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Abstract

Deriving tractable reduced equations of biological neural networks capturing the macroscopic dynamics of sub-populations
of neurons has been a longstanding problem in computational neuroscience. In this paper, we propose a reduction of large-
scale multi-population stochastic networks based on the mean-field theory. We derive, for a wide class of spiking neuron
models, a system of differential equations of the type of the usual Wilson-Cowan systems describing the macroscopic
activity of populations, under the assumption that synaptic integration is linear with random coefficients. Our reduction
involves one unknown function, the effective non-linearity of the network of populations, which can be analytically
determined in simple cases, and numerically computed in general. This function depends on the underlying properties of
the cells, and in particular the noise level. Appropriate parameters and functions involved in the reduction are given for
different models of neurons: McKean, Fitzhugh-Nagumo and Hodgkin-Huxley models. Simulations of the reduced model
show a precise agreement with the macroscopic dynamics of the networks for the first two models.
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Introduction

The activity of the brain is characterized by large-scale

macroscopic states resulting from the structured interaction of a

very large number of neurons. These macroscopic states corre-

spond to signals experimentally measured through usual recording

techniques such as extracellular electrodes, optical imaging,

electro- or magneto- encephalography and magnetic resonance

imaging. All these experimental imaging protocols indeed record

the activity of large scale neuronal areas involving thousands to

millions of cells. At the cellular level, neurons composing these

columns manifest highly complex, excitable behaviors character-

ized by the intense presence of noise. Several relevant brain states

and functions rely on the coordinated behaviors of large neural

assemblies, and resulting collective phenomena recently raised the

interest of physiologists and computational neuroscientists, among

which we shall cite the rapid complex answers to specific stimuli

[1], decorrelated activity citeecker-berens-etal:10,renart-de-la-ro-

cha-etal:10, large scale oscillations [2], synchronization [3], and

spatio-temporal pattern formation [4,5].

This motivates the development of models of the collective

dynamics of neuronal populations, that are simple enough to be

mathematically analyzed or efficiently simulated. A particularly

important problem would be to derive tractable macroscopic limits

of the widely accepted and accurate Hodgkin-Huxley model [6].

However, describing the activity of a network at the cellular scale

yields extremely complex, very high dimensional equations that

are mathematically intractable and lead to excessively complex

and time consuming numerical simulations. Such simulations of

large-scale systems have been reported in [7]. In that study, the

author performs a numerical simulation of a network composed of

one hundred billion neurons (the order of magnitude of a

macroscopic brain area of 300|300mm2) and one quadrillion

synapses, based on a simplified nonlinear integrate-and-fire

neuron. The simulation of the activity of one second of the

network took 50 days on efficient machines back in 2005.

Although machines have become faster, taking into account more

biologically plausible neuronal models in detailed microscopic

simulations takes even more time [8,9], and developing a

supercomputer-based simulations of the brain at a cellular level

is an important endeavor currently undertaken [10]. The tenet of

the present manuscript is precisely that theoretical approaches

may allow rigorously deriving macroscopic models that can be

efficiently implemented and which reproduce accurately the

dynamics of large networks.

The question of the macroscopic modeling of cortical activity

and their relationship with microscopic (cellular) behavior has

been the subject of extensive work. Most studies rely on heuristic

models (or firing-rate models) since the seminal works of Wilson,

Cowan and Amari [11,12]. These models describe a macroscopic

variable, the population-averaged firing-rate, through determinis-

tic integro-differential or ordinary differential equations. Analytical

and numerical explorations characterized successfully a number of

phenomena, among which spatio-temporal pattern formation and

visual illusions (see [13] for a recent review). This approach was

complemented by a number of computational studies introducing

noise at the level of microscopic equations, the effect of which

vanishes in the limit where the number of neurons tends to infinity.

These approaches are generally based on simplified neuron
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models and make significant assumptions on the dynamics (e.g.

sparse connectivity [14], Markovian modeling of the firing and

van Kampen expansion [15]). Relationship between spiking

neuronal networks and mean firing rates in simplified models

and deterministic settings has also been the subject of a number of

outstanding works [16,17]. These averaging techniques were

based on temporal averaging of periodic spiking behaviors. For

instance, in [17], the author presents a reduction to Wilson-Cowan

systems for the single-cell deterministic Morris-Lecar system,

taking advantage of the separation of timescales between slow

synapses and cell dynamics. In contrast with these researches, we

propose a mixed population and temporal averaging for stochastic

networks, taking advantage of the collective effects arising in large

networks.

Despite these efforts, deriving the equations of macroscopic

behaviors of large neuronal networks from relevant descriptions of

the dynamics of noisy neuronal networks remains today one of the

main challenges in computational neuroscience, as discussed in P.

Bressloff’s review [13]. In the present manuscript, we contribute to

this axis of research with a hybrid theoretical-computational

approach. Necessarily, our rigorous approach will impose two

main assumptions. First, synapses are assumed to be linear

exponential filters. This assumption, although usually made in the

reduction of spiking network into rate-based networks (see [18],

chapter 11), disregard an important feature of chemical synapses: a

threshold non-linearity. This non-linearity, albeit weak, induces a

significant increase in the complexity of the microscopic equations.

Thus, this assumption will simplify the underlying mathematical

problem and make it possible to focus on the neuronal excitability.

Besides, note that the approach is particularly well fitted to

networks connected through gap-junctions (electrical synapses),

since these are well described by linear interactions [19,20].

Second, the strength of connections between neurons is chosen

random and independent. This hypothesis allows to take into

account heterogeneities of the synapses, and avoiding to impose

specific connectivity patterns. Inspired by statistical mechanics

methods, we start from rigorously derived limits of neuronal

network equations [21] with excitable dynamics of Hodgkin-

Huxley type. The resulting equations, referred to as the mean-field

equations, are hard to interpret and to relate to physical observable

quantities. In the gas dynamics domain, mean-field equations such

as Boltzmann’s equation were used to derive the behavior of

macroscopic quantities such as the local density, macroscopic local

velocity and local temperature fields, in relationship with the

microscopic activity of the particles, and resulted in the derivation

of the celebrated Navier-Stokes equations that provide important

information on the fluid dynamics. In our biological case, a

particularly important quantity accessible through measurement is

the macroscopic variable corresponding to an averaged value, over

neurons at certain spatial locations, and on a specific time interval,

of the activity of each cell. We will therefore aim at describing this

variable in order to reduce the complex high dimensional noisy

dynamics of microscopic descriptions of neural networks into a

simple, deterministic equation on macroscopic observables.

As opposed to a large body of literature [14,22–24], this paper

does not aim at computing the firing rate function of the network.

It rather aims at deriving a dynamical system describing the

macroscopic activity of the network, in the spirit of [25] where the

authors derive partial integro-differential equations describing the

population density of a network of integrate and fire neurons. In

contrast, our approach will consist in computing an effective non-

linearity function (slightly different from the firing rate) involved in

the macroscopic equations.

The paper is organized as follows. In the Material and Methods

section, we will introduce the basic network equations and their

mean-field limits, and describe the methodology we propose for

deriving macroscopic equations. We first show a rigorous

derivation for the deterministic McKean neurons and numerically

extend this to more general cases. This method reduces the

dynamics of the average firing-rate to the knowledge of a

particular function, the effective non-linearity, which can be

numerically computed in all cases. This methodology is put in

good use in the Results section in the case of the McKean,

Fitzhugh-Nagumo and Hodgkin-Huxley neurons. In each case,

the effective nonlinearity is numerically computed for different

noise levels. The reduced low-dimensional macroscopic system is

then compared to simulations of large networks, and will show a

precise agreement. We also numerically investigate the robustness

of the reduction with respect to the variation of parameters. The

discussion section explores some implications of the present

approach.

Materials and Methods

In this section we introduce the networks models considered,

their mean-field limits and the formal derivation of the dynamics

of averaged firing-rate models. This approach will be used in the

result section to derive macroscopic limits and demonstrate the

validity of the reduction. The python programs corresponding to

the simulations can be downloaded at the url https://www.rocq.

inria.fr/bang/JT/Documents/spatav_galtier_touboul.zip.

Neurons and networks
We consider a network of P populations being composed of Na

neurons for population a[f1 � � �Pg . Motivated by the large

Figure 1. Phase plane of the deterministic McKean neuron.
Corresponds to equations (8) with xa a constant. When the blue line
and any of the decreasing green lines intersect, then there is a stable
fixed point. When the blue curve intersects the increasing green line,
then there is a periodic orbit (this is the case shown here). The periodic
orbit corresponds to the non-smooth orange trajectory composed of
two branches on the slow manifold (single-arrowed segments) and
horizontal double-arrowed segments correspond to the fast transitions.
doi:10.1371/journal.pone.0078917.g001

Figure 2. Function S(xa) for the deterministic McKean model
given in equation 10.
doi:10.1371/journal.pone.0078917.g002
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number of neurons involved in each populations at functional

scales, we will be interested in the limit where all Na tend to

infinity (the mean-field limit) in order to take advantage of possible

regularization and averaging effects. Each neuron i in population

a is described by the membrane potential vi
t (also called activity of

a neuron in this paper) and additional variables gathered in a d-

dimensional variable Zi
t, representing for instance ionic concen-

trations in the Hodgkin-Huxley model, or a recovery variable in

the Fitzhugh-Nagumo or McKean models. These variables satisfy

a stochastic differential equation:

dvi
t ~(Fa(vi,Zi)zIa(t)z

PN
j~1

Jijv
j
t � h)dtzsadW i

t

dZi
t ~Ga(vi

t,Z
i
t)dtzCadBi

t

8><
>: ð1Þ

In this equation, the functions Fa and Ga describe the intrinsic

dynamics of all the neurons in population a. The parameters sa[R

and Ca[Rd|d describe the intensity of the noise, classically driven

by independent one (resp. d) dimensional Gaussian white noise

(W i
t ) (resp. Bi

t). The functions Ia(t) represent the external input

received by neurons of population a. The coefficients Jij are the

synaptic weights of the connection from neuron j to neuron i.

Spiking interactions between neurons are here modeled as the

convolution of the presynaptic membrane potential with the

impulse response of the synapse noted h, where h(t)~
1

ts

e
{

t
ts H(t)

with ts~10 ms is the characteristic time of the synapses and H the

Heaviside function. Therefore, this model assumes linear synaptic

integration.

Three main models used in computational neuroscience

addressed in the present manuscript are the McKean model

[26], the Fitzhugh-Nagumo model [27] and the Hodgkin-Huxley

model [6]. These are parametrized so that the time unit is one

millisecond.

The Hodgkin-Huxley model: is probably the most widely

accepted neuron model from the electrophysiological viewpoint.

The Hodgkin-Huxley model describes the evolution of the

membrane potential in relationship with the dynamics of ionic

currents flowing across the cellular membrane of the neuron. It

was introduced in the 1950s in [6] after thorough observation of

the giant squid axon revealed the prominent role of potassium and

sodium channels for excitability, and leak chloride currents.

