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Abstract

Single-cell and single-molecule measurements indicate the importance of stochastic phenomena in cell biology.
Stochasticity creates spontaneous differences in the copy numbers of key macromolecules and the timing of reaction
events between genetically-identical cells. Mathematical models are indispensable for the study of phenotypic stochasticity
in cellular decision-making and cell survival. There is a demand for versatile, stochastic modeling environments with
extensive, preprogrammed statistics functions and plotting capabilities that hide the mathematics from the novice users
and offers low-level programming access to the experienced user. Here we present StochPy (Stochastic modeling in Python),
which is a flexible software tool for stochastic simulation in cell biology. It provides various stochastic simulation algorithms,
SBML support, analyses of the probability distributions of molecule copy numbers and event waiting times, analyses of
stochastic time series, and a range of additional statistical functions and plotting facilities for stochastic simulations. We
illustrate the functionality of StochPy with stochastic models of gene expression, cell division, and single-molecule enzyme
kinetics. StochPy has been successfully tested against the SBML stochastic test suite, passing all tests. StochPy is a
comprehensive software package for stochastic simulation of the molecular control networks of living cells. It allows novice
and experienced users to study stochastic phenomena in cell biology. The integration with other Python software makes
StochPy both a user-friendly and easily extendible simulation tool.

Citation: Maarleveld TR, Olivier BG, Bruggeman FJ (2013) StochPy: A Comprehensive, User-Friendly Tool for Simulating Stochastic Biological Processes. PLoS
ONE 8(11): e79345. doi:10.1371/journal.pone.0079345

Editor: Jérémie Bourdon, Université de Nantes, France
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Introduction

Experiments at the level of single cells indicate large cell-to-cell

variability in copy numbers of molecules [1]. Inevitably, this

molecular noise originates from stochastic fluctuations and has a

large impact on cellular dynamics [2]. Traditional deterministic

chemical kinetics fail to capture the dynamics of these systems.

Stochastic systems are typically mathematically described by the

master equation [3], which rarely has a closed form solution and

therefore numerical simulation is a necessity. Stochastic simulation

algorithms (SSAs) generate time trajectories that are in agreement

with the master equation. Many SSAs have been developed [4],

however, in order to effectively use them in cell biology a flexible

simulation environment is required. This should include, for

instance, easy access to functionality for statistical analysis, plotting

and interpretation of the raw simulation results, all the while

shielding the modeler from the underlying mathematics.

Stochastic simulation software is used in a variety of modeling

methodologies e.g. ordinary differential equations [5–11] and Petri

nets [12], each tool having its own unique strengths and

weaknesses. However, the recent advances in the experimental

investigation of single-cells has increased the interest in the analysis

of the statistics of event waiting times [13–16]. Most simulators

cannot calculate these event waiting times because they do not

return the raw stochastic simulation output (hereafter explicit

output). In addition, stochastic modeling is not as straightforward

as solving deterministic systems and there is a demand for a

versatile stochastic modeling environment that is easy to use and

extend. Altogether, this motivated us to develop a flexible and

interactive open-source stochastic simulator StochPy: Stochastic

modeling in Python.

StochPy provides various SSAs for the simulation of stochastic

dynamics and supports model definition in either plain text or the

Systems Biology Markup Language (SBML) [17]. In addition it

includes statistical functions for the numerical analysis of stochastic

simulations as well as plotting facilities for the visualization of

amongst other features time-correlations, propensities, and event

waiting times.

Results and Discussion

Software Implementation
The StochPy software has been designed around three core

principles. Accessibility, it should not be limited to a specific

operating system or user environment. Functionality, it should

implement a variety of SSAs, allow for the intuitive description of

models (i.e. reactions and species), and provide high-level, user-

friendly access tailored for interactive use. Flexibility, it should
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support high-level statistical and plotting functions for interrogat-

ing both model and data as well as provide programmatic access to

low-level functions and data structures.

To satisfy these principles StochPy has been developed as a

console application using the Python language, taking advantage

of its pure object-oriented nature, portability, extensive standard

library, and ability to seamlessly glue together scientific libraries

written in compiled languages. For instance, Matplotlib [18] is

integrated for plotting, providing publication-quality image

generation. An object-oriented design allows for the simultaneous

analysis of multiple instances of a model, using state-of-the-art

stochastic simulation capabilities either interactively or via user-

defined scripts. Note that, because of the high-level functionalities,

knowledge of the Python programming language is not required

although, any scripting knowledge will enhances the modeling

experience.

Combining these functionalities with those provided by the

many available Python scientific libraries allows for easy extension

of StochPy as well as its use as a library in other simulation

software. The StochPy software has already been incorporated as

a plug-in library for the systems biology simulator software

PySCeS [19]. This provides a single interactive environment

where model properties (e.g. parameters and species amounts) can

be set interactively and simulated in both a stochastic and

deterministic manner.

The following SSAs are implemented in StochPy: The direct,

first reaction, next reaction, and optimized tau-leaping methods

[4,20,21]. Whilst the direct method is selected by default, the next

reaction, and tau-leaping methods can be used to boost

performance for models that are either sparse or have many fast

reactions and/or large molecule numbers, respectively. These

implementations successfully passed all tests from the SBML

stochastic test suite [22], the results of which are given in Dataset

S1.

Model definition is by way of the human readable/writable

PySCeS model description language (MDL) [19]. A simple and

intuitive approach to creating and editing models understandable

to experimentalists and theoreticians. Moreover, libSBML [23] is

used for importing stochastic models written in SBML format

which are then subsequently translated into PySCeS MDL. This

requires maintaining one MDL that supports features which in

principle can be encoded in any SBML instance. Currently,

StochPy implements SBML Level 2 version 4 import and export

functionalities. SBML Level 3 and package support is now being

investigated.

The StochPy software provides interfaces to other widely used

simulation tools: CAIN and StochKit2. Through these integrated

interfaces, modelers are provided with a choice of SSA

implementations that differ in speed and simulation output. For

example, using StochKit2 via StochPy allows simulating models

defined in SBML up to L2V4 or PySCeS MDL by StochKit2’s fast

solvers. The output can then directly by analyzed in StochPy,

without the need to install any additional software (by default

StochKit2 uses MATLAB to provide this functionality).

Figure 1. StochPy simulation output. An example of explicit simulation output of StochPy is shown in a table. It reports the number of molecules
of each molecular species and the reaction propensities at each time point when a reaction occurs. The time differences between consecutive rows
indicate waiting times between reaction events. In the last column, the waiting times for reaction 4, R4 , are given and they correspond to the time
period between consecutive instances of activity of reaction 4.
doi:10.1371/journal.pone.0079345.g001

StochPy: A Flexible Tool for Stochastic Simulation
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Performing StochPy Simulations
A typical StochPy modeling session consists of first creating a

StochPy model object from a (default) input model. Alternatively,

different user-defined models (in SBML or PySCeS MDL) can be

loaded into the model object. Once a model is loaded various

simulation parameters can be set, e.g. the number of simulation

steps and the number of simulation trajectories. Subsequently,

kinetic parameter values and species amounts can be modified

interactively, and simulations can be performed by calling the

available analysis methods for model objects. As model objects are

fully encapsulated, multiple models can be instantiated from the

same (or different) input files at the same time. An example of a

short modeling session within Python can be,

... import stochpy

... smod = stochpy.SSA()

... smod.Model(‘dsmts-001-01.xml’)

... smod.DoStochSim(end = 1000,mode = ‘steps’)

... smod.PlotSpeciesTimeSeries().

Here, we initiate the model object smod for the default input

model, load a different model depicted in SBML into the model

object smod, generate one time trajectory of the master equation

(1000 steps), and plot the corresponding (discrete) species time

series data.

In the following sections we discuss the potential uses of explicit

output in systems biology, highlight StochPy’s capabilities by

modeling different biological systems, and benchmark StochPy

against other widely used stochastic tools. All simulations were

done with StochPy’s implementation of the direct method. Only a

single command, a high-level function such as PlotSpeciesTime-

Series(), is necessary to create most of the shown (sub)-figures.

Annotated scripts and input files used to generate modeling results

are available as Scripts S1. More information on installing and

using StochPy can be found in the StochPy User’s Guide which

Figure 2. Fixed interval versus explicit simulation output. Hundred stochastic simulations until t = 60.000 min (&106 time steps) were done
with kON~0:05 min21, kOFF ~0:45 min21, ksyn~80 min21, and kdeg~2:5 min21. (A) Accuracy of mean and standard deviation estimates as function
of the number of fixed intervals. (B) Simulation time with fixed-interval output increases with the number of fixed intervals. Fixed-interval simulations
were done with the StochPy interface to StochKit2 and include the time to calculate the associated probability distributions. (C) The stationary mRNA
distribution for 104 fixed intervals (red error bars, 1.96 s) vs. explicit output (blue 95% confidence interval). Note that 1.96 s corresponds to a 95%
confidence interval. (D) The stationary mRNA distribution for 106 fixed intervals (red error bars, 1.96 s) vs. explicit output (blue 95% confidence
interval).
doi:10.1371/journal.pone.0079345.g002

StochPy: A Flexible Tool for Stochastic Simulation
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together with additional example sessions is available online at

http://stochpy.sf.net.

The Potential Uses of Explicit Output in Systems Biology
StochPy returns explicit output rather than discretized output

(hereafter fixed-interval output). With fixed-interval output we

mean that the state of the system, i.e. the copy numbers of all

molecules, are reported for fixed-time intervals and not at the

times in the system when single reaction events occur. Mathemat-

ically speaking, molecular reaction systems are modeled by

continuous-time discrete state Markov chains and fixed-interval

data storage approaches simulate these systems with continuous

time but store the output with fixed-time intervals. Returning

fixed-interval output likely derives from stochastic modeling

practices in mathematical statistics. In systems biology, the

requirements for stochastic simulation are often different. Access

to exact simulation times allows for the straightforward calculation

of event waiting times, species and propensity distributions, and

correlation times. As these quantities are in principle observable in

single-cell experiments, they should be calculable with simulation

software.

Figure 1 illustrates typical output of a StochPy stochastic

simulation: It gives ni, which denotes the number of molecules of

molecular species i and the propensities (a) at time points when

reaction events occurred. This simulation output can be analyzed

using pre-defined statistical functions to plot time series, or

calculate distributions, moments, and time-correlations. StochPy

returns explicit output and therefore waiting times for particular

reactions events or system delays can be calculated. Note that the

time between consecutive activities of reactions is called an event

waiting time. An example of these event waiting times is shown in

Figure 1 where the times between consecutive ‘‘firings’’ of reaction

R4 are shown.

In Figure 2 we highlight several differences between fixed-

interval and exact output. This example concerns the model

specified in Section 3 of Information S1. We ran a stochastic

simulation at a stationary state of the model with StochPy to

obtain 106 reaction events and obtained all the stochastic

dynamics in terms of the exact output. Next, we ran StochKit2

until the same model end time, as we obtained with StochPy, and

varied the fixed-interval size at which the state of the stochastic

system is stored in the report file of StochKit2. In Figure 2A we

plot the estimate of mean (m) and the standard deviation (s),

obtained from 100 simulations, as function of the number of fixed

intervals. This plot indicates that for this system &104 intervals are

enough to estimate m and s with good accuracy. Figure 2B shows

the ratio of the calculation time of StochKit2 and StochPy and

indicates that StochKit2 is indeed a lot faster as it only required to

write 104 events to file as compared to StochPy, which stored 106

events. StochKit2’s C++ implementation makes the simulation

Figure 3. Propensities and auto-correlations. Illustration of several plotting options in StochPy. Colored lines represent StochPy output and
black the analytical solutions. (A) species time-series data. (B) propensities time-series data. (C) species distribution. (D) propensities distribution. (E)
auto-correlation for different kdeg values (0.01, 0.025, 0.05, 0.1, 0.5).
doi:10.1371/journal.pone.0079345.g003

StochPy: A Flexible Tool for Stochastic Simulation
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about a factor of 10 faster than StochPy when they store an equal

amount of reaction events. Calculating the associated stationary

probability distribution required additional time which reduced

the speed difference to a factor of 3.

A complication with fixed-interval storage is that the user does

not know beforehand what the relevant fixed-interval size and

number should be and, for instance, data bootstrapping should be

applied to assess the accuracy of the calculation. For instance, 104

fixed-intervals are not enough to determine the stationary

probability distribution with great accuracy, as shown in

Figure 2C (the error bars denote the variation in the distributions

between the 10 simulations done at each fixed-interval number).

Using more fixed-intervals results in determining the stationary

probability distribution with a better accuracy. However,

Figure 2D shows that a better accuracy was obtained using 106

explicit reaction events than with 106 fixed-intervals. Therefore,

for this particular example, more fixed-intervals than actual

reactions events are necessary to obtain a stationary probability

distribution with a similar accuracy.

This means that the speed of a fixed-interval algorithm is not set

by the end time and the programming language, as is the case for

an exact output approach, but also by the chosen number of fixed

intervals. Note that deciding the right number of fixed intervals

can only be done by trail and error. Generally, more than 106

events should be a good starting value, provided that the time-

scale separation between reactions within the network is limited.

Case Study 1: Molecule Synthesis and Degradation
In this section, we modeled the immigration-death model

(Information S1 Section 2) which consists of two reactions: A zero-

order synthesis reaction of mRNA with rate constant ksyn and a

first-order mRNA degradation reaction with rate constant kdeg.

The mRNA synthesis rate, ksyn, was 10 min21 and the degrada-

tion rate constant kdeg was set to 0.2 min21.

Figure 3A illustrates that the number of mRNA molecules per

cell fluctuate around their steady-state copy number of 50

molecules/cell. High mRNA copy numbers correspond to high

mRNA degradation propensities (adeg ; a measure for the reaction

rate) and vice versa as is shown in Figure 3B. In contrast, the

mRNA synthesis propensity, asyn, is constant through time.

Distributions can give us more insight into the size of

fluctuations. Figure 3C indicates that the mRNA copy numbers

are Poisson distributed with a mean of 50 (ksyn=kdeg). The

distribution of adeg follows a Poisson distribution whose x-axis is

distorted (Figure 3D). We also performed an auto-correlation

analysis of the mRNA time series (Figure 3E); the auto-correlation

time decays exponentially as ekdegt in agreement with theory. For

different parameter settings, StochPy simulations match the

analytical solution.

Figure 4. Time series of bursty and non-bursty transcription. StochPy plots of simulating stochastic gene expression. (A) long lifetimes of
both the ON and OFF state. (B) bursty transcription. (C) short lifetimes of both the ON and OFF state. (D) non-bursty transcription.
doi:10.1371/journal.pone.0079345.g004
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Case Study 2: Stochastic mRNA Synthesis by a Switching
Gene

In this section, we consider a model of mRNA synthesis by a

gene that switches spontaneously between an inactive (OFF) state

and an active (ON) state (Information S1 Section 3). The synthesis

of mRNA occurs only during the ON state whilst mRNA

degradation occurs continuously. Depending on the choice of

kinetic parameters, this system can display transcription bursts that

can cause significant cell-to-cell variability in mRNA expression

levels [15,24].

