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Abstract

Genome-wide association studies (GWAS) led to the identification of numerous novel loci for a number of complex diseases.
Pathway-based approaches using genotypic data provide tangible leads which cannot be identified by single marker
approaches as implemented in GWAS. The available pathway analysis approaches mainly differ in the employed databases
and in the applied statistics for determining the significance of the associated disease markers. So far, pathway-based
approaches using GWAS data failed to consider the overlapping of genes among different pathways or the influence of
protein–interactions. We performed a multistage integrative pathway (MIP) analysis on three common diseases - Crohn’s
disease (CD), rheumatoid arthritis (RA) and type 1 diabetes (T1D) - incorporating genotypic, pathway, protein- and domain-
interaction data to identify novel associations between these diseases and pathways. Additionally, we assessed the
sensitivity of our method by studying the influence of the most significant SNPs on the pathway analysis by removing those
and comparing the corresponding pathway analysis results. Apart from confirming many previously published associations
between pathways and RA, CD and T1D, our MIP approach was able to identify three new associations between disease
phenotypes and pathways. This includes a relation between the influenza-A pathway and RA, as well as a relation between
T1D and the phagosome and toxoplasmosis pathways. These results provide new leads to understand the molecular
underpinnings of these diseases. The developed software herein used is available at http://www.cogsys.cs.uni-tuebingen.
de/software/GWASPathwayIdentifier/index.htm.
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Introduction

GWAS typically focus on single marker statistics to obtain top

hits [1]. This approach led to the identification of new candidate

regions/SNPs in multiple disorders. In the National Human

Genome Research Institute catalogue of September 2012, only

4,392 out of 8,965 studies reported a p-value smaller than 1028, a

common statistical threshold required for genome-wide signifi-

cance. This argues in favor of applying new methodologies to

unravel the complex architecture of common diseases [2]. It is

conceivable that SNPs, which are genuinely associated with a

phenotype, may not be identified with a single GWAS due to the

small effect size of risk variants. Therefore, it is plausible to

hypothesize that the pathway-based approaches which jointly

consider multiple SNPs or genes in the same pathway may offer an

alternative approach to standard single marker statistics approach-

es to uncover the genetics of complex diseases. Pathway-based

studies are preformed because risk alleles for any given phenotype

are more likely to be distributed among certain groups of genes

whose functionalities are closely related [3].

A great number of studies highlighted the usefulness of

pathway-based approaches to detect new genes/SNPs which

otherwise would be skipped due to strict statistical stringencies,

which are usually applied in GWAS to avoid false positive findings

[4,5]. For example, a study by Wang et al., which used Wellcome

Trust Case-Control Consortium (WTCCC) GWAS data on

Crohn’s disease (CD), highlighted the role of numerous genes

involved in the IL12/IL23 pathway, which were only identified

through meta-analyses of several GWAS [6].

So far, most of the pathway studies based on GWAS data

published to date have used only genotypic data or summary

statistics to identify new pathways for different diseases. These

approaches use different algorithms and database and they led to

the identification of novel disease associated pathways for diverse

complex phenotypes (PoDA [7], KGG [8], IPA and GSEA [9],

ICSNPathway [10], BGSAsnp [11], WGNCA [12], GenGen [6],

GRAIL [13]. There are only few published methods that also

consider the importance of protein interaction data and automat-

ically account for interactions that are not stored in the employed

pathway databases. Path, for example, allows the user to integrate

his own knowledge about interacting SNPs [14] to improve the
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Table 1. Consistently significant pathways.

Pathway p-value

Crohn’s disease Rheumatoid arthritis Type 1 diabetes

Allograft rejection - #1.0E-06 #1.0E-06

Antigen processing and presentation 1.6E-03 #1.0E-06 #1.0E-06

Apoptosis - 3.0E-03 -

Asthma - #1.0E-06 9.6E-03

Autoimmune thyroid disease - #1.0E-06 #1.0E-06

Axon guidance - 1.6E-02 -

B cell receptor signaling pathway #1.0E-06 - -

Calcium signaling pathway - 7.2E-03 -

Cell adhesion molecules (CAMs) - #1.0E-06 -

Cytokine-cytokine receptor interaction - 1.6 E-03 -

Endocytosis #1.0E-06 2.2 E-03 -

Epstein-Barr virus infection #1.0E-06 #1.0E-06 #1.0E-06

Fc epsilon RI signaling pