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Abstract

Motivation: Weighted semantic networks built from text-mined literature can be used to retrieve known protein-protein or
gene-disease associations, and have been shown to anticipate associations years before they are explicitly stated in the
literature. Our text-mining system recognizes over 640,000 biomedical concepts: some are specific (i.e., names of genes or
proteins) others generic (e.g., ‘Homo sapiens’). Generic concepts may play important roles in automated information
retrieval, extraction, and inference but may also result in concept overload and confound retrieval and reasoning with low-
relevance or even spurious links. Here, we attempted to optimize the retrieval performance for protein-protein interactions
(PPI) by filtering generic concepts (node filtering) or links to generic concepts (edge filtering) from a weighted semantic
network. First, we defined metrics based on network properties that quantify the specificity of concepts. Then using these
metrics, we systematically filtered generic information from the network while monitoring retrieval performance of known
protein-protein interactions. We also systematically filtered specific information from the network (inverse filtering), and
assessed the retrieval performance of networks composed of generic information alone.

Results: Filtering generic or specific information induced a two-phase response in retrieval performance: initially the effects
of filtering were minimal but beyond a critical threshold network performance suddenly drops. Contrary to expectations,
networks composed exclusively of generic information demonstrated retrieval performance comparable to unfiltered
networks that also contain specific concepts. Furthermore, an analysis using individual generic concepts demonstrated that
they can effectively support the retrieval of known protein-protein interactions. For instance the concept ‘‘binding’’ is
indicative for PPI retrieval and the concept ‘‘mutation abnormality’’ is indicative for gene-disease associations.

Conclusion: Generic concepts are important for information retrieval and cannot be removed from semantic networks
without negative impact on retrieval performance.
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Introduction

The growth of scientific literature in the biomedical and life

sciences has surpassed the capacity of human comprehension.

Without some means of automatic data integration, increasing

amounts of valuable information will remain lost in plain sight,

relevant and novel implications (i.e., novel associations) will go

untested, and expensive experimental research projects will be

needlessly replicated [1]. In response, numerous text-mining based

integration tools have been developed for automated information

retrieval, extraction, and inference [2–4]. These tools are often

developed and benchmarked in retrospective studies, but have

potential for knowledge discovery.

We use a text-mining and inference system based on concept

profiles to expose novel and relevant associations between

concepts from biomedical literature. This information retrieval

system has been shown in retrospective studies to rediscover

gene-chemical, protein-protein, and gene-disease associations in

some cases years before they were explicitly stated in the literature

[5,6]. Concept profiles have also been shown to predict protein-

protein interactions that were subsequently validated experimen-

tally [7].

Concept profiles for information retrieval and knowledge

discovery are generated in a three-step process. First, a large text

corpus (in this case 10 million MEDLINE abstracts) is indexed

using a custom thesaurus, mapping and disambiguating terms to

specific biomedical concepts. The concepts belong to a curated

compilation of existing biomedical ontologies and cover diseases,

symptoms, tissues, biological processes and other biometrically

relevant semantic types. Second, for each concept, a weighted list

(profile) of all other concepts is constructed from the observed co-

occurrence frequency in each abstract. For example, gene and

disease concepts typically have hundreds of other concepts in their

profiles, and some have thousands of concepts. Third, the number
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and weights of the shared concepts between two concept profiles is

used to determine the strength of the association. The concept

profile match score can be computed using various vector-

matching methods.

Importantly, concept profiles allow the individual contribution

of each shared concept to the overall match score to be quantified

(Table 1). Expert users can then scan this list of shared concepts as

an aid in the subsequent rationalization of the inferred association.

In turn, this can help the researcher formulate testable hypotheses

[7]. The list of shared concepts is thus a potential resource for

knowledge navigation and discovery.

The list of shared concepts has some general features. First, we

find in general that the first few top-ranking concepts account for

90% or more of the overall match score. The remaining concepts

contribute only a tiny fraction but there are many more of them

(i.e., hundreds or thousands). For example, Table 1 shows the top

20 highest and 20 lowest ranking shared concepts between the two

protein concepts ‘CAPN3’ and ‘PARVB’, along with their

contribution to the overall match score. These two proteins were

correctly predicted to be interacting by our system, as confirmed

by subsequent experimental studies [7]. Furthermore, although

concepts near the top of the list tend to have specific meaning and

obvious relevance, concepts near the bottom are often interpreted

by expert users as being generic or even ‘useless’ or ‘disturbing’,

and are perceived by biomedical experts to add little or no

information that aids in rationalizing the putative association.

In order to better understand the roles played by specific and

generic concepts and in an effort to avoid concept overload and

provide the end users with a shorter and more relevant list of shared

concepts, we incrementally filtered generic concepts from the network

while measuring the impact on information retrieval. First, following

previous research [7] we constructed concept profiles for human

proteins, and retrieved protein-protein pairs having high match

scores. We benchmarked these associations against known sets of

protein-protein interactions. Then we rigorously define ‘generic’ and

‘specific’ based on the statistical weights and connectivity properties of

the semantic network of concepts given by the concept profiles.

Lastly, we filter the generic information from the network by

removing low-weight connections (edge filtering) or concepts having

high-degree of connectivity (node filtering). In each case, we find that

the removal of generic concepts from the network decreased PPI

retrieval performance. As a control, we also perform the inverse

filtering i.e., we removed specific concepts and measured the PPI

retrieval performance of networks composed of generic concepts

alone. Surprisingly, networks built from only generic concepts had

comparable performance to the unfiltered networks in PPI retrieval.

Apparently generic concepts, or combinations of generic concepts,

play a vital role in information retrieval even when they represent to

the expert user no obvious relevance.

Methods

Text-Mining
The Open Source concept recognition software Peregrine scans

free-text and resolves homonyms and maps ambiguous terminol-

ogy and spellings to unique biomedical concepts [8–10] (software

available at https://trac.nbic.nl/data-mining/). Peregrine uses an

extensive custom thesaurus of 640,016 biomedical concepts based

on the Unified Medical Language System [11], augmented with

concepts from Entrez-Gene [12], Online Mendelian Inheritance

in Man [13], UniProt [14], and the Human Gene Nomenclature

Database [15]. Using Peregrine, over 10 million MEDLINE

documents (titles, Medical Subject Headings, and abstract text)

were indexed from January 1980 to December 2009.

Building Concept Profiles
A concept profile is an M-dimensional vector wi = (wi1,wi2,…,

wiM) where i a particular concept, and M is the number of

Table 1. The 20 highest and 20 lowest ranking shared
concepts between the proteins CAPN3 and PARVB with the
percent contribution of each concept to the overall match
score.

Rank Overlapping Concept Contribution (%)

1 DYSF 82

2 CAPN2 4

3 LGMD2B 3.6

4 Limb girdle 3.3

5 Actinin 1.9

6 muscular dystrophy 1.3

7 CAPN1 1.1

8 CAPNS1 0.57

9 CAST 0.35

10 LAMA2 0.31

11 congenital muscular dystrophy 0.23

12 CAV3 0.22

13 Sarcolemma 0.15

14 LGMD1C 0.12

15 Z line 0.12

16 skeletal muscle structure 0.035

17 positional cloning 0.030

18 Skeletal system 0.028

19 Skeletal Myocytes 0.023

20 Cytoskeleton 0.021

262 Wills 7.5E-07

263 Cloning 7.4E-07

264 Activities 7.1E-07

265 Others 6.0E-07

266 Evolution 5.6E-07

267 physical assessment findings 5.5E-07

268 cellular targeting 5.5E-07

269 Adult 5.4E-07

270 Laboratory Procedures 4.7E-07

271 Clone Cells 4.4E-07

272 Restricting 3.8E-07

273 Near 3.5E-07

274 Extracellular 3.5E-07

275 cell differentiation process 3.3E-07

276 Collagen 2.8E-07

277 Pathogenesis 2.3E-07

278 Biologic Development 2.2E-07

279 majority 1.5E-07

280 pathogenesis 1.3E-07

281 Event 8.6563E-08

The contribution is calculated as a percentage of an individual product between
2 concepts divided by the inner product (which is the sum of all individual
products). This inferred association from text-mining was subsequently
validated as a physical protein-protein interaction in vitro [7].
doi:10.1371/journal.pone.0078665.t001
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concepts in the thesaurus. A concept must occur in a minimum of

5 abstracts before a concept profile is created [9]. The weight wij

for a concept j in this profile indicates the strength of its association

to the concept i. The weights are computed from pair-wise

concept-concept co-occurrence frequencies within individual

abstracts. Given concepts X and Y, co-occurrence is characterized

by 4 contingencies: they may both occur, neither may occur, or

one may be present without the other. An association between X

and Y is computed from this 262 contingency table using a

measure of mutual information called the symmetric uncertainty

coefficient, U(Xi,Yj) [9,16], where ‘H’ is entropy.

wij~U(Xi,Yj)~
H(Xi)zH(Yj){H(Xi,Yj)

1
2

(H(XizH(Yj))
ð1Þ

The uncertainty coefficient gives extra weight to those concepts

that have specific associations. As an example consider the concept

DMD (the gene) and the disease Duchenne Muscular Dystrophy.

In the vast majority of MEDLINE abstracts, both concepts will be

absent. However, there will still be many abstracts where these

concepts co-occur. Relatively few abstracts will mention one

concept but not the other. The contingency table reflecting these

co-occurrences will result in a high association between DMD and

Duchenne as computed by the uncertainty coefficient. In contrast,

the concepts ‘human’ and DMD will yield a very different

contingency table and association score. In this case, ‘human’ is a

generic concept and there will be many abstracts where human

and DMD occur together, but also many other abstracts where

human occurs without DMD. For contingency tables with generic

concepts the uncertainty coefficient will yield a low association

score.

The PPI Weighted Semantic Network
Using Peregrine, the thesaurus and the MEDLINE corpus

11,541 concept profiles for human proteins could be constructed.

Each concept found in these profiles was stored together with its

weight, creating a weighted semantic network of 158,487

individual concepts. Although the network was constructed for

protein concept profiles this network contain concepts of any

semantic type.

Concept Profile Matching
Using concept profiles, we established associations between

concept pairs based on the similarity of their concept profiles [7,9].

Concept profiles can be treated as vectors of weights, where the

weights are values derived from the Uncertainty Coefficient. The

similarity between two concept profiles A and B can thus be

computed by taking the inner product over the weights in the

vector. The inner product increases with an increasing number of

shared concepts.

Benchmark Dataset
We use protein-protein interactions (PPI) from the Human

Protein Reference Database (HPRD) to serve as a test set of

established PPIs. HPRD FLAT_FILES_072010 was downloaded

from hprd.org and 37,067 PPIs were extracted. Of these, 32,333

could be mapped to concept profiles. Each match score was

normalized to percentile rank scores by comparing each match

score to a frequency distribution of match scores constructed from

randomly sampled protein pairs.

We made a second test set of gene disease associations from

OMIM. We downloaded the morbidmap file from the NCBI

website. We selected only diseases and genes having unambiguous

OMIM identifiers. In total we obtained 1,800 known gene disease

associations. As a reference we constructed a set of 10,000

randomly selected gene-disease pairs from our thesaurus. The

diseases are of semantic type ‘syndrome’, or ‘disease’.

Analysis
We use standard information retrieval measurements to validate

the performance of the weighted semantic network [7]. Expecta-

tions are that established PPIs will rank higher than novel (but

meaningful) protein-protein associations, which in turn are higher

ranked than random (meaningless) protein-protein associations.

We compute the Area Under the Curve (AuC) of the Receiver

Operating Characteristic (ROC) as an indication of the relative

ranking of known and unknown associations. A ranked list where

first all the established knowledge is shown will have an AuC of 1.

A ranked list where the unknown and known information is shown

in no particular order (as if it would be random) will have an AuC

of 0.5.

Defining Concept Specificity
Concepts may be specific or generic. Intuitively, we say the

concept ‘Homo sapiens’’ is generic because it is found throughout

MEDLINE (appearing in 8,231,081 abstracts) and in association

with many different concepts. On the other hand, the protein

CAPN3 is specific in that it is found in a smaller number of

abstracts (350) and tends to be associated with a narrower range of

concepts. To measure the specificity of a concept we consider

three attributes:

1) The number of abstracts in which the concept appears: We

computed for each concept in the thesaurus the number of

abstracts in which it appears. The distribution approximates a

power-law (Figure 1). The top of the rank-ordered list is

dominated by concepts that appear intuitively to be generic

(Table 2). More specific concepts, such as protein names are

found lower in the list (below 5 on the log scale). For example,

the first instance of a protein (TNF tumor necrosis factor)

occurs at rank 871, and it occurs in 85,002 abstracts.

(Figure 1). Fifty two percent of the concepts in the list do

not appear in any MEDLINE abstract (these are largely

complex chemical names and non-human proteins).

2) The number of other concepts to which the concept is

connected (network degree): It is reasonable to consider that

generic concepts will have high degrees in the network. Since

the PPI weighted semantic network consists of 11,541 protein

profiles the maximum degree, if that protein appears in each

protein profile, will be 11,541.

3) The weights between any two concepts in the network. As

discussed above the uncertainty coefficient computes weak

associations between two concepts when at least one of two

concepts is generic. For example, the association that

establishes DMD as a human gene has low weight because

‘gene’ is generic.

Filtering nodes or edges from the network
We filter generic information from the network by either

removing generic concepts (node filtering) or by removing an

association from the network based on the association strength

(edge filtering). In node filtering, we used different filter cut offs

ranging from 0 to a maximum of 11,541, with step sizes of 500. In

edge filtering, we set thresholds in increments of 0.5 on the log

scale. As a more intuitive control, we also filter concepts from the

network if that concept appears in a number of abstracts equal to

Biomedical Semantic Network of Generic Information

PLOS ONE | www.plosone.org 3 November 2013 | Volume 8 | Issue 11 | e78665



the cut-off. The threshold for number of abstracts is incremented

in steps of 0.5 on the log10 scale, over the range from log 0 to 7.

These filtering techniques remove generic information from the

network, creating a smaller network enriched in specific concepts.

However, we also performed the inverse filtering, i.e., removing

specific information from the network, thus creating a network

comprised of generic information. In all cases, we evaluate the

ability of the networks to retrieve PPI using the AuC value of the

appropriate ROC.

Results

Filtering
Figure 2 shows how the PPI retrieval power of the semantic

network was impacted when filtering generic information. In each

case, the unfiltered network is depicted in the upper right corner of

the plot (having an AuC value just above 0.9). As an increasingly

more stringent filter threshold was applied from right to left, the

performance of the networks (depicted by the heavy curve) at first

experienced relatively little change. However, in each case a

threshold was eventually reached that initiated a precipitous drop

in performance toward the AuC value of 0.5 (i.e., where a network

would have no discovery power above random expectations). For

example, in Figure 2A, a threshold value of 5 (on the log scale)

means concepts that occur in more than 100,000 abstracts were

removed from the network.

Although the quantitative features of the curves are distinct,

they nonetheless share the similar two-phase behavior of initial

robustness to filtering, followed by a dramatic loss of performance.

That generic concepts or associations can to some extent be

removed from the semantic network with only minimal loss of

performance is usually interpreted as an indication that generic

concepts carry little or no information required for PPI retrieval,

and it is the specific concepts or associations that are most valuable

for concept discrimination, retrieval and inference. The dramatic

loss of performance occurs only when thresholds are so severe that

specific information is itself removed from the network.

To directly test this hypothetical interpretation, we also

evaluated the PPI retrieval performance of the inverse filtering

process. Rather than removing generic information (moving the

threshold from right to left), we removed specific concepts and

associations (moving the threshold from left to right). Thus, the

points in the far left upper corner of the plots represent the

unfiltered original network while points to the right (following the

light curves) represent semantic networks increasingly enriched in

generic information. For example, in Figure 2A, a threshold value

of 5 (in this case) means specific concepts occurring in less than

100,000 abstracts were removed, creating a network enriched in

generic concepts found among a very large number of abstracts.

The expectation was that without the discriminating power of

specific information, PPI retrieval performance should be nil.

To the contrary, we found that generic networks retained

substantial PPI retrieval performance (light curves Figure 2).

Although not as pronounced, the inverse filter curves also display

two-phase behavior of robustness then collapse. Catastrophic

failure of the network to retrieve PPIs occurs only at extreme filter

thresholds at the far right-hand side of the plots (on the log scale,

6.5 for abstracts, 3 for node degree, and 211.5 for associations).