Networks of Hodgkin-Huxley neurons are described by the

stochastic differential equation:

Cdvi
t ~(I i{gK (ni)4(vi

t{EK ){gNa(mi)3hi(vi
t{ENa)

{gL(vi
t{EL)z

P
j Jij (v

j
t � h))dtzsidW i

t

dni
t ~(an(vi

t)(1{ni){bn(vi
t)n

i)dt

dmi
t ~(am(vi

t)(1{mi){bm(vi
t)m

i)dt

dhi
t ~(ah(vi

t)(1{hi){bh(vi
t)h

i)dt

8>>>>>>>>><
>>>>>>>>>:

ð2Þ

where

an(v)~0:01
10{v

exp (
10{v

10
){1

, am(v)~0:1
25{v

exp (
25{v

10
){1

,

ah(v)~0:07 exp (
{v

20
)

bn(v)~0:125 exp (
{v

80
), bm(v)~4: exp (

{v

18
) ,

bn(v)~
1

exp (
30{v

10
)z1

and C~1mF=cm2, gK~36mS=cm2, gNa~120mS=cm2,

gL~0:3mS=cm2, EK~{12mV , ENa~120mV and

EL~10:6mV . These parameters correspond to a resting state of

the membrane potential v equal to 0mV (as opposed to McKean

and Fitzhugh-Nagumo models which have a negative resting

state). The dynamics of this system shows deep non-linear

intricacies even in the case of deterministic, single-neuron system.

The Fitzhugh-Nagumo model: was introduced in [27] as a

simple model reproducing the essential features of the Hodgkin-

Figure 3. Effective nonlinearity of regime I and II neurons. Value of ~SS(xa) computed for 10 different initial conditions (and 200 in the inset of
the right picture) for the Hodgkin-Huxley model with noise s~2 (left) and s~0 (right). This shows that the level of intrinsic noise change the regime
of a neuron.
doi:10.1371/journal.pone.0078917.g003
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Huxley model. It has been widely studied as a paradigmatic low-

dimensional excitable systems which produces a wide range of

spiking behaviors. The Fitzhugh-Nagumo model describes the

activity of the membrane potential vi and recovery variable wi of

neuron i in the network through the equations:

dvi
t~(vi

t{
(vi

t)
3

3
{wi

tzI iz
X

j
Jij (v

j
t � h))dtzsidW i

t

dwi
t~w(vi

t{awi
tzb)dt

8<
: ð3Þ

with w~0:08, a~0:8 and b~0:7.

The McKean model: is a piecewise continuous approximation

of the Fitzhugh-Nagumo model that presents the mathematical

advantage of allowing explicit calculations and analytic develop-

ments [20,26]. In that model, the membrane potential of neuron i,

denoted vi, is coupled to an adaptation variable wi and to the

membrane potential of other neurons, and satisfy the equations:

dvi
t~(f (vi

t){wi
tzI iz

P
j Jij (v

j
t � h))dtzsidW i

t

dwi
t~ w(vi

t{wi
tzb)dt

(
ð4Þ

with

f (v)~

{lv{(lzc)a if vƒ{a

cv if avvva

{lvz(lzc)a if aƒv

8><
>:

and w~0:1, l~1, a~1, c~0:5, and b~0:8.

Mean-field limits
The behavior of very large random stochastic networks can be

adequately described in the mean-field limit corresponding to the

asymptotic regime where the number of neurons goes to infinity

[21] (the finite-size error is explicitly characterized as the distance

between the finite-sized network and the limit, and vanishes as

N??). Remarkably, in that limit, each neuron is an independent

realization of the same stochastic process described by an implicit

stochastic equation (called McKean-Vlasov equation, or simply

the mean-field equation). We review in this part the mean-field

theory and apply it to our cases for a network of populations of

neurons described by (1).

In our model, we assume that the synaptic weights are randomly

drawn from a normal law. Specifically, we consider that the

connection Jij between neurons i and j belonging to populations a

and c respectively is a Gaussian random variable with mean and

standard deviation depending on the populations they belong to:

Jij*N (
Jac

Nc
,

l

Nc
):

Jac is the averaged connectivity weight between populations a

and c, and l quantifies the heterogeneity (disorder) of these

synaptic weights.

As shown in [21,28], in the limit where all Na go to infinity, all

neurons belonging to the same population (say, a) are independent

and have the same probability distribution solution of the mean-

field equation:

dva
t ~(Fa(va,Za)z

PP
c~1 JacE½vc

t � � hzIa(t))dtzsadW a
t

dZa
t ~Ga(va

t ,Za
t )dtzCadBa

t

(
ð5Þ

The independence property (called propagation of chaos in

Boltzmann’s kinetic theory) ensure that in the limit, each neuron

produces an independent realization of the same probability

distribution, and thus, samples this law. Therefore, any statistics of

the neuronal activity in a population can be accessed. An

important example is the empirical average of the activity, which

converges towards the expectation of the solution to the mean-field

equation. This property has the important consequence that the

averaged activity of all neurons in a population can be accessible

through the mean-field equations.

Let us eventually notice that the mean-field equation (5) involves

an interaction term in the form of the expectation of the activity

(solution of the equation). In that sense, this is not a standard

stochastic differential equation, but an implicit (fixed-point)

equation in the space of stochastic processes. The mathematical

study of this type of equation is generally extremely complex. In

our present approach, we will manage to bypass this difficulty by

introducing a new quantity representing the macroscopic activity

of a population.

Firing Rates, Macroscopic Activity and Dynamics
Now that we introduced the network models and the limits we

are interested in, we are in a position to define the observable

macroscopic quantity that will describe the activity of the network.