In Figures 4 and 5 we compare two kinetic parameter settings

leading to a bursty and a non-bursty mode of transcription. Long

lifetimes of both the ON and OFF state cause bursty transcription

(Figure 4A–B), while short lifetimes of both the ON and OFF state

cause non-bursty transcription (Figure 4C–D). These transcription

bursts lead to bimodal mRNA copy number distributions

(Figure 5A) and two time scales in the distribution of event

waiting times of mRNA synthesis times (Figure 5B). These event

waiting times depend on both the production during a ON state

and the periods of inactivity [15]. These results are in agreement

with the analytical solutions (the black solid lines), which are

further discussed in Information S1 Section 3.

Case Study 3: Spontaneous Fluctuations in Single-
molecule Enzyme Activity

Next, we consider a completely different model that describes

single-molecule enzymology (Information S1 Section 4). A second-

order reaction converts an enzyme E and a substrate S into an

enzyme-substrate complex ES. Subsequently, with two different

first-order reactions this enzyme-substrate complex can fall apart

and return the enzyme and substrate or give rise to the enzyme

and the product P.

The simulation results are shown in Figure 6. Because we

consider a single enzyme molecule, the number of enzyme

molecules E(t) is either 1 or 0 and the same applies to ES(t)
(Figures 6A–B). In Section 4 of Information S1 we show that we

can derive the Michaelis-Menten relationship from this model. As

a consequence, the rate of formation of product P depends on S,

Vmax, and Km. In Figure 6C we visualize both stochastic

simulations and the analytical result of product P formation as a

function of time. Finally, in Section 4 of Information S1 we also

show that the waiting times distribution of product P formation is

analytically solvable. The waiting times determined with StochPy

are in agreement with this analytical solution (Figure 6D).

Case Study 4: Modeling Cell Division Explicitly and
Implicitly

To demonstrate the flexibility of StochPy we briefly illustrate

how simple it is to extend a stochastic model of a gene expression

network with explicit cell division events, even though this is not a

standard functionality of StochPy. In this model, protein synthesis

occurs from mRNA and mRNA synthesis depends on the presence

of active transcription factors. This model consists of nine

reactions where one reaction is not described by mass-action

kinetics, which would make this system already hard to simulate

for some software packages.

We modeled cell division in both an explicit and implicit

manner (see Information S1 Section 5). Modeling cell division

explicitly can be seen as a complicated time event where timing

and assignments depend on distinct distributions. We consider

gamma distributed event waiting times for cell division. At a cell

division event the molecular content of the mother cell is

binomially partitioned over its two daughter cells. This is in

contrast with earlier work from Kierzek et al. [25] who used a

fixed generation time and divided the molecular content into two.

Commonly used model definition formats (e.g. as encodable in

SBML) do not support such events, which makes a sequential

simulation approach a necessity. In such a scenario, each

simulation starts with the results of the previous simulation. For

these reasons, modeling cell division explicitly is inconvenient and

non-trivial, especially for graphical user interface (GUI) based

simulators. In the implicit cell division model growth rate is

incorporated as a first-order rate constant that continuously dilutes

cellular components into new cells.

The differences between modeling cell division explicitly and

implicitly are illustrated in Figure 7. Without incorporating cell

division explicitly the dynamics of transcription factors, mRNA,

and proteins are different (Figures 7A–F). Most apparent are the

differences for the protein copy numbers, which quickly reached a

steady state (Figure 7C). In contrast, explicit modeling of cell

division caused large variations in the protein copy numbers

(Figure 7F). As a result, the distribution of mean protein copy

numbers was significantly different if cell division was explicitly

incorporated (Figure 7G). These differences are also observable for

transcription factors (active, inactive) and mRNA (not shown).

Benchmarking StochPy
The StochPy software features and speed performance were

benchmarked against widely used, existing stochastic software to

make a fair and broad comparison of available tools for stochastic

simulations.
Feature comparison with existing stochastic tools. In an

extensive search for available stochastic simulators, CAIN,

COPASI, Facile-EasyStoch, GillespieSSA, and StochKit2 were

identified as those with the closest functionality to StochPy. Here,

we will discuss and compare these tools against StochPy through a

Figure 5. mRNA copy number and event waiting times
distributions. StochPy plots of simulating stochastic gene expression
with StochPy simulations (step, markers, colored) and analytical
solutions (solid, black). (A) probability distribution of the mRNA copy
numbers. (B) probability distribution of the mRNA synthesis event
waiting times.
doi:10.1371/journal.pone.0079345.g005
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feature comparison. A comprehensive feature comparison is

provided in Table 1.

(1) Explicit stochastic simulation output. An important distinction

between StochPy and most other stochastic simulators is in

their output: Explicit rather than fixed-interval output is used

and has several implications. Firstly, fixed-interval output does

not allow the calculation of event waiting times, a unique

feature provided by StochPy. Secondly, handling of fixed-

interval output requires expert knowledge of the modeler (how

many fixed intervals are sufficient to do a certain type of

analysis properly). Thirdly, determining the minimal number

of fixed intervals necessary is time-consuming. In the StochPy

software one can exploit the convergence of higher moments

to determine the minimal number of time steps necessary to

accurately determine certain model properties. However, the

benefit of using fixed-interval output is that less data can be

stored which gives this approach a significant speed

advantage. This can be useful if, for instance, only moments

and time series are of interest and not probability distribu-

tions.

(2) SBML support and simulating diverse stochastic models. Neither

Facile-EasyStoch nor GillespieSSA provide SBML support

while CAIN and StochKit2 support only a subset of available

SBML models. As a consequence, many models (e.g. those

with time and particle-number events or complicated rate

laws) cannot be simulated, which limits their general purpose

simulation capabilities. In contrast, both COPASI and

StochPy support SBML levels 1–2 (V4). However, COPASI

does not support (SBML) events in stochastic simulations and

as a result, in our comparison StochPy is the only simulator

able to successfully pass all tests in the SBML stochastic test

suite [22].

(3) Analysis of stochastic data. Besides various (unique) numerical

analysis techniques StochPy also provides preprogrammed

plotting functions. Calculation of event waiting times,

propensity probability distributions, (co-)variances, and auto-

correlations for one or more generated trajectories are

currently unique numerical analysis techniques of StochPy.

In addition, analysis of time series of species and propensities,

probability distributions of species amounts, and moments can

Figure 6. Single-molecule enzymology. StochPy plots for single-molecule enzyme activity simulations with StochPy simulations (step, markers,
blue) and analytical solutions (solid, black) (A–B) time-series data of E and ES, E(t)zES(t)~1. (C) three time trajectories that fluctuate around the
analytical solution. This analytical solution corresponds to the mean rate of formation, which for stochastic simulations can be obtained by taking the
average of many generated time trajectories. (D) event waiting times of product P formation peak.
doi:10.1371/journal.pone.0079345.g006
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be done within StochPy. While not shown in the case studies,

StochPy can calculate and visualize the average of multiple

time trajectories for time series, auto-correlations, and

distributions.

(4) Flexible environment for interactive modeling. Due to its flexible

design StochPy’s functionality can be extended far beyond

saving data files and preprogrammed plotting capabilities. By

integrating its functionality with industrial strength Python

scientific libraries (e.g. Matplotlib [18], NumPy [26] and

SciPy [27]) sophisticated user-defined analysis methods can be

seamlessly applied to the output of StochPy simulations.

Direct solver performance. The direct solver of StochPy was

benchmarked against the direct solvers of two widely used and high-

performance stochastic tools i.e. CAIN and StochKit2 (both

implemented in C++) for various stochastic models, the results of

which are shown in Table 2. We have specifically chosen CAIN and

StochKit2, because those are the fastest solvers currently available.

To fairly compare StochPy’s performance against these other

tools, the number of fixed-intervals was set equal to number of

time steps in the stochastic simulation. Note that determining the

minimal number of fixed-intervals necessary to perform a

particular analysis requires doing multiple simulations (as shown

in Figure 2), which makes this fixed-interval approach less efficient

and more time-consuming than Table 2 reports.

The first conclusion from this benchmark is that no single solver

was the fastest in any case. Secondly, StochPy is the only stochastic

simulator that was able to correctly simulate all stochastic models

tested in this benchmark. This in contrast to the CAIN API which

can accept models consisting of only mass-action kinetics.

Thirdly, for different numbers of simulation time steps,

significant differences in simulation time were found for different

solvers. For relatively short simulations, StochKit2’s performance

is reduced, as it requires substantial time to compile models with

e.g. events and non mass-action kinetics. This effect is negligible

for relatively long simulations. Both the CAIN and StochKit2

solvers outperformed StochPy’s direct solver for most tested

models if simulations were done for a relatively large number of

time steps (except e.g. modeling events with CAIN).

Fourthly, StochPy’s performance increased with respect to the

performance of both CAIN and StochKit2 when larger modes

were considered. For instance, CAIN needed about 4 minutes to

parse the largest model tested (parsing time was omitted from the

benchmark), while both StochKit2 and StochPy were able to parse

this model within seconds. For relatively long simulations of

models with many species, StochKit2’s solvers were about 10 times

faster than those of StochPy, which is expected because our

software is written in Python rather than C++.

Since, we also offer access to CAIN and StochKit2 solvers directly

from StochPy, we also tested the speeds of CAIN and StochKit2 for

this mode of operation. While exploiting these solvers in StochPy

appears slower than the native application, this time only includes

parsingof thesimulationoutput forpost-simulationanalysis.Thiscan

take a significant amount of time for large data sets.

As StochPy provides access to multiple SSAs, SSA implemen-

tations, and simulation tools and as discussed above, there is no

‘one size fits all’ approach, we provide a decision tree to help

guide prospective modelers in how best to select a method that

suits their model (see Figure 8). Here, decisions are made

depending on the simulation time and the output of the solver.

Insights into time series or moments can be easily obtained with

solvers that provide fixed-interval output, whereas solvers that

provide explicit output are, in principle, better suited for

determining probability distributions of molecule copy numbers

and event waiting times.

Conclusions

Stochastic modeling in systems biology demands a certain level of

flexibility in simulation, management of stochastic models and the

handling of simulation data. Depending on the size of the system of

interest and its degrees of time-scale separation, the different SSAs

each have their particular (dis-)advantages. The differences in

simulation time between stochastic simulation packages are often

due to the fixed-interval reporting of simulation data versus the use of

explicit output. To achieve the accuracy of explicit solvers the

differences in simulation time greatly reduce, and ultimately boil

down to, differences in the programming languages. In systems

biology applications, often the pure simulation data rather than the

fixed-interval simulation data is of interest. The pure simulation data

allows for the accurate determination of various time and copy

number associated probability measures.

We presented StochPy as a versatile modeling package for

stochastic simulation of molecular control networks inside living

cells that provides solvers which return explicit stochastic

simulation output. Its integration with Python’s scientific libraries

and PySCeS makes it an easily extendible and a user-friendly

Figure 7. Modeling single-cell transcription and translation
with and without cell division. StochPy plots of simulating
stochastic gene expression. Modeling details of cell division periods:
Gamma-distributed with scale parameter is 60.0 and shape parameter is
1.0. Implicit and explicit time series of transcription factor copy
numbers (A and D), mRNA copy numbers (B and E), and protein copy
numbers (C and F). Distributions of protein copy numbers for modeling
cell division explicitly and implicitly (G). The model is further described
in Information S1 Section 5.
doi:10.1371/journal.pone.0079345.g007
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stochastic simulator package. We highlighted this by implementing

both the solvers of CAIN and StochKit2 that return only fixed-

interval output, which can be useful for obtaining insight into time

series and moments. The high-level statistical and plotting

functions of StochPy allow for quick and interactive model

interrogation at the command-line. Python’s scripting capabilities

Table 1. Feature comparison between StochPy and existing (stochastic) software.

