the stem

binding Abs. Stem-binding bnAbs CR8020 and FI6 recognize

epitopes which partially overlap with the fusion peptide and bind

close to the cleavage site of HA [8,9]. Both have been reported to

not only inhibit the conformational change of HA, but to also

prevent trypsin from cleaving the extracellular domain of purified

HA in vitro [8,9]. To test the contribution of inhibiting HA

cleavage on the potency of CR8020, we generated a batch of

H3N2 virus of which the HA proteins were uncleaved by

harvesting the virus after a single round of infection in the

absence of trypsin. As expected, such ‘uncleaved’ virus was only

infectious on MDCK cells after treatment with trypsin (Figure 3A).

Next, we compared the potency of CR8020 against this virus

treated with trypsin either before, or after addition of the antibody

(Figure 3B). When CR8020 was added before cleavage, a nine-fold

increase in potency was found compared to when antibody was

added to previously cleaved virus (Figure 3C, 3D). This difference

shows that the in vitro neutralizing potency of CR8020 is based on

prevention of both fusion and cleavage. However, although

porcine trypsin is widely used to render influenza viruses infectious

in cell culture, in human lungs cleavage is thought to be mediated

by membrane-bound proteases such as TMPRSS-2, and -4 and

Human Airway Trypsin [26] and potentially also by secreted

proteases like tryptase Clara, miniplasmin, and ectopic anionic

trypsin [3]. Human lung derived Calu-3 cells form polarized

epithelia and express TMPRSS-2 and -4 [27]. These cells allow

the propagation of influenza virus in the absence of trypsin,

indicating that cellular serine proteases are capable of mediating

cleavage of progeny virus (Figure S3A). Interestingly, uncleaved

virus is not infectious when added to Calu-3 cells, suggesting that

cell-associated proteases are unable to cleave the HA of ‘incoming’

virus particles (Figure S3B). In order to compare the cleavage

status of the HA on viral particles produced in the presence and

absence of CR8020, we infected Calu-3 cells with H3N2 virus and

added the antibody two hours later. In this way we prevented

interference of the antibody with the initial infection, but allowed

it to bind immediately to newly expressed HA molecules on the

cell surface. Virus particles were harvested from the supernatant

20 hours post infection and analyzed by Western blot. Whereas in

the presence of a non-binding control antibody (CR6261) a

portion of the HA molecules on viral particles were cleaved, as

indicated by the presence of the HA2 band, CR8020 efficiently

blocked HA cleavage at a concentration as low as 0.4 mg/mL

(Figure 3E). Interestingly, not all HA molecules incorporated in

viral particles need to be cleaved to allow spread of infection in

Calu-3 cells, as apparent from the observation that virus spreading

in these cells in the absence of trypsin (Figure S3A) contains both

Mechanisms of HA Targeted Influenza Neutralization
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cleaved and uncleaved HA (Figure 3E). Nevertheless, in the

presence of sufficient amounts of CR8020, newly budded viral

particles contain only uncleaved HA molecules, rendering them

non-infectious. This shows, in a physiological situation, that

CR8020 inhibits cleavage and spread of influenza virus and that a

single type of antibody can act intra-cellularly (fusion inhibition) as

well as extra-cellularly (cleavage inhibition).

HA head-binding antibodies not only block attachment,
but also viral egress

Head-binding neutralizing antibodies are well-documented to

prevent viral attachment to the receptor. However, we have

recently described two bnAbs, CR8033 and CR8071, which bind

to the globular head of influenza B HA and are able to inhibit viral

egress [10]. Whereas CR8033 also interferes with attachment of

the virus to its cellular receptor, egress inhibition appears to be the

only neutralization mechanism of CR8071. Since both head- and

stem-binding antibodies can bind to HA on the surface of infected

cells (Figure S1C), we hypothesized that egress inhibition is a more

common mechanism of action for antibodies directed against HA

of influenza A and B. To test this, cells were infected and three

hours later, various stem- and head-binding antibodies were added

(see Table S1). Delaying the addition of antibodies ensured

unhindered initial infection and allowed assessment of the effect on

egress only. Twenty hours after infection, the amounts of newly

produced viral particles present in the supernatants and cell lysates

were analyzed. Since the presence of the neutralizing antibodies

would interfere with assays assessing virus titers (e.g. TCID50), we

used Western blot analysis to determine the amount of virus. As

observed with influenza B specific antibodies CR8033 and

CR8071, the presence of head-binding antibodies against influ-

enza A viruses of the H1N1 (CR9020, CH65 and 2D1) and H3N2

(CR8057) subtypes led to a significant reduction in the amount of

viral particles released into the supernatant (shown by the absence

of HA), while the production and accumulation of HA in the cell

was not affected (Figure 4A, 4B and S5A). In contrast, the

presence of HA stem-binders (CR6261 and CR8020) had no effect

Figure 1. Stem-binding bnAbs are internalized into live cells in complex with viral particles, reach late endosomes, and prevent
infection. (A) Experimental layout. Fluorescently labeled viruses and antibodies were pre-incubated and subsequently added to live cells and
tracked. Whether or not cells were eventually infected was determined by staining for influenza NP after tracking individual cells for 15 hours. (B and
C) Stills of movies (Movies S1 and S2) showing the joint and directed motion of R18-labeled A/Aichi/2/1968-X31 (H3N2) (red) and AF647-labeled
CR8020 (green) (B), and R18-labeled A/Puerto Rico/8/1934 (H1N1) virus (red) and AF647-labeled CR6261 (green) (C), along TubulinTracker-stained
microtubules (white) of live MDCK cells (nucleus, blue) approximately 30 minutes after addition of the pre-incubated virus-antibody mixtures. Dashed
lines outline the trajectories of the virus-antibody complexes (red triangles) as seen in movies S1 and S2. (D) A/Aichi/2/1968-X31 (H3N2) virus was pre-
incubated with AF647-labeled CR8020 (green) before addition to live MDCK cells labeled with LysoTracker (magenta) and imaged when virus-
antibody complexes reached the perinuclear region. Arrows indicate co-localization of virus-antibody complexes with low-pH vesicles (white). (E) As
in (D), except that here A/Puerto Rico/8/1934 (H1N1) virus and AF647-labeled CR6261 were used. (F) R18-labeled A/Aichi/2/1968-X31 (H3N2) virus
(red) was incubated with AF647-labeled CR8020 (green) before addition to live MDCK cells expressing a GFP-cell tracer (grey cell outline). Virus-
antibody complexes (co-localization shown in yellow, compare also split channels in the inset) were detected in live cells 30 minutes after
inoculation. (G) To determine whether internalized virus-antibody complexes prevent infection, the fate of individual cells was assessed by tracking
them over night (imaged in 30 min intervals). 15 hours post-incubation (hpi) the same cells (including their progeny) were fixed and stained for
expression of influenza nuclear protein (NP, blue). (H) Incubation of R18-labeled A/Aichi/2/1968-X31 (H3N2) virus (red) with non-binding AF647-
labeled CR6261 did not result in internalization of antibody. Only viral particles were detected in live cells 30 minutes after addition of the virus-
antibody mixture and infection was not prevented, as demonstrated by the expression of NP (blue) in these same cells 15 hours later (I). Examples of
progeny cells are indicated with numbers. Scale bars B–E equal 10 mm, F–I equal 25 mm.
doi:10.1371/journal.pone.0080034.g001
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on the amount of viral particles released into the supernatant.

Thus, egress inhibition appears to be a common mechanism of

antibodies directed against the head region of HA of both

influenza A and B viruses. Since head-binding antibodies are

dominant in the response to infection or vaccination, we were

interested to see whether polyclonal serum (besides the well-

documented inhibition of receptor interaction) could also inhibit

viral egress. Indeed, addition of HA-specific polyclonal mouse

serum to infected cells caused a concentration dependent

reduction of viral particles in the supernatant, without affecting

the accumulation of HA in the cell (Figure 4C).

Confirmation that head-binding antibodies inhibit egress comes

from Scanning EM (SEM) images showing that whereas separate

budding particles are present at the surface of infected cells in the

presence of stem-binding antibody CR6261, large aggregates of

particles are visible in the presence of each of the head-binding

antibodies (Figure 4E and S4, S5C). Transmission EM (TEM)

images further reveal that the aggregated virions resemble fully

formed free virus particles, with an electron dense core due to the

vRNPs and spike proteins on the surface (Figure 4F, 4G and S4,

S5D, S5E). Moreover, completely formed viral particles surround-

ed by an endosomal membrane were detected in the cytoplasm

near the surface, suggesting that un-budded particles can be re-

internalized (red triangles in Figure 4G and S5E). In all these

aspects, the phenotype is similar to what is seen with the antiviral

drug zanamivir, which inhibits egress by blocking the enzymatic

activity of the neuraminidase (NA) protein (Figure S5C–E).

We hypothesized that HA head-binding antibodies inhibit

egress by cross-linking of newly formed virions to each other and

to HA on the cell membrane. In line with this hypothesis, the

presence of the monovalent Fab fragments of CR8057, CR8033

and CR8071 had no effect on the amount of HA in the

Figure 2. Stem-binding bnAbs prevent membrane fusion in an in vitro single particle fusion assay. (A) Assay setup in microfluidic
chamber mounted on an inverted fluorescent microscope. (B and D) Stills of movies of individual R18-labeled A/Aichi/2/1968-X31 (H3N2) or (C and E)
A/Puerto Rico/8/1934 (H1N1, Movie S5 and S6) virus particles (magenta) incubated with AF488-labeled bnAbs (green) and bound to sialic acid
decorated proteins embedded in a supported lipid bilayer where they co-localize (white, merge). Upon lowering the pH from 7.4 to 5.0
(t = 0 seconds), viruses incubated with only 15 nM CR8020 or CR6261 undergo HA-mediated fusion with the target membrane, visualized as a rapid
increase in signal due to fluorescence dequenching followed by diffusion of R18 molecules away from the fusion site (B and C, yellow triangles),
whereas no fusion events occur when viruses are incubated with 1500 nM bnAbs (D and E). Scale bars equal 3 mm; illumination conditions and image
contrast settings are identical in B–E. (F and G) The percentage of H3N2 and H1N1 particles undergoing fusion after the pH drop decreases with
increasing concentrations of CR8020 and CR6261, respectively (black symbols). In contrast, high concentrations of bnAbs used as non-binding control
antibody have no effect on the percentage of fusion (open symbols).
doi:10.1371/journal.pone.0080034.g002
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supernatant of cells infected with H3N2 and influenza B virus,

respectively (Figure 4D and Figure S5B). Interestingly however,

the Fab fragment of CH65 did result in a reduction of HA in the

supernatant of cells infected with H1N1 virus, similar to the IgG

molecule. Considering the phenotypic resemblance with zanami-

vir, one may speculate that CH65 prevents NA from performing

its function through steric hindrance, rather than through cross-

linking newly formed virions. However, it is also possible that all

these antibodies inhibit egress in the same way (be it through

hindrance of NA or otherwise), but that differences in affinity, or

Figure 3. Blocking HA cleavage by CR8020 has an additive effect on virus neutralization in vitro. (A) Expression of influenza NP (green) in
MDCK cells (nuclei labeled with DAPI in blue) 16 hours after inoculation with A/Wisconsin/67/2005 (H3N2) virus of which the HA was uncleaved (top)
or cleaved by prior incubation with trypsin (bottom). (B) Experimental layout to study the additive effect of cleavage inhibition on the potency of
CR8020 in vitro. (C) A/Wisconsin/67/2005 (H3N2) virus was either first incubated with trypsin and then with a serial dilution of neutralizing antibody
(i.e. CR8020 after trypsin), or the virus was first incubated with serial dilutions of antibody and then treated with trypsin (i.e. CR8020 before trypsin).
After 18 hours of infection, cells (nuclei stained with DAPI, blue) were stained for infection (NP expression, green). (D) Graph shows numerical analysis
of results; normalized percentage of infection versus antibody concentration was used to compare the IC50 values for each condition. Change in IC50

is 9.2-fold (95% C.I. 6.8–12.3). (E) Calu-3 cells (polarized human lung epithelia) were infected with cleaved A/Wisconsin/67/2005 (H3N2). Virus was
washed away after 2 hours, and cells were incubated with test and control antibody for 18 hours in the absence of trypsin. Newly produced viral
particles released into the culture supernatant were harvested and the HA cleavage status was analyzed by Western blot (using rabbit polyclonal anti-
HA serum). The presence of the HA2 band is indicative for cleavage (the HA1 band is not efficiently stained by the polyclonal serum).
doi:10.1371/journal.pone.0080034.g003

Mechanisms of HA Targeted Influenza Neutralization
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Figure 4. HA head binding antibodies inhibit influenza virus egress. (A) Calu-3 cells were infected with A/Puerto Rico/8/1934 (H1N1) and
3 hours later stem-binding antibody CR6261 or head-binding antibody CH65 was added. Twenty hours later, the amounts of HA present in the cell
supernatant (S) and lysate (L) were analyzed by Western blot (HA0 band shown). (B) As in (A) except that cells were infected with A/Wisconsin/67/

Mechanisms of HA Targeted Influenza Neutralization
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the orientation in which they bind to HA determines whether the

Fab alone or the larger IgG molecule is required. Either way, our

results show that many, if not all, head-binding neutralizing

antibodies, next to preventing attachment to the receptor, also

inhibit egress.