The averaged firing-rate is usually considered as a relevant

macroscopic description of the population activity. Heuristically,

this quantity corresponds to the number of spikes fired in a certain

time window averaged over all neurons in the same population. Of

course, counting discrete events is a non-trivial operation, and

several computational definitions have been proposed [29].

This complexity motivates the introduction of an analogous

variable to the firing rate, which we call macroscopic activity,

simply defined as the averaged membrane potential of neurons

belonging to a given population and within a certain time window.

Although this measure does not explicit count spikes, it is closely

related to the firing-rate. Indeed, given that neurons communicate

via spikes which are stereotyped electrical impulses of extreme

amplitude, averaging the value of the membrane potential during

a time window and dividing by the area under a spike provide a

rough estimate of the number of spikes emitted. The main

difference between the two measures is that it is affected by the

subthreshold neuronal activity [30,31] which does not intervenes

in the computation of firing rates. However, this definition has the

Table 1. Linear part L for the different models.

Model Linear part

McKean L(na)~{na � (ldzhtw
)

Fitzhugh-
Nagumo

L(na)~{na � (
4

3
dzhtw

)

Hodgkin-
Huxley

L(na)~{gLna

d is the Dirac function centered at 0 and htw
(t)~we{wtH(t) for the first two

models (where H is the Heaviside function).
doi:10.1371/journal.pone.0078917.t001
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mathematical interest of being a linear transformation of the

activity of neurons.

In detail, we define the macroscopic activity na of population a as

the averaged membrane potential va over the neurons in the

populations temporally convolved with the time window function

g of width h~100 ms larger than the duration of a spike, but small

enough to resolve fine temporal structure of the network activity.

The time window is defined as g(t)~
1

K
e
{

t2

s2 with s chosen so that

Kg(h=2)~0:01 and K so that

ð
R

g(t)dt~1. The property of

neurons to have independent voltages in the large size limit allows

us to identify the population-averaged voltage with the statistical

expectation of the voltage variable in the mean-field limit. This

leads to the following expression for the macroscopic activity:

na(t) ~
def

(E½va� � g)(t) ð6Þ

Equation (5) therefore allows to characterize the macroscopic

activity as the solution of the equation

_nna~E½Fa(X a)� � gz
XP

b~1

Jab(nb � h)z~IIa(t) ð7Þ

where X a~(va,Za) and ~IIa~Ia � g.

This equation is not closed because of the term E½Fa(X a
t )� � g

which is not expressed as a function of the macroscopic activity.

Because of the nonlinearity of Fa, it is not likely that this quantity

only depends on na. Moreover, the membrane potential depends

on additional variables and the macroscopic activity hence

involves expected value of functions of these variables convolved

with the time kernel g. We now show how to reduce these

equations to a closed system on the variables (na,a~1 � � �P).

Rigorous derivation for deterministic McKean neuron
In order to explain the principle of the reduction, we start by

treating analytically the simplest case considered, namely the

McKean neurons networks with no noise. In this model, we

compute E½Fa(X a
t )� � g in a closed form. This leads to a rigorous

derivation of the reduced model.

We consider a McKean network (4) in the mean field limit (5)

and further consider si~0. The equations of the system reduce to:

dva~(f (va){waz
XP

c~1
JacE½vc� � hzIa(t))dt

_wwa~ w(va{wazb)

ð8Þ

In the sequel, we use an implicit integration of the adaptation

variable wa in (8) and replace in the voltage equation, the

adaptation variable by its expression as a function of voltage:

wa~va � htw
zb , where htw

(t)~ we{ w H(t) . Using the commu-

tativity of the convolution and equation (6), we obtain the exact

macroscopic equation for the McKean neuron:

_nna~E(f (va)) � g{na � htw{bz
XP

b~1

Jab(nb � h)z~IIa(t) ð9Þ

As said before, the only unknown term in the formula above is

E(f (va)) � g . In order to perform our reduction, we use the

assumption that the adaptation variable and input are slow, which

allows an adiabatic reduction, i.e. allows to consider

xa~
XP

c~1
JacE½vc

t � � hzIa(t) as a constant, i.e. va reaches its

equilibrium value very fast (we will numerically show in the sequel

that the reduction is quite robust when the assumption is not

perfectly satisfied). In this approximation, va can be considered

uncoupled from the others populations and it has the same

dynamics as a single McKean neuron, whose phase plane is shown

in Figure 1.

Under the assumption that the recovery variable is very slow

(w%1), the state of neurons in population a is essentially projected

on one of the two slow manifold, corresponding in the phase plane

Figure 1 to the single-arrowed orange branches of the v-nullcline.

Fast switches between these two branches of the slow manifold

occur when the trajectories reach an extremity of the manifold.

Except during the very fast transitions, it holds that

f (va)~{lva+(lzc)azxa and hence

E½f (va)�~{lE½va�zE(+)(lzc)azxa

with

E(+)~

ð
va

w0

dva(t){

ð
va

v0

dva(t)~P(va
w0){P(va

v0) .

Therefore we have:

E(f (va)) � g~{lnaz(lzc)a(P(va
w0){P(va

v0)) � gzxa

We write S(xa)[R the value toward which the function

t.((P(va
w0){P(va

v0)) � g)(t) converges when the McKean

is stimulated by a constant input xa (thus we discard the initial

transient). Computing P(va
v
> 0) � g for a constant effective input

xa amounts to computing the proportion of time system a

McKean neuron spends on (or close to) the slow manifolds

wa~{lva+(lzc)azxa . This can be performed analytically.

Indeed, there are two different cases:

N If xa
ƒ{(1{c)azb (resp. xa

§(1{c)azb ).