Feature CAIN COPASI EasyStoch GillespieSSA StochKit2 StochPy

Implemented solvers:

- Exact SSA N N N N N N

- Inexact SSA N N N N N

Simulator options:

- SBML support #
1 N #

2 N

- Human interpretable input N N

- Stochastic test suite N

- Extrinsic noise N

- Explicit output N N #
3 N

- Fixed-interval output N N N N N

Output analysis:

- Auto-correlations N

- Histogram distance N N

- Propensities N N

- Moments N

- Waiting times N

Software characteristics:

- Plotting facilities N N N #
4 N

- Data exportation N N N N N

- GUI N N

- Flexible environment N N

Summary of features offered in StochPy and other stochastic modeling software.
N: Feature is present.
#: Feature is partially present or requires additional dependencies.
Notes: 1. Limited ability to parse kinetic laws: Complicated expressions may not parsed. 2. Not all SBML documents can be converted into the StochKit2 model format.
3. Provided as an add-on functionality of StochKit2, whereas with limited options compared to the default installation of StochKit2. 4. Only if proprietary software
(MATLAB) is installed.
doi:10.1371/journal.pone.0079345.t001

Table 2. Speed performance benchmark between StochPy and existing (stochastic) software.

Simulation Type CAIN CAIN (API) StochKit2 StochyPy1
interfaces

Small 0.7–0.10 0.24–0.10 0.24–0.07 1.0–0.31

Non mass-action 0.5–0.10 N/A 96–0.16 1.0–0.45

Parallel 0.04–0.07 0.04–0.06 0.03–0.18 0.28–0.33

Parallel & time events 1.9–1.92 N/A 1.7–0.18 1.0–0.3

Parallel & particle number events 3.2–3.72 N/A 1.5–0.18 1.0–0.3

Assignments N/A N/A N/A 1.0–1.0

Large 0.14 0.28 0.09 0.56

XL 0.15 0.31 0.11 0.66

XXL 0.24 0.37 0.11 0.93

Results of benchmarking the direct method of StochPy. Simulation time was divided by the simulation time of the StochPy solvers: StochPy’s solver was faster if the
reported ratio’s are larger than one and vice versa. A ‘‘2’’ indicates that short and long simulations were done to illustrate the potential difference between them. N/A is
shown if the simulator was not possible to perform the simulation. For parallel simulations, 100 trajectories were done. In each comparison the number of fixed intervals
was equal to the number of time steps in the simulation. Simulations were done on a Intel Core i5-2430M CPU 2.40 GHz64 64-bit with Ubuntu 12.04 LTS as operating
system. Stochastic models and a script to simulate these models within StochPy are available in Scripts S2.
Notes: 1StochPy with interfaces to CAIN and StochKit2. Simulation time includes time to parse results into StochPy. 2Cain cannot parse events, so the user most specify
them in the GUI. 3Optimal theoretical result without including time to merge the output of all sequential simulations.
doi:10.1371/journal.pone.0079345.t002
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allow for more complicated and in-depth analysis of stochastic

models and meets many of the demands for systems biology.

Supporting Information

Dataset S1 The results of testing StochPy against the
SBML stochastic test suite.
(ZIP)

Scripts S1 Annotated scripts and input files used to
generate modeling results.
(ZIP)

Scripts S2 Stochastic models and a script to simulate
the models used for benchmarking StochPy.
(ZIP)

Information S1 Additional information about the differ-
ent models that were used as examples to demonstrate
the capabilities of StochPy.
(PDF)
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