Comparing the filtering and inverse filtering performance

curves on the same plot reveals the counterintuitive, but valuable

contribution of generic information in PPI retrieval. For example

in Figure 2C, when filtering generic links (heavy curve) the

Figure 1. Concepts in the thesaurus ranked by the number of abstracts in which they appear in the MEDLINE text corpus. Generic
concepts appear in a large number of abstracts while specific concepts, such as proteins (red points below log 5) tend to occur in a smaller number of
abstracts. Not plotted are the 308,656 concepts having no occurrence in MEDLINE abstracts.
doi:10.1371/journal.pone.0078665.g001
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network performance drops to 0.6 at the association threshold of

26 on the log scale. The network, though enriched in specific

links, has apparently become too sparse for information to be

effectively integrated for PPI retrieval. Yet, the specific links that

have been removed at this threshold (light curve) demonstrate an

AuC value close to the original network. Similar behavior is found

when filtering on the basis of occurrence in abstracts and node

degree. Clearly, generic information is capable of the retrieval of

PPIs.

To validate this curious finding, we repeated this analysis using

a benchmark dataset gene-disease associations (See method section

for details). The impact of the three filtering methods on the gene-

disease retrieval performance is depicted in Figure 2D–F, and the

curves have both qualitative and quantitative similarity to those for

PPI retrieval performance. This confirms that our initial results for

PPIs were not a special case limited to that semantic type or is an

artifact of the text-mining system. Apparently, a relatively small set

of the most generic concepts has the capacity to discriminate both

PPIs and gene-disease associations. As there is no a priori

connection between the most generic concepts in the semantic

network and the particular associations we chose to investigate

here, it is likely that generic concepts will exhibit retrieval power

for any concept-concept association. That is, the reasonable

retrieval performance of generic concepts is a generic property.

Retrieval Power of the Core Generic Network
To better understand the PPI retrieval power of generic

information, we investigated the set of generic concepts that

remained after setting a stringent filter threshold. Considering the

thesaurus rank-ordered by generic concepts (Figure 1), we observe

there are 735 top-ranking generic concepts in the thesaurus above

the cut-off of 5 on the log scale. From Figure 2A, we see that a

semantic network composed only of these 735 top-ranking generic

concepts (indicated by the red circle) nonetheless has an AuC of

0.83. In other words, after removing 153,752 (154,487–735)

concepts from the semantic network, which is more than 99.5% of

the total, the system continues to demonstrate remarkable retrieval

power. As indicated before, the concepts appear intuitively to be

generic (Table 2). Clearly, the discriminating power of these

generic concepts is held in their tremendous number of links. Even

so, at this filter threshold nearly 81% of the edges have been

removed.

Although the cut-off of 100,000 abstracts is somewhat arbitrary,

the resulting 735 concepts apparently form a core network of

generic concepts, of which at least some are effective in PPI and

gene-disease retrieval.

To visualize the role of the core network of generic concepts in

discriminating PPIs, we determined for each concept the

frequency of PPIs that have that concept among their list of

shared concepts (the list of shared concepts having an upper bound

of 735). For example, the top-ranking PPI (HTT and CASP3) has

631shared concepts from the core generic network. Figure 3

depicts this frequency distribution for the PPIs and an equal

number of randomly chosen protein pairs, revealing that these

distributions to be distinct: PPIs have a more uniform distribution

of generic concepts among their shared concepts than do the

random protein pairs. This indicates that concept profiles for

proteins having PPIs are enriched in these 735 top-ranking generic

concepts.

Retrieval Power of the Individual Generic Concepts
The Core Network of 735 Generic Concepts was identified by

inspection of Figures 1 and 2A (red circle). However, in all the

plots of Figure 2, comparable retrieval power can be obtained

from even more stringent filter thresholds (i.e., even smaller sets of

generic concepts). For example, in Figure 2A, AuC values of

nearly 0.8 can be obtained from a filter threshold of 6.5 (concepts

appearing in 3 million abstracts or more). In this case, there are

only 8 generic concepts composing the network, yet they are

highly effective in the identification of the PPI benchmark. This

result indicates that individual concepts can make a significant

contribution to retrieval, and so we pushed this observation to the

limit of single concepts. We tested each of the 735 concepts in the

Core Generic Network for retrieval of both PPI and gene-disease

associations (Figure 4). From this we see that the majority of the

concepts do in fact have moderate retrieval performance (AuC

around 0.6–0.7). The lowest scoring concept (AuC = 0.5, no

retrieval power) is ‘‘plants’’. On the other hand, a relatively small

number of concepts exhibit remarkable retrieval power (AuC 0.8

or above). The top-ranking concepts for PPI and gene-disease

retrieval are listed in the plot, and although generic, appear to

have special relevance to the retrieval task. For example, the

Table 2. The 30 highest ranking concepts in the thesaurus by
the number of abstracts in which they appear in the MEDLINE
text corpus (1980–2009).