Discussion

The in vivo activity of antiviral antibodies is thought to be a

combination of direct mechanisms of action (e.g. neutralization)

and indirect mechanisms of action, generally mediated by immune

cells (e.g. NK cells) or complement factors interacting with the Fc-

tail of the bound antibodies and inducing cell toxicity [28,29]. In

this study, we focused on the direct mechanisms of action of bnAbs

as a consequence of their binding to different epitopes on HA. By

using live cell imaging and infectious viruses we distinguish four

physiologically relevant mechanisms by which anti-HA antibodies

can interfere with the pivotal functions of HA and neutralize the

virus: inhibition of receptor binding, inhibition of membrane

fusion, inhibition of HA0 cleavage and inhibition of egress. These

mechanisms, being so diverse and tailored to different stages in the

life-cycle of the influenza virus (Figure 5A), are not readily

captured in a single assay format. Consequently, when assessing

the potency of a particular antibody, antiviral, or a (universal)

vaccine, it will be necessary to use various assays. Indeed, the use

of HAI and standard microneutralization assays is one of the

reasons why the existence of bnAbs has long gone undetected [30].

Likewise, some of the head-binding antibodies described previ-

ously may in addition to preventing attachment also inhibition

egress [11,13,31,32,33]. Because the epitopes of the bnAbs studied

here (and several others) are known, we can link their mechanisms

of action to specific regions on the HA molecule (Figure 5B).

Although this link is not absolute in the sense that only antibodies

binding to these regions exert these mechanisms [34], the bnAbs

show us highly conserved sites where interference with crucial

processes involving HA is possible (Figure 5A, 5B). This

information may be exploited to design broad-spectrum anti-

influenza virus molecules since the broad reactivity of these

antibodies means that antivirals mimicking their mechanisms of

action will be broadly active, provided that they bind to the same

highly conserved regions on HA.

Materials and Methods

Cell Culture
Suspension PER.C6H (sPER.C6H) cells [35,36] were cultured in

Adenovirus Expression Medium (AEM, Invitrogen) supplemented

with 4 mM L-glutamine and passaged twice weekly. Cells were

cultured at 37uC, 10% CO2 in a shaking incubator. The canine

kidney cell line MDCK (ATCC, CCL-34) was cultured in

Dulbecco’s Modified Eagle Medium (DMEM) supplemented with

10% fetal bovine serum and 2 mM L-Glutamine and passaged

twice weekly. The lung adenocarcinoma cell line Calu-3 (ATCC,

HTB-55) was cultured in the same medium supplemented with

Non Essential Amino Acids and passaged once a week. Cells were

cultured at 37uC, 10% CO2. All culture reagents were purchased

from Invitrogen (Carlsbad).

Viruses
Purified wild type influenza viruses A/Puerto Rico/8/1934

(H1N1) and A/Aichi/1968-X31 (6:2 reassortant of A/Puerto

Rico/8/1934 with the HA and NA segments of A/Aichi/1968

(H3N2)) propagated in eggs were purchased from Charles River

Laboratories and used for live cell imaging. Stock samples were

certified to contain 2 mg of protein per mL and stored at 280uC.

A/New Caledonia/20/1999 (H1N1), A/NYMC/X-181 (6:2

reassortant of A/Puerto Rico/8/1934 with the HA and NA

segments of A/California/07/2009 (H1N1)), A/Puerto Rico/8/

1934 (H1N1), A/New Caledonia/20/1999 (H1N1), A/Brisbane/

59/2007 (H1N1), A/Wisconsin/67/2005 (H3N2), A/Aichi/2/

1968-X31 (H3N2), A/NYMC/X-161B (A/Puerto Rico/8/1934

with the HA and NA segments of A/Wisconsin/67/2005 (H3N2)),

and B/Florida/04/2006 were grown by infecting sPER.C6H cells

with virus at MOI 161024 in infection medium (AEM and VP-

FSM (2:1), supplemented with 2.6 mM L-glutamine and 3 mg/mL

trypsin (all reagents from Invitrogen)). After 72 h of incubation,

virus containing cell culture supernatant was harvested by

centrifugation at 4000 g for 10 min. Virus aliquots were stored

at 280uC. For colocalisation and entry studies in live cells, A/New

Caledonia/20/1999 and A/NYMC/X-161B were purified by

ultracentrifugation at 27,000 rpm for 2 h at 4uC through a 25%

sucrose cushion. The virus pellet was resuspended in NTE buffer

(150 mM NaCl, 10 mM Tris, 1 mM EDTA), pH 7.4 overnight at

4uC before aliquotting and storage at 280uC.

Uncleaved viruses were produced by infecting sPER.C6H cells

with cleaved virus at MOI 2 for 2 h in infection medium without

trypsin. Cells were subsequently washed extensively with 10% FBS

in PBS and incubated in infection medium in the absence of

trypsin. Virus supernatant was harvested by centrifugation at

4000 g for 10 min. All incubations were done at 35uC, 10% CO2,

on a shaking platform. Uncleaved status of HA was confirmed by

Western blotting after probing with H1-HA or H3-HA specific

polyclonal serum and infection assays to confirm the absence of

infection without prior treatment with 5 mg/mL trypsin for 30 min

at 37uC.

All viruses were specifically titrated to reach .90% infection in

each of the experimental conditions. Controls confirmed the

successful infection in every experiment.

Antibodies (IgG expression, Fabs and polyclonal sera)
Fully human IgG1 antibodies CR6261, CR8020, CR8033,

CR8057, CR9020, CR11054, and CR11055 were constructed

and expressed as described previously (Ekiert et al., 2011). Fab

fragments were obtained by IdeS digestion of antibodies, followed

by purification via protein G (GE Healthcare), cation exchange

(MonoS, GE Healthcare), and gel filtration (Superdex200, GE

2005 (H3N2) virus and stem- and head-binding antibodies CR8020 and CR8057, respectively, were used. (C) Naı̈ve mice were immunized and boosted
twice with DNA encoding the HA of influenza A/Brisbane/59/2007 (H1N1) virus. Serum was collected and added to MDCK cells 3 hours after infection
with the same virus. The amount of newly produced particles in culture supernatants and cell lysates were analyzed 20 hours later by Western blot
(HA0 band shown). As positive and negative controls 1 mg/mL of CR9020 and CR8057 were included, respectively. (D) Fab fragments of head-binding
antibodies CH65 and CR8057 were added 3 hours after infection of MDCK cells with A/Puerto Rico/8/1934 (H1N1) and A/Wisconsin/67/2005 (H3N2)
virus, respectively, and 20 hours later the amounts of HA present in the supernatant were analyzed as above. (E) SEM images of the surface of MDCK
cells infected with influenza A/New Caledonia/20/1999 (H1N1), A/Wisconsin/67/2005 (H3N2), or influenza B/Florida/04/2006 virus and subsequently
incubated (from 3 hours post infection) with CR6261 (50 mg/mL, 333 nM), CH65 (10 mg/mL, 67 nM), CR8057 (0.5 mg/mL, 3 nM) or CR8033 (2.5 mg/mL,
17 nM) respectively. Representative images of three independent experiments are shown. Scale bar 1 mm. (F and G) As in (E) except TEM images of
ultrathin sectioned MDCK cell (re-internalized particles indicated with red triangles). Scale bar in (F) 500 nm and in (G) 100 nm.
doi:10.1371/journal.pone.0080034.g004
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Healthcare). All antibodies and Fab fragments were more than