Then the system has a single stable fixed point on the negative

(resp. positive) slow manifold. In Figure 1, this corresponds to the

blue curve crossing the green piecewise cubic where the latter is

decreasing. In this case, S(xa)~{1 (resp. S(xa)~1 ).

N If {(1{c)azbvxa
v(1{c)azb .

Then the system is oscillating on a deterministic limit cycle

represented in orange in Figure 1. In this case,

S(xa)~
Tz(xa){T{(xa)

Tz(xa)zT{(xa)
where T{(xa) (resp. Tz(xa)) is the

duration it takes for the system to go along the negative (resp.

positive) part of the slow manifold. Following [32], we can access

these values. Indeed, assume the fast membrane potential

immediately goes to one of the slow nullclines. This gives the

equation: {lva+(lzc)a{wazxa~0 . Injecting this in the slow

equation and integrating along relaxation orbit (orange path in

Figure 1) leads to

Averaging Spiking Neural Networks
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Tz(xa)~
l

w

ðcazxa

{cazxa

dw

{(1zl)wz(lzc)azxazlb

~
l

w(1zl)
log (

(1z2c=lzc)azb{xa

(1{c)azb{xa
)

Similarly,

T{(xa)~
l

w(1zl)
log (

(1z2c=lzc)azxa{b

(1{c)azxa{b
)

Therefore, for xa[�{(1{c)azb,(1{c)azb½

S(xa)~

log (
((1z2c=lzc)azb{xa)((1{c)azxa{b)

((1{c)azb{xa)((1z2c=lzc)azxa{b)
)

log (
((1z2c=lzc)azb{xa)((1z2c=lzc)azxa{b)

((1{c)azb{xa)((1{c)azxa{b)
)

ð10Þ

This function is shown in Figure 2. It is a non-smooth sigmoidal

function with vertical tangents at {(1{c)azb and (1{c)azb .

This corresponds to the transition from a fixed point to the

oscillatory pattern.

Figure 4. Bifurcation diagrams of single neurons as a function of the input I . The upper row shows the temporal average of the solutions
(i.e. the fixed points and average value in the case of periodic orbits) and the lower row shows the frequency of the regular spiking regime, in the
McKean model (left), Fitzhugh-Nagumo model (center) and Hodgkin-Huxley model (right).
doi:10.1371/journal.pone.0078917.g004

Figure 5. Effective non-linearities surfaces in the McKean, Fitzhugh-Nagumo and Hodgkin-Huxley model. Observe that noise tends to
have a smoothing effect on the sigmoids.For the Hodgkin-Huxley model, we have empirically chosen a noise threshold under which the neuron was
considered regime II and above which it is regime I. There are thus 2 branches below the threshold and only one above.
doi:10.1371/journal.pone.0078917.g005
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Based on equations (9) and the definition of the sigmoid (10), we

are now in position to define an averaged model describing the

evolution of the macroscopic population activity. It takes the form

of a self consistent, non autonomous, delayed differential system:

_nna~ {na � (ldzhtw )|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
L(na)

z~SS(
Xp

b~1

Jab(nb � h)zIa � g) ð11Þ

where d is the Dirac function and ~SS is an element-wise function

such that ~SS(xa)~xaz(lzc)aS(xa){b . Note that this function

provides an analytic expression for the bifurcation diagram shown

latter.

Numerical computation the effective non-linearity for
any neuron model

In the general case (stochastic nonlinear neurons), one can

numerically compute the effective non-linearity. To make sense of

the term E½Fa(X a
t )� � g , we introduce the ansatz that this term can

be written as the sum of a linear functional of the macroscopic

activity and a non-linear term applied to the effective input to a

population (including the synaptic connections). Defining this

effective input xa as:

xa ~
def XP

b~1

Jab(nb � h)z~IIa(t) ð12Þ

the ansatz reads:

E½Fa(X a
t )� � g~L(na)zS(xa) ð13Þ

where L is a linear functional and S is a non-linear mapping which

remains to be determined. The choice of this ansatz was motivated

by the analytical treatment of networks of deterministic McKean

neurons, which naturally exhibits a relation like (13). The choice of

the linear functional L is dictated by the neuron model used.

To evaluate S, one need to assume that both the inputs and the

synapses are slow compared to the dynamics of the neurons. Thus,

the effective input xa can be considered as constant during the

time the neurons reach an asymptotic regime related to that input

state. If this regime is stationary, the value function S at xa will be

the average of Fa{L applied to that stationary stochastic process,

and therefore will provide a quantity only depending on xa. If the

regime is periodic in law, then taking a time window g of size h
larger than the period will also yield a constant value for our

nonlinear term. Because the mean-field equation (5) and a single

Figure 6. Comparison between the network simulations and computation of the averaged macroscopic variables (plain lines) and
simulations of the macroscopic equations (dashed lines). Averaged macroscopic variables are in plain lines and simulations of the
macroscopic equations are in dashed lines. The variable related to the 5 distinct populations (see text) are depicted in different colors. The inputs I to
the McKean and Fitzhugh-Nagumo networks are shown in (a), and for Hodgkin-Huxley networks we took an affine transform of these curves:
100Iz10. Transient phases in which the averaged microscopic system is imprecise due to the convolution with the symmetric window g are not
plotted. Initial mismatch is due to different initial conditions for both systems. We can observe it quickly disappear, showing the robustness of the
reduction to variations of the initial conditions. The simulations where done using a stochastic Euler algorithm with T~15000 (resp. T~30000) time
steps of size dt~0:1 (resp. dt~0:05) for McKean and FitzHugh-Nagumo (resp. Hodgkin-Huxley) networks.
doi:10.1371/journal.pone.0078917.g006
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neuron equation only differ in the interaction term which is

assumed constant here, the computation of S(xa) simply

corresponds to computing the temporal average of Fa{L along

the trajectory a single noisy neuron forced with a constant input

xa. Actually, for readability reasons, after combining equations (7),

(12) and (13) into a final macroscopic equation, we will rather focus

on the function ~SS which is simply defined as ~SS(xa)~S(xa)zxa .