Rank Concept Number of abstracts

1 Homo sapiens 8231081

2 equus asinus asinus 4578399

3 Male gender 4227525

4 Female 4121931

5 Clinical Trials 4108241

6 Scientific Study 3906753

7 DICOM Study 3906024

8 Animals 3404900

9 Patients 2907515

10 Adult 2797586

11 Therapeutic procedure 2225147

12 Aging 2184314

13 Age 2184279

14 Middle Aged 2119368

15 Analysis 1929201

16 Others 1815242

17 Cells 1729989

18 Time 1432880

19 Reported By 1419865

20 Lowing (vocalization) 1371831

21 Indicated 1313043

22 Does not 1302387

23 Activities 1201045

24 Measures 1138383

25 etiology 1134433

26 Methods 1110329

27 Laboratory Procedures 1080545

28 Evaluation procedure 1062532

29 Diagnosis 1052395

30 Related 1048459

These top-ranking concepts appear to be generic.
doi:10.1371/journal.pone.0078665.t002
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highest-scoring concepts for PPI retrieval are ‘‘protein binding’’,

‘‘regulation’’, ‘‘binding’’, and ‘‘mediation’’. However, these

concepts retrieve gene-disease associations with only moderate

performance (AuC values just above 0.6). A similar, but inverse

pattern holds for concepts that score highest in gene-disease

retrieval. ‘‘Mutation Abnormality’’ which is the 183rd most

generic concept, but has obvious relevance to genetic diseases (Auc

0.90) but PPIs less so (AuC 0.73).

To further demonstrate the retrieval power of individual

concepts, we expanded the analysis to include concepts from the

PPI network spanning the entire range from specific to generic

(Figure 5). These results demonstrated a clear trend that more

generic concepts indeed have higher retrieval power.

Discussion

The ultimate aim of network filtering is to optimize inference

and guide expert users when navigating the landscape of novel

associations. When using concept profile matching to identify

strongly associated pairs of concepts, the list of shared concepts

creating the association contains both generic and specific

information, and this has been used by experts in rationalizing

the semantic basis for the associations. To help the user gain more

from the list of shared concepts, we felt it was necessary to create

lists that had fewer generic concepts and/or prioritized specific

and relevant concepts to higher ranks. We also hypothesized that

eliminating some generic concepts could lead to improvements in

semantic reasoning (as measured by benchmarked true positive

rates).

Figure 2. The impact of three different filtering methods on the retrieval performance of the weighted semantic network. A–C, PPI
retrieval performance (true positive rate or recall) is measured as the Area under the ROC Curve (ordinate). Panels D–F retrieval performance for
known gene-disease associations. An AuC value of 0.5 indicates no retrieval power above random expectations. The weighted semantic network is
filtered by incrementally removing generic information (heavy curve) from right to left or by incrementally removing specific information (inverse
filtering, light curve) from left to right. Filter Threshold is indicated on the abscissa. Panels A, B, D, and E represent node filtering approaches while
panel C and F represent edge filtering (see Method section for details). The red circle in panel A indicates the PPI retrieval performance (0.83) for a
network where 99.52% of the nodes have been removed (i.e., all concepts occurring in 100,000 abstracts or fewer).
doi:10.1371/journal.pone.0078665.g002
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However, the results presented herein indicate that node or

edge information, either generic or specific, cannot be filtered

from the weighted semantic network without a loss of PPI retrieval

performance. This suggests that nearly all the concepts and links in

the network are making perhaps small, but still important

contributions to the retrieval process. Hence, it is not possible to

give users a shorter list without a loss of retrieval and inference

power.

Although this result came a surprise, analogous findings appear

to have been made other text-mining analyses. For example, it was

demonstrated that ‘common words’ such as ‘in’, ‘of’, ‘and’, ‘if’,

‘or’, ‘many’, which can also be regarded as generic, form a

‘backbone structure’ to literary texts and at the same time provide

a signature of those texts [17,18].