97% pure and monomeric. Influenza A nucleoprotein (NP)

specific monoclonal mouse antibody was obtained from Abbiotec

(clone 5D8) and for influenza B NP from Santa Cruz (sc-52027).

Goat F(ab9)2 anti-mouse- or anti-human Alexa Fluor conjugated

secondary antibodies (Invitrogen) were used for fluorescent

imaging at 2 mg/mL. HA specific rabbit polyclonal serum for

Immunoblot analysis was obtained from Protein Sciences.

Secondary HRP-coupled anti-rabbit F(ab9)2-fragment were pur-

chased from Jackson Immuno Research Laboratories (111-036-

047). Polyclonal sheep sera directed against B/Florida/4/2006

(07/356, sheep 478 and 479) were obtained from the NIBSC and

derived from sheep immunized with the respective purified HA.

HA-specific polyclonal serum was derived from mice immunized

intramuscularly three times at a 3-week interval with 50 mg

plasmid DNA encoding full-length A/Brisbane/59/07 HA,

codon-optimized for mammalian expression, mixed with 50 mg

plasmid DNA encoding murine Granulocyte Macrophage-Colony

Stimulating Factor (GM-CSF).

In all experiments antibodies were either used at a range of

concentrations or at sufficiently high concentration to neutralize

the virus under the given experimental settings. This was

confirmed by neutralization controls in every experiment. Imaging

also confirmed that the used antibody concentrations were

sufficient to binding nearly 100% of viral particles including

infectious and potentially non-infectious particles (Figure 1, Figure

S1, Table S2).

Virus labeling
Purified and concentrated viruses were diluted in HNE buffer

(5 mM Hepes, 140 mM NaCl, 0.2 mM EDTA, pH 7.4) for

labeling. The lipophilic fluorescent dye, Octadecyl Rhodamine B

chloride (R18, Molecular Probes) dissolved in DMSO or DMSO

alone as a mock labeled control was added to the samples to a final

dye concentration of 1–2 mM and 0.4–0.5% DMSO. The samples

were mixed for 2–3 h at room temperature, protected from light.

Unincorporated dye was removed by passing the virus-dye

solution through a PD-10 desalting column (GE Healthcare).

Fractions containing labeled virus were pooled and labeling

verified by fluorescence microscopy.

To confirm that labeling did not affect the infectivity of viruses,

labeled- and mock-labeled virus samples were compared in

imaged based infection assays (Figure S6). Only batches of labeled

virus showing less than 2 fold differences in titer were used.

Antibody labeling
For imaging studies, HA-specific monoclonal antibodies were

fluorescently labeled according to manufacturer’s guidance with

the amine reactive dyes (Molecular Probes) Alexa Fluor 488

(AF488) or Alexa Fluor 647 (AF647). Briefly, dye dissolved in

DMSO was added to antibodies diluted in sodium bicarbonate

buffer to a basic pH. For each antibody different dye concentra-

tions where tested to avoid over-labeling. Contents were mixed

and incubated for ,2 h protected from light. Free dye was

removed from the sample by desalting and buffer exchange using

PD-10 sephadex G-25 columns (GE Healthcare). Antibodies were

labeled with 3–8 dyes per IgG molecule.

The biological activity of all labeled antibodies was confirmed

and compared to unlabeled antibodies in viral neutralization

assays before they were used in imaging experiments. Only

batches of labeled antibodies showing less than 2 fold differences in

titer where used.

Virus Neutralization Assay (VNA)
MDCK cells were seeded on the day of experiment at 40,000

cells/well into 96-well flat bottom plates. Antibodies were serially

diluted, mixed with an equal volume of viral inoculum and

incubated for 2 h at 37uC in medium (DMEM supplemented with

2 mM L-glutamine and 3 mg/mL trypsin-EDTA). The mixture

(,100 TCID50/well) was then added to confluent MDCK

monolayers in quadruplicate. Cells were cultured for 72 h before

supernatant was added to an equal volume of 1% Turkey red

blood cells and incubated for 1 h at room temperature in a 96-well

V-bottom plate. The absence of hemagglutination was defined as

protection. Titers were determined using the Spearman-Kärber

formula.

Hemagglutination inhibition (HI) Assay
Virus was diluted to 8 HA units/50 mL and 25 mL was

combined in quadruplicate wells with an equal volume of antibody

serially diluted in PBS. Plates were incubated for 1 h at 37uC in

96-well V-bottom plates. 50 mL of 1% Turkey red blood cells was

then added to each well and incubated for 1 h at room

temperature. Button formation was scored as evidence of

hemagglutination inhibition. Titers were determined using the

Spearman-Kärber formula.

Imaging
All experiments were performed using black flat bottom 96-well

imaging plates (BD Falcon) which were sealed with oxygen

permeable film (Sigma Aldrich) before imaging. Images were taken

after laser-based auto-focusing using a Pathway 855 high content

imager (Becton Dickinson) equipped with different objectives

(Olympus: 4X 0.16 NA, 20X 0.75 NA, and 40X 0.90 NA). Movies

were taken with the 40X objective at4 frames/s while alternating

between two channels over the duration of 3–5 min. For the

overnight tracking of cells images were automatically taken at pre-

defined positions over the duration of ,15 h at ,30 min intervals.