One of the pitfalls of this methods occurs if the mean-field

equation present multiple stable stationary or periodic attractors.

In that particular case, the quantity E½Fa(X a
t )� � g can take

different values depending on the initial condition. A neuron

model (together with a particular set of parameters) will be said to

be of regime I if there is only one of these attractor for any initial

condition. Similarly, if there are p-attractors, the neuron model is

said to be in regime p. Figure 3 shows different values for ~SS(xa)
when starting from different initial condition. Figure 3 left shows

the solution for regime I and Figure 3 right for regime II. The

points obtained are then segmented into a few clusters (in our case,

one or two in regimes I and II respectively) and smoothed out into

a surface (or a union of surfaces) see Figure 5. This procedure is

relatively time consuming. The result of extensive simulations on

the McKean, Fitzhugh-Nagumo and Hodgkin-Huxley models,

using this numerical procedure, are freely available online as well

as the algorithm generating these data.

Linear part L for the different models
Identifying L for a given model, consists in gathering the most

linear terms in the intrinsic dynamics of a single neuron F . This

linear term can be time-delayed. The linear part of each of the

considered neurons are shown in table 1.

For McKean and Fitzhugh-Nagumo models, the convolution

accounts entirely for the existence of the adaptation variable w
which will therefore still be present in the reduced model. The

choice of the linear part of the McKean model naturally comes out

of the computations. The choice of the coefficient 4=3 for the

Fitzhugh-Nagumo model relies on an analogy to the McKean

neuron. It corresponds to the (absolute value) of the slope of the

straight line approximating the negative decreasing part of the

non-linearity Fitzhugh-Nagumo v{
v3

3
. As of the Hodgkin-

Huxley, we were not able to extract a linear delayed term in the

intrinsic dynamics of a neuron so we simply chose the linear decay

naturally present in the equations.

Simulation of the macroscopic equations

For regime I neurons, when the effective non-linearity ~SS is

univalued, simulations of the macroscopic equations simply reduce

to solving numerically the following ordinary differential equation

_nna~L(na)z~SS(
XP

b~1

Jab(nb � h)z~IIa(t)) ð14Þ

For regime II neurons, when the initial condition is not in the

bistable region, we will consider that the averaged system pursues

on the initial attractor (fixed point or spiking cycle) when possible,

and switches attractors if the activity brings the system in regions

where the initial attractor disappears. In details, let us denote by
~SS(xa,1) the branch of stable fixed points, defined as long as

xa
ƒIH , and by ~SS(xa,2) the branch of periodic orbits defined for

xa
§IFLC . The macroscopic activity of population a in a P-

population network hence satisfies the equations:

_nna~L(na)z~SS(
PP

c~1 Jab(nb � h)z~IIa,p(t))

_pp(t)~dxa{IH
dp,1{dxa{IFLC

dp,2:

(
ð15Þ

This approximation will be efficient if the probability to switch

from one attractor to the other is small, e.g. for small noise.

Results

In this section, we evaluate the accuracy of the reduced model

presented above for the three neuron models McKean, Fitzhugh-

Nagumo and Hodgkin-Huxley. First, we address the computation

of the effective non-linearity both in the deterministic and noisy

cases. Second, we confront the time course of the macroscopic

activity calculated according to our reduction against the a

posteriori average of the activity of a spiking network.

Effective non-linearity without noise
In the deterministic reduction (small noise limit), the effective

non-linearity can be obtained through the bifurcation analysis of a

single neuron. Indeed, the effective sigmoid amounts to computing

the temporal average �vv of the voltage solution of the deterministic

single-cell system upon variation of the input. The result of that

analysis using the numerical software XPPAut [33] is displayed in

Figure 4. In these diagrams, we colored regions of stationary

solutions (green), periodic solutions (purple) and bistable regimes

with co-existence of a stable stationary solution and a stable

periodic orbit.

The McKean neuron: Although the deterministic McKean

neuron has been analytically treated previously, we now consider it

under the angle of bifurcations for consistency with the other

models. In the McKean neuron, the non-differentiable, piecewise-

continuous nature of the flow gives rise to a non-smooth Hopf

bifurcation associated with a branch of stable limit cycles. The

emergence of the cycle arises through a non-smooth homoclinic

bifurcation, hence corresponding to the existence of arbitrarily

slow periodic orbits, typical of a class I excitability in the Hodgkin

classification. In this model, an important distinction is the absence

of bistable regime: the average variable has a unique value

whatever the initial condition and whatever the input chosen. In

the present case, stable permanent regimes are unique. Therefore,

there exists a single-valued function ~SS defining the dynamics of the

macroscopic activity through equation (14).

The Fitzhugh-Nagumo model: The bifurcation diagram of

the Fitzhugh-Nagumo neuron as a function of the input level (see

Figure 4 middle column) presents a very small parameter region of

multi-stability. For small negative input, the system presents a

stable fixed point. Increasing the value of the input makes the fixed

point lose stability through sub-critical Hopf bifurcation, and

unstable limit cycles appear. These limit cycles undergo a fold and

a branch of limit cycles appear, overlapping in a small parameter

region the state where a stable equilibrium exists. This small

parameter region again corresponds to a bistable regime with co-

existence of a resting state and of a regular spiking behavior. This

branch of stable limit cycles corresponds to a regular spiking

regime. As the input is further increased (in a biologically

unplausible range), the same scenario arises symmetrically: the

branch of stable periodic orbits undergoes a fold of limit cycles, a

branch of unstable periodic orbits emerges from this bifurcation

and connects with the unstable fixed point at a sub-critical Hopf

bifurcation and the unstable fixed point gains stability. Here again,

the neuron corresponds to a class II excitability and a regime II,
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but the system could be well approximated by a excitability I/

regime I since the bi-stability region is of very small extent and the

periodic orbits have very small periods when appearing, close from

a class I excitability. Thus, we consider that the macroscopic

activity evolves according to equation (14) as illustrated in the

following.