In any case, the indispensable role of generic concepts creates a

dilemma where, on one hand, we cannot afford to remove more

generic elements (nodes or edges) from the network, while on the

other hand most of the generic elements will not be meaningful to

the human expert. Indeed, in our experience working with

biomedical researchers we find that generic concepts are often

disturbing to the rationalization process. The question then is how

to optimize retrieval and reasoning and at the same time present

optimal output for interpretation and rationalization by experts.

We propose to separate the information that is ‘presented to

humans’ from the information processed by computer in in silico

reasoning. We propose to present information to users in ways that

are customized to their own expertise. The fact that many more

(up to thousands) of concepts have contributed small but essential

fractions to the reasoning process should be ‘known to them but

not shown to them’. Instead, lists of shared concepts or associations

could be prioritized based on concept profiles constructed

specifically for the user’s expertise (based on, for example, text-

mining their own corpus of publications and project proposals).

The user could ‘filter’ their personal concept profile and remove

the concepts, whether specific or generic, having little relevance to

Figure 3. The frequency distribution of core generic concepts shared between PPIs (open bars) is more uniform than is the
distribution for randomly chosen protein pairs (grey solid bars). Since the core generic network exists of 735 concepts the number of shared
concepts between two profiles can be maximum 735.
doi:10.1371/journal.pone.0078665.g003

Figure 4. The retrieval power of individual generic concepts.
Plotted are the AuC values for 735 individual concepts when retrieving
PPI (x-axis) and gene-disease associations (y-axis).
doi:10.1371/journal.pone.0078665.g004

Biomedical Semantic Network of Generic Information

PLOS ONE | www.plosone.org 7 November 2013 | Volume 8 | Issue 11 | e78665



them. This personal (and personalized) concept profile could then

be the ‘filter’ when inspecting the output.

This scenario does not only help solve the dilemma of generic

concepts for an individual researcher, but it also reflects the use of

‘‘social machines’’ [19] in harnessing diverse expertise. For

complex problems that may require multiple experts, personalized

concept profiles permit users with different expertise to view the

same outputs from unique and potentially complementary points

of view.

The results presented herein indicate that node or edge

information, either generic or specific, cannot be filtered from

the weighted semantic network without a loss of PPI retrieval

performance. Although the specificity metrics defined in Section

2.7 are intuitively reasonable, more sophisticated metrics can also

be introduced. For example, in addition to degree and weights, we

may also consider the heterogeneity in the distribution of weights

to any given concept. Presumably generic concepts will have a

more uniform distribution of (low) weight edges while specific

concepts will have a relatively small number of high weight edges

even if they have high degree. We also see that the polar

characterization of concepts as either generic or specific is likely

too simplistic. For example, the concept glutamate is clearly

generic, and occurs in position 632 in the concept profile for the

disease concept ‘migraine’. However, migraine researchers have

come to see a special role for glutamate in the etiology of the

diseases and have an expectation to see the concept ranking high

in the concept profile. In this case, the generic concept ‘glutamate’

has a conditional specificity. Without context, glutamate is generic,

but in the context of a particular disease (e.g., in association with

concepts such as ‘migraine’, ‘aura’ or ‘calcium channel’),

glutamate has a new level of relevance and specificity. This

conditional specificity may be computed by considering the joint

degree or edge weights of glutamate along with its associated

concepts. Conditional specificity might be effectively modeled

using the cluster coefficient [20]. By using the cluster coefficient,

we can begin to model associations not only between concepts, but

also between naturally occurring clusters of concepts. In this way,

glutamate might have highly ranked associations with migraine,

even though it is generic outside that context.

Conclusion

Generic concepts are characterized by a broad spectrum and a

high number of weak associations with other concepts. Herein we

investigate the effects of filtering generic concepts on retrieval of

PPI. The results indicate that node or edge information, either

generic or specific, cannot be filtered from the weighted semantic

network without a loss of PPI retrieval performance. This implies

that all the concepts and links in the network are making

important contributions to information retrieval.
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Figure 5. The PPI retrieval power of individual concepts (ordinate) spanning the specific-generic spectrum (log number of
abstracts, abscissa). The distribution of number of abstracts in which concepts occur follows a power-law (there are many concepts appearing in
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the rest) in order to establish clear trends for each case. Above 4.7 all 1431 concepts were evaluated.
doi:10.1371/journal.pone.0078665.g005
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