Figure 5. Mechanisms of action of bnAbs map to conserved regions on HA and thereby reveal conserved vulnerabilities of
influenza virus. (A) Influenza virus life cycle highlighting the four distinct mechanism of actions of HA head-binding (green) and stem-binding
(blue) bnAb. (Panel B, left) X-ray structure of an uncleaved H3 trimer (A/Hong Kong/1/68 PDB 1HA0) in a space filling representation. For clarity, only
one monomer of the trimer is colored (HA1 green, HA2, yellow). The head region, comprising lectin and vestigial esterase domains, and the stem
region, containing the fusion machinery, are indicated with dotted black lines. The receptor binding site is plotted in blue and the cleavage site in
pink. The regions around these sites (solid orange lines) are the footprints of sialic acid and trypsin, respectively. To roughly estimate the trypsin
footprint, a trypsin structure (PDB 1YF4) was docked on the HA cleavage site such that the cleaved HA arginine overlapped with the bound arginine
from 1YF4. HA amino-acids within 5A from trypsin were then taken as an approximation of the footprint. (Panel B, right) Footprints, indicated by solid
cyan lines, of the bnAbs studied here superimposed on HA: CH65 and CR6261 footprints are plotted on HA from A/South Carolina/1/1918 (PDB ID
3GBN), and the CR8020 footprint on A/Hong Kong/1/1968 HA (PDB ID 3SDY). For the flu B antibodies, the B/Brisbane/60/2008 structure (PDB ID
4FQM) is used. Each of the HA structures has been colored with amino-acid conservation index, corresponding to their respective virus groups: H1 –
group1, H3 – group 2 and B – entire influenza B. Conservation was calculated based on the NCBI flu database set as of December 2011, assuming a
number of conservative substitutions [8]. Red color corresponds to more than 99% conservation, white to less than 60% conservation. Additional
human antibodies of which the epitopes and/or mechanism(s) of action are known are indicated on the far right.
doi:10.1371/journal.pone.0080034.g005
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Confirming infection (NP expression) after fixation and staining of

the cells was carried out at the same pre-defined positions with the

40X objective, and also throughout the well with a 20X objective

to determine the percentage of infected cells. Images of individual

channels where overlaid and movies were compiled using ImageJ

software [37]. Due to limited recording speed and alternating

channels the registration of fast moving particles is not perfectly

synchronized leading sometimes to the artificial separation of virus

and antibody signal in adjacent movie frames. To determine the

percentage of infected cells, image channels (e.g. cell nucleus and

cytoplasm) were analyzed and segmented using Attovision

software (Becton Dickinson) followed by the IC50 value calculation

by SPSS software (IBM) and graphs plotted using GraphPad Prism

software.

Imaged based infection assay
Cells were infected with an MOI of 3 for at least 15 h and then

rinsed twice with PBS followed by fixation with 80% ice cold

acetone for 10 min. After removing the acetone and drying the

wells the plates were washed 3 times with 300 mL per well wash

buffer (PBS, 0.05% Tween-20) then incubated for 1 h with mouse

anti-influenza NP antibody (1 mg/mL) in antibody dilution buffer

(1% BSA, 0.1% Tween-20 in PBS) at room temperature. After

washing three times with 300 mL wash buffer the wells were

incubated with 2 mg/mL goat-anti mouse AF488 labeled second-

ary antibody and 1 mg/mL 49,6-diamidino-2-phenylindole (DAPI)

for 1 h. After three wash steps buffer was replaced with 100 mL

PBS containing 0.25 mM Sodium Azide, plates sealed, and

imaged.

HA-specific staining of particles and infected cells
All staining steps described below were performed for 1 h at

room temperature in the dark. Viral particles: R18-labelled A/

New Caledonia/20/99 (H1N1), A/Puerto Rico/8/34 (H1N1), A/

NYMC/X-161B (H3N2) or A/Aichi/68-X31 (H3N2) virus was

diluted in CO2-independent medium (Invitrogen) supplemented

with 2 mM L-glutamine and spotted onto glass bottom 96-well

imaging plates for 30 min at 37uC before washing with PBS and

staining with anti-HA specific antibodies at 5 mg/mL in 1% BSA/

PBS, followed by detection with 2 mg/mL goat anti-human-Alexa

Fluor 647 secondary antibody. Wells were washed four times with

medium before replacing with CO2-independent (phenol red free)

medium (Invitrogen) supplemented with 2 mM L-glutamine for

imaging.

Infected cells: MDCK cells were infected overnight with virus

serially diluted in DMEM supplemented with 2 mM L-glutamine

before fixing with either 3% paraformaldehyde (PFA) in PBS or

ice cold 80% acetone for 10 min. Staining was carried out as

mentioned for viral particles under both permeabilizing (acetone)

and non-permeabilizing (PFA) conditions. Under permeabilizing

conditions, cells were also stained for influenza NP to confirm the

presence of viral infection. Nuclei were counterstained with

0.1 mg/mL DAPI.

Virus entry inhibition
An immunofluorescence entry assay was designed to assess the

ability of HA head-binding antibodies to prevent viral internal-

ization into cells. R18-labelled H1N1 or H3N2 (MOI 3) was pre-

incubated with Alexa-Fluor 647 labeled HA-specific antibodies to

a final concentration of 30 mg/mL (200 nM) for 1 h at 37uC
before being added to MDCK cells seeded in 96-well black-sided

imaging plates (Becton Dickinson). MDCK cells stably expressing

a GFP cell marker (OriGene, Rockville, USA) were incubated with

virus for 15 min at 37uC followed by treatment of the cells with

0.05 U/well neuraminidase (Sigma) for 5 min at 37uC to remove

non-internalized viruses. Cells were washed twice with PBS before

imaging live in CO2-independent medium supplemented with

2 mM L-glutamine.

Virus internalization
An immunofluorescence internalization assay was designed to

assess the ability of HA stem-binding antibodies to be internalized

into cells in complex with infectious virus particles. A pre-

determined amount of R18-labelled H1N1 or H3N2 virus giving

rise to 90–100% infection under the following experimental

conditions was pre-incubated with Alexa-Fluor 647 labeled HA-

specific bnAbs to a final concentration of 30 mg/mL (200 nM) for

1 h at 37uC. MDCK cells were treated for 5 min at 37uC with the

cell permeant nuclear counterstain Hoechst 33342 (10 mg/mL,

Invitrogen), followed by treatment with 3 mM tubulin tracker

green reagent (Molecular Probes) for 30 min at 37uC to stain the

microtubules. Cells were then incubated for 15 min at 37uC with

the prepared virus-antibody mixture, followed by treatment with

0.05 U/well neuraminidase (Sigma Aldrich) for 5 min at 37uC. All

reagents were diluted in CO2-independent medium supplemented

with 2 mM L-glutamine. Cells were washed four times in medium

before imaging live in CO2-independent medium supplemented

with 2 mM L-glutamine and the glucose oxidase/catalase oxygen

scavenging system (GODCAT, 1% glucose, 0.5 mg/mL glucose

oxidase, 40 mg/mL catalase; all reagents from Sigma) to prevent

photobleaching [38]. To avoid a decrease in cell viability and viral

replication the exposure with light and oxygen scavenging system

was limited to two hours and the medium then replaced. Movies

were captured at manually selected positions with a 40X 0.90 NA

objective.

Virus colocalization
Mock-labelled H1N1 or H3N2 virus was pre-incubated with

Alexa-Fluor 647 labeled anti-HA bnAbs to a final concentration of

30 mg/mL (200 nM) for 1 h at 37uC. Immediately prior to

infection, MDCK cells were treated for 5 min at 37uC with the cell

permeant nuclear dye Hoechst 33342 (Invitrogen) at 10 mg/mL.

Cells were then infected with the virus-mAb mixture (MOI 3)

mixed 1:1 with 100 nM Lysotracker Red reagent (Molecular

Probes) for 15 min at 37uC, followed by treatment with 0.05 U/

well neuraminidase (Sigma Aldrich) for 5 min at 37uC. All

reagents were diluted in CO2-independent medium supplemented

with 2 mM L-glutamine. Cells were washed four times with

medium before imaging live in CO2-independent medium

supplemented with 2 mM L-glutamine and the glucose oxidase/

catalase oxygen scavenging system.

Colocalization analysis
To determine percentage colocalization between R18-labelled

virus and AF647-labelled antibodies, images were analyzed using

ImageJ software with the particle analysis plugin – 3D Object

Counter [39].

Overnight cell tracking
A pre-determined amount of R18-labelled H1N1 or H3N2

virus giving rise to 90–100% infection under the following

experimental conditions, was pre-incubated with Alexa-Fluor

647 labeled anti-HA bnAbs to a final concentration of 30 mg/

mL (200 nM) for 1 h at 37uC. MDCK cells stably expressing a

GFP cell marker, were seeded into 96-well black-sided imaging

plates and subsequently infected with the virus-mAb mixture for

15 min at 37uC, followed by treatment with 0.05 U/well
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neuraminidase for 5 min at 37uC. All reagents were diluted

in CO2-independent medium supplemented with 2 mM L-

glutamine. Cells were washed extensively before imaging live

for 15 h in CO2-independent medium supplemented with

2 mM L-glutamine and 1% FBS. The following day, cells

were fixed with ice cold 80% acetone for 10 min and stained

for influenza A NP expression as previously described to

confirm infection inhibition in the presence of neutralizing

antibody.

Single particle fusion assays
Fusion experiments were executed as described in the

supporting information (Text S1). Briefly, R18-labeled viruses

were pre-incubated with either AF488 labeled or unlabeled

bnAb. A proteoliposome solution was added to the microfluidic

flow cell to form a glass-supported planar lipid bilayer. Virus-

bnAb mixture was added to the flow cell and viruses were

immobilized onto the planar lipid bilayer (Figure S2). Fluores-

cein-labeled streptavidin was then added followed by washing.

Viral fusion was initiated by rapid injection of a pH 5 buffer and

recorded using an inverted TIRF microscope setup. Fusion

events were detected as a sharp temporary increase in the

fluorescence. Fusion percentage was calculated as the number of

fusion events divided by the total number of virions observed in

a field of view.

HA-cleavage inhibition
To study the additive effect of HA-cleavage inhibition,

uncleaved A/Wisconsin/67/05 (H3N2, MOI 3) was either first

incubated with trypsin (Gibco) at 1.5 mg/mL, followed by

incubation with antibodies serially diluted from 0–10 mg/mL

(0–67 nM), or, first incubated with antibodies serially diluted

from 0–10 mg/mL, followed by incubation with trypsin at

1.5 mg/mL. FBS was added to a final concentration of 10%

after trypsin treatment to inhibit trypsin activity and all

incubation steps were carried out for 45 min at 37uC. Virus-

antibody mixtures were then added to confluent MDCK

monolayers and allowed to incubate overnight. HA cleavage

status was verified by Western blot analysis with a portion of the

treated samples (data not shown). Cells were fixed with ice cold

80% acetone for 10 min and stained for influenza A NP

expression as described above. Calu3 cells were infected with

cleaved A/Wisconsin/67/05 (H3N2) or A/New Caledonia/20/

99 (H1N1) with an MOI 3 in DMEM supplemented with 2 mM

L-Glutamine. Three hours post infection cells were washed

twice with PBS and incubated overnight with a concentration

range (0–100 mg/mL) of test or control antibody in 50 mL

medium and incubated overnight. The following day, the

medium of three replicate wells was pooled and spun down for

10 min at 2006 g to remove cell debris. One well from each

triplicate was used to obtain cell lysate by resuspending the cell

layer in 150 mL lysis buffer (50 mM Tris-HCl, 150 mM NaCl,

5 mM EDTA, 1% Triton X-100, pH 7.5). As a positive control

for HA cleavage, supernatant from cells infected with virus in

the absence of antibody was used and treated with 5 mg/mL

trypsin for 30 min at 37uC for complete HA cleavage. Samples

were then subject to Western blot analysis. To confirm viral

infection, plates were also fixed and stained with ice cold 80%

acetone for 10 min and stained for Influenza A NP expression.

Statistical analyses
Single-particle fusion, and cleavage inhibition data were

analyzed using a 4-parameter logistic model in which for variance

stabilization the ‘transform both sides’ approach was used as described

previously [40]. For transformation, a logit transformation was

selected:

logit Fð Þ~logit Dz
A{D

1z
X

10C

� �B

0
BBB@
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CCCA

where F represents the proportion fusing virions over total virions,

D and A represent respectively the upper and lower asymptote, B

represents a slope factor, X represents the antibody concentration

(nM) and C represents the inflection point (estimated on a log10

scale). For stabilization of the model fusion data obtained without

antibody present was placed at an infinite low antibody concen-

tration. Conditions with no events were set to 1 fusion event.

To be able to determine the effect of trypsin on the potency of

CR8020, the model was modified to include an indicator variable

in the estimation of the inflection point that takes the value 0 for

data before trypsin and a 1 for data after trypsin (C+ID*Dc). The

difference, in location, between the dose-response curves is then

indicated by Dc and represents a difference in potency of the mAb

under these conditions. Statistical analysis was performed using

IBM SPSS statistics (version 20).

SDS-PAGE and Immunoblotting
Relative amounts and cleavage status of hemagglutinin in the

samples were determined by Western blotting. First 2 mL reducing

agent (Invitrogen) and 5 mL 46 loading buffer (Ivitrogen) was

added to 13 mL sample followed by 10 min incubation at 90uC.