The Hodgkin-Huxley model: This model displays qualita-

tively the same features as that of the Fitzhugh-Nagumo model but

with significant quantitative differences. In particular, the bifur-

cation diagram of the Hodgkin-Huxley neuron (Figure 4 right

column) displays multi-stability over a larger range of input values.

The bifurcation diagram displays a branch of stable fixed points

(green region) that undergo a sub-critical Hopf bifurcation for

xa~IH , associated to a family of unstable limit cycles (pink dotted

lines represent the average value of v along the cycle). This family

of unstable limit cycles connects with a branch of stable limit cycles

(pink solid line) through a fold of limit cycles bifurcation. These

stable limit cycles are the unique attractor for large input

(implausibly large input values will nevertheless see these cycles

disappear in favor of a high voltage fixed point). The system

presents a bistable regime (yellow input region) where a stable

fixed point and a stable periodic orbit co-exist. The frequency

along the cycle (Figure 4 right column) shows a class II excitability

in the Hodgkin classification: oscillations appear with a finite

period and a non-zero frequency. The hysteresis present in the

yellow region corresponds to what we called a regime II. In

simulations, when the initial condition is not in the bistable region,

we will consider that the system pursues on the initial attractor

(fixed point or spiking cycle) when possible, and switches attractors

if the activity brings the system in regions where the initial

attractor disappears, as explained in the Material and Methods

section. This method is chosen here because the bi-stability only

appears for small noise, regimes in which switches between the

different attractors are rare.

Effective non-linearity with noise
In order to compute effective nonlinearities in the presence of

noise, we resort to numerical simulations. The method described

in Material and Methods provide the surfaces plotted in Figure 5.

In that picture, the effective non-linearity is displayed as a surface,

plotted for fixed parameters except noise intensity s and effective

input xa. It appears relatively clear in the figure that noise tends to

have a smoothing effect on the sigmoids. This effect is particularly

clear in the Hodgkin-Huxley model where a multivalued function

(regime II) is turned into a single valued smooth function (regime

I).

In the case of the Fitzhugh-Nagumo model, we observe that the

regime II is not observed in simulations in the presence of noise.

This is due to the smallness of the parameter region corresponding

to the bistable regime, and the averaged system can be well

approximated by regime I dynamics. In the case of the Hodgkin-

Huxley network, there are clearly two different behaviors

depending of the level of intrinsic noise. When the noise is small

(resp. large) the neuron is regime II (resp. I). Interestingly, this

shows how a strong noise can qualitatively simplify the macro-

scopic dynamics of a network.

Comparison between reduced model and averaged
spiking network

We now simulate large networks of McKean, Fitzhugh-Nagumo

and Hodgkin-Huxley neurons, compute numerically their macro-

scopic averaged activity, and compare the dynamics of this

Figure 7. Robustness of the reduction with respect to the variation of the parameters. The y-axis corresponds to the mean of the absolute
value of the difference between the a posteriori averaged full system and the reduced system. (left) g corresponds to the heterogeneity of the inputs
to each population. m corresponds to the strength of the connections between populations. N is the number of neurons per population. l
corresponds to the heterogeneity of connections within populations. s is the intrinsic dynamic noise added to each neuron. k is an index of the input

speed, it corresponds to feeding the network with I(
k

2
t) where I is the function displayed in Figure 6 top left. ts (in ms) is the characteristic time of

the synapses.
doi:10.1371/journal.pone.0078917.g007
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variable to simulations of the reduced ordinary differential

equation involving our effective non-linearity function in all three

cases.

We consider network models with P~5 populations, each made

of N~200 neurons, with averaged connectivity weight Jab chosen

randomly according to a normal law: Jac*N (0,
m

P
) . The neuron

i in population a receives an input Ii~miI
a, where mi*N (1,g) .

The mean-field theory [21] works if g~0, i.e. all the neurons in a

population receive the same input. Therefore, the results in this

section correspond to g~0. However, the robustness of the

approximation to variation of g will be tested in the next section.

Some parameters are constant for all simulations: ts~10ms,

h~100ms. Simulation dependent parameters are detailed in the

caption of Figure 6 which gathers the comparison for the different

models.

The comparison for the McKean and Fitzhugh-Nagumo

neurons show a precise match see Figure 6 (top middle and right,

and bottom left) even when the strength m~1 of the connections is

strong enough to significantly modify the shape of the input signal.

The comparison for the Hodgkin-Huxley neuron are only a

relative success. The first difficulty arises, as expected, for small

noise within regime II where the reduction is not univocally

determined. The algorithm proposed in Material and Methods to

simulate the regime II networks fails reproducing faithfully the

averaged spiking network, see Figure 6 bottom right. The network

activity is precisely recovered for input that cross relatively rapidly

the multistable region (blue and green curve) or that do not

intersect the multivalued input region (cyan and purple). However,

the red population, spending much time in the multivalued region

is not well approximated by the macroscopic activity model: the

network equations may randomly switch from spike to rest, which

produces the irregular macroscopic activity, whereas the smooth

firing rate does not show such switches. These switches arise

randomly, and vary from realization to realization. Notwithstand-

ing these unavoidable errors, we observe a fair fit of the

macroscopic activity model, which recovers most of the qualitative

properties of the network activity. Eventually, we note that even in

this configuration, the reduced model is remains accurate when

the connections between populations are kept small, i.e. m~0:1 in

Figure 6 bottom middle.

Robustness to parameter change
In Figure 7, we illustrate the robustness of the reduction with

respect to the variation of some parameters for the McKean

neurons. These results are very similar for Fitzhugh-Nagumo

neurons but fairly different and worse for the Hodgkin-Huxley

neurons. Indeed, the sensitivity is much higher for the latter and

the derivation is only valid when the populations are weakly

connected, as shown in Figure 6 bottom middle and right.

The left picture in Figure 7 shows a small variation of the

distance between the full network and the reduced system. Indeed,

even the strongest variation for these parameters is one order of

magnitude smaller than the typical variation of the signal in

Figure 6 top middle. This suggests the reduction is robust to the

variation of these parameters within the reasonable range of values

chosen.

However, the right picture shows that the slowness of the

synapses is a critical feature enabling the reduction. The synapses

have to be at least one order of magnitude slower than the

neurons’ activity. Yet, the fastest synapses enabling the reduction,

i.e. ts~10ms, are reasonably fast with respect to measurements.

Thus, this restriction is relevant and the reduction can be

performed in biological regimes.

Discussion

Even if collective phenomena arising in large noisy spiking

neural networks are extremely complex, we have shown that,

under some assumptions and for some models, a macroscopic

variable describing the global behavior of the network can be

consistently described by simple low dimensional deterministic

differential equations. The parameters and non-linearity involved

are determined by the type of neurons considered and by the level

of noise neurons are subjected to. Depending on the neuron model

the non-linearity can be a simple, well-behaved function (which we

call regime I) or a more complicated multivalued function (which

we call regime II in case of two values). The three neuron models

we considered (McKean, Fitzhugh-Nagumo and Hodgkin-Huxley)

are regime I when the intrinsic noise is strong in the network, and

we expect this property to be valid for any type of neuron models.

However, with weak noise the Hodgkin-Huxley model is regime

II, in which case the low-dimensional model proposed is more

complicated (involving jumps between attractors). Comparisons of

the averaged dynamics of spiking networks with the reduced

equations showed a very precise fit, even for initial conditions

independent of the network initial conditions, for regime I neuron

models. However, for the regime II neuron models, the reduction

accuracy is not as good. Indeed, noise will induce random switches

from one attractor to the other, which cannot be handled through

reduced methods, and therefore path-wise fit are bound to be out

of reach. Yet, the reduced model recovers the main qualitative

features of the signal, but in the bistable regions, quantitative

distinctions arise.

For neurons in regime I, the reduction accuracy is significantly

better for McKean and Fitzhugh-Nagumo neuron models than for

the Hodgkin-Huxley model. Indeed, the reduction for the latter

becomes irrelevant for strong connections between neurons

whereas it is not the case for the former. We believe this is not

due an inherent difference between the models, but rather to an

inadequacy of the choice of the linear part L for the Hodgkin-

Huxley model in such parameter regimes. Indeed, as shown in

table 1, there is some time-delayed information in the linear part

of McKean and Fitzhugh-Nagumo whereas there is simply a linear

instantaneous decay for Hodgkin-Huxley model. Analyzing the

origin of this memory and the adequate term to be considered in

the Hodgkin-Huxley networks is an exciting problem that we are

currently investigating.

This reduction relies on a number of assumptions imposed by

the mathematical approach: first, the approach is valid when

neuronal populations are large and randomly connected for

averaging effects to occur (i.e. for the mean-field reduction to

hold). More importantly, the reduction is largely based on the

linearity of synapses. As said in the introduction, this assumption is

not fully consistent with the biological system. It was however

necessary to perform the reduction. Extending this approach to

non-linear synapses is an important improvement to increase

biological plausibility of these results well worth investigating.

Another assumption was the slowness of synapses and inputs. This

assumption, required in our mathematical developments, does not

seem critical. Indeed, simulations have shown that the reduction

was quite robust to increased speed for synapse and inputs.

It is important to note the extreme complexity reduction

obtained: in the case of Fitzhugh-Nagumo networks, we reduced a

system of 2PN stochastic differential equations with P populations

into a system of 2P deterministic, ordinary one dimensional

differential equations. The nonlinear transforms computed, as well

as code for the simulations, are freely provided online. For efficient

simulation of large-scale neuronal spiking networks with noise, if
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one is interested in computing the mean macroscopic activity,

simulating the reduced model is a precise and simple choice that

shall be considered for efficiency.

This study quantifies the stabilization properties of the noise,

that were already discussed in [34], controlling the shape of the

effective non-linearity of the reduced model. Noise tends to act as a

linearizer: when the noise is strong, the network macroscopic

activity tend to evolve more linearly. The example of Hodgkin-

Huxley model shows it can even change a neuron model from

regime II to regime I. This implies that knowing the value of the

intrinsic noise in biological tissues could be a good indicator to

evaluate their level of non-linearity.

As opposed to former reduction techniques [25], we have

presented here a way to reduce networks of large populations of

neurons to ordinary differential equation reminiscent to the

heuristically motivated Wilson-Cowan equations [12]. However, a

notable difference with these Heuristic models is the time delayed

feature of the linear part of these reduced equations, correspond-

ing to the adaptation variable. This motivates the study of classical

neural networks with adaptation which could be an important

feature of information processing in the brain.
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