Proteins in each sample were resolved by 4–12% Bis-Tris SDS-

PAGE (NUPAGE, Invitrogen) followed by trans-blotting onto a

PVDF membrane (0.45 mm, P-Immobilon, Millipore, Massachu-

setts) in transfer buffer (NUPAGE, Invitrogen) containing 5%

methanol at 30 V for 60 min. The membrane was blocked by

incubation in blocking solution containing 4% non-fat dry milk

(Bio-Rad) in TBST (20 mM Tris-HCl, 150 mM NaCl, 0.2%

Tween 20) overnight at 4uC. The blocked membrane was

incubated with rabbit anti-HA1 or -HA3 polyclonal serum,

60 ng/mL for 1 h at room temperature and washed 3 times with

TBST. Subsequently, the membrane was incubated with goat

anti-rabbit peroxidase conjugated F(ab9)2 fragment (1:3,000 v/v)

for 1 h at room temperature. After three washes with TBST, the

membranes were incubated for 5 min with ECL-Plus substrate

solution (GE Healthcare). Stained proteins were visualized using

Amersham Hyperfilms (GE Healthcare).

Egress inhibition assay
Four hours prior to the experiment, 40,000 MDCK cells per

well were seeded in DMEM/glutamine into flat bottom 96 well

imaging plates (BD Falcon). The amount of virus needed to

achieve 90–100% infection was titrated in a separate experiment.

The required amount of virus was added to the cells washed twice

with PBS and incubated at 37uC, 5% CO2. After three hours, the

supernatants were removed and cells were washed twice with PBS

to remove non-internalized virus particles. Cells were replenished

with 50 mL infection medium containing serial diluted antibodies.

After incubation for 16–18 h at 37uC, 5% CO2, the supernatants

were harvested, spun down to remove debris (2006g for 10 min).

The remaining cells were lysed (Tris HCl pH 7.5, 150 mM NaCl,

5 mM EDTA, 1% (v/v) Triton-X). Lysate and supernatant

samples were treated with loading buffer and reducing agent,

incubated for 10 min at 90uC, and analyzed by SDS-PAGE and

Western blot to determine the amount of virions produced and
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released into the supernatant. As a control for infection, replicate

identically-treated wells were fixed with 80% acetone and the

number of infected cells was assessed using the imaged based

infection assay (data not shown).

Scanning electron microscopy of influenza virus infected
cells

MDCK cells seeded on coverslips (sterile 15 mm thermanox

plastic, Thermo Scientific, #174969) were infected with a pre-

determined amount of virus (separate experiment) to yield 90–

100% infected cells 18 h post infection. Three hours after the

initial infection, the supernatants were removed; cells were washed

thrice with PBS, before media containing the indicated concen-

tration of antibodies were added. After an additional 15 h, the cell

culture medium was removed and cells were fixed in phosphate

buffered 2.5% glutaraldehyde buffer pH 7.4 for 1–2 h and stored

at 4uC until further analysis. The coverslips were rinsed in PBS

followed by distilled water and then dehydrated in 70%, 95%,

anhydrous ethanol and finally in acetone and subjected to critical

point drying in acetone and liquid CO2. Finally, the cells were

mounted on alumina stubs and coated with a thin layer of carbon

and examined in a Zeiss Ultra 55 SEM field emission microscope

using an accelerating voltage of 3 keV and InLens detection at

Vironova, Sweden.

Transmission electron microscopy of influenza virus
infected cells

MDCK cells seeded on coverslips were infected with a pre-

determined amount of virus (separate experiment) to yield 90–

100% infected cells 18 h post infection. Three hours after the

initial infection, the supernatants were removed; cells were washed

thrice with PBS, before media containing the indicated concen-

tration of antibodies were added. After an additional 15 h, the cell

culture medium was removed and cells were fixed in phosphate

buffered 2.5% glutaraldehyde buffer for 1–2 h and stored at 4uC
until further analysis. The samples were subsequently scraped and

pelleted using a table top centrifuge, before being washed twice in

0.1 M phosphate buffer and chemically post-fixed with 2%

osmium tetroxid (OsO4) in 0.1 M phosphate buffer for 2 h at 4uC
followed by stepwise dehydration with ethanol, followed by LX

112-embedding by stepwise infiltration and polymerization at

60uC. Microtome sections of ,60 nm were prepared and applied

to one-slot formvar nickel grids. The sections were finally post-

stained with uranyl acetate and Reynold’s lead citrate before being

imaged with a FEI Tecnai 10 electron microscope run at 100 kV

accelerating voltage using a 2k x 2k Veleta CCD camera

(Olympus Soft Imaging Systems) at Vironova, Sweden.

Supporting Information

Figure S1 Stem-binding bnAbs co-localize with influen-
za particles in vitro and in live cells, bind on the surface
of infected cells. (A) Influenza A/Puerto Rico/8/1934 (H1N1)

and A/Aichi/2/1968-X31 (H3N2) viruses were labeled with the

lipophilic dye octadecyl rhodamine B (R18, red), spotted onto

glass, and incubated with fluorescently labeled antibodies CR6261

or CR8020. Head-binding control antibodies, CR9020 (binding to

head region of a narrow spectrum of H1 HAs) and CR8057

(binding to the head region of a narrow spectrum of H3 HAs) were

used in combination with R18-labeled A/New Caledonia/22/

1999 (H1N1) and A/Wisconsin/67/2005 (H3N2), respectively.

Antibodies CR6261 and CR8020 served as non-binding controls

on H3N2 and H1N1 viruses, respectively. Virus-antibody

complexes were bound to the glass bottom of 96 well plates and

imaged. R18-labeled virus and AF647-labeled antibody are shown

in separate channels in grayscale and in the merged image in red

and green, respectively. Antibodies co-localize with the virus to

which they bind in vitro. (B) Live MDCK cells expressing a GFP

cell marker (grey) were incubated for ,20 min (at 37uC) with viral

particles (red) pre-incubated with antibodies and imaged as in (A).

To allow detection of internalized particles only, non-internalized

particles were removed by neuraminidase treatment. Whereas

head-binding antibodies prevent internalization, stem-binding

bnAbs co-localize with internalized viral particles (yellow). (C)

MDCK cells were infected, fixed 15 hours later, and subsequently

stained with anti-HA antibodies as in (A) and anti-influenza A

nucleoprotein (NP) antibody to confirm infection (magenta, only

detectable under permeabilizing conditions). Infected cells were

also incubated with fluorescently labeled bnAb (green) to

demonstrate their ability to bind surface-expressed HA and

budding viral particles.

(TIF)

Figure S2 CR6261 is internalized into live cells in
complex with H1N1 viral particles and prevents infec-
tion). (A) Separate channels (in grey scale) of a three color image

showing live MDCK cells expressing a GFP-cell tracer incubated

with R18-labeled A/Puerto Rico/8/1934 (H1N1) virus in

complex with AF647-labeled CR6261. Internalized virus-antibody

complexes (red triangles) were detected in live cells 30 min after

inoculation. Individual cells were tracked over 15 hours before

being fixed and stained for influenza nuclear protein (NP) to detect

infection. (B) Control experiment showing that incubation of R18-

labeled A/Puerto Rico/8/1934 (H1N1) virus with non-binding

AF647-labeled CR8020 did not result in internalization of

antibody. Only viral particles are detectable inside live cells

30 min after inoculation and 15 hours later these cells were

infected as evident from the expression of NP.

(TIF)

Figure S3 Calu-3 cells support the propagation of
influenza virus in the absence of trypsin, but cannot be
infected by uncleaved virus. (A) Calu-3 cells were infected

with 10 TCID50 cleaved A/Wisconsin/67/2005 (H3N2) influenza

virus in the absence of trypsin. 24 hours after infection cells (nuclei

blue) were fixed and stained for influenza NP (green) as indication

for infection. (B) 100 TCID50 of uncleaved A/Wisconsin/67/2005

and A/Brisbane/59/2007 (harvested from MDCK cells in the

absence of trypsin) were added to Calu-3 cells with or without

trypsin. Uncleaved virus is not infectious but can be rendered

infectious when treated with trypsin. Images (A and B) show an

entire well.

(TIF)

Figure S4 Influenza virus egress. Scanning electron mi-

croscopy (SEM) and transmission electron microscopy (TEM)

images of the surface of (A) non-infected or (B) influenza (B/

Florida/04/2006) virus infected MDCK cells. High numbers of

spherical viral particles are budding off the surface and are clearly

distinguishable form microvilli or smooth cell protrusions by size,

electron density, and their double membrane. Scale bar in SEM is

1 mm and in TEM 200 nm.

(TIF)

Figure S5 HA head binding antibodies inhibit influenza
virus egress. (A) Calu-3 cells were infected with A/Puerto Rico/

8/1934 (H1N1) and 3 hours later head-binding antibody CR9020

or 2D1 was added. Twenty hours later, the amounts of HA present

in the cell supernatant (S) and lysate (L) were analyzed by Western

blot (HA0 band shown). (B) As in (A) except MDCK cells were
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infected with B/Florida/04/2006 and the Fab fragments of

CR8071 and CR8033 were used in the egress assay. (C) SEM

images of the surface of MDCK cells infected with influenza A/

California/07/2009 (H1N1), A/New Caledonia/20/1999

(H1N1), A/Wisconsin/67/2005 (H3N2), or influenza B/Florida/

04/2006 virus and subsequently incubated (from 3 hours post

infection) with 2D1 (5 mg/mL), CR9020 (15 mg/mL), and

Zanamivir (0.5 mM) respectively. Representative images of three

independent experiments are shown. Scale bar (C) 1 mm. (D–E) As

in (B) except TEM images of ultrathin sectioned MDCK cell (re-

internalized particles indicated with red triangles). Scale bar in (D)

500 nm and in (E) 100 nm.

(TIF)

Figure S6 R18 labeled influenza virus remain infec-
tious. MDCK cells were infected with R18- or MOCK-labeled

A/Puerto Rico/8/1934 (H1N1) or A/Aichi/2/1968-X31 (H3N2)

and the number of infected cells (nucleus stained with DAPI, blue)

for each virus was determined by staining for influenza NP

expression (green).

(TIF)

Movie S1 Stem-binding bnAb CR8020 is internalized
into live cells in complex with H3N2 virus particles. R18-

labeled A/Aichi/2/68-X31 (H3N2) virus particles pre-incubated

with AF647-labeled CR8020 are internalized into live MDCK

cells (nucleus, blue). Movie (,27 min past incubation, mpi) shows

the directed motion of virus particles (red) together with mAbs

(green) along TubulinTracker-stained microtubules (white).

(AVI)

Movie S2 Stem-binding bnAb CR6261 is internalized
into live cells in complex with H1N1 virus particles. R18-

labeled A/Puerto Rico/8/34 (H1N1) virus particles pre-incubated

with AF647-labeled CR6261 are internalized into live MDCK

cells (nucleus, blue). Movie (,40 mpi) shows the directed motion

of virus particles (red) together with mAbs (green) along

TubulinTracker-stained microtubules (white).

(AVI)

Movie S3 Stem-binding bnAb CR8020 is not internal-
ized after incubation with H1N1 virus particles. After

incubation of R18-labeled A/Puerto Rico/8/34 (H1N1) virus

particles (red) with AF647-labeled non-binding control antibody

CR8020, only virus particles are internalized ,33 mpi into live

MDCK cells (nucleus, blue).

(AVI)

Movie S4 Stem-binding bnAb CR6261 is not internal-
ized after incubation with H3N2 virus particles. After

incubation of R18-labeled A/Aichi/2/68-X31 (H3N2) virus

particles (red) with AF647-labeled non-binding control antibody

CR6261, only virus particles are internalized ,41 mpi into live

MDCK cells (nucleus, blue).

(AVI)

Movie S5 H1N1 virus incubated with only 15 nM
CR6261-AF488 can undergo fusion. Representative portions

of dual-color fluorescence viral fusion recordings obtained with

200 ms exposure times; scale bar equals 2 mm. R18-labeled A/

Puerto Rico/8/34 (H1N1) virus (false colored magenta, center

column) incubated for 30 min with 15 nM AF488-labeled

CR6261 (green, right column). Co-localization between the

virus and bound bnAb (white) is shown in the left column

(merge). Time t = 0 indicates drop of pH from 7.4 to 5.0. Fusion

events are observed as the rapid increase in fluorescence signal

(dequenching) at the site of a virus, followed by quick, outward

diffusion of the lipophilic R18 dye away from the fusion site.

Both movies (S5 and S6) were recorded under identical

illumination conditions. Contrast settings of the 15 nM bnAb

incubation has been enhanced 25% relative to the 1500 nM

incubation (Movie S6). All images were scaled 4-fold larger

using bicubic interpolation. For assay details see experimental

procedures.

(AVI)

Movie S6 H1N1 virus incubated with 1500 nM CR6261-
AF488 is fusion incompetent. As in (S5) except, R18-A/

Puerto Rico/8/34 (H1N1, magenta) was incubated with 1500 nM

AF488-labeled CR6261 (green). The higher bnAb concentration

inhibited HA-mediated fusion and no dequenching or R18

diffusion is observed. Both movies (S5 and S6) were recorded

under identical illumination conditions.

(AVI)

Table S1 Characteristics of broadly neutralizing anti-
bodies, control antibodies, and Fab fragments used in
this study.

(DOC)

Table S2 Colocalization of virus-antibody complexes in
infected MDCK cells.

(DOC)

Text S1 Supporting Materials and Methods for Single
particle fusion assays.

(DOC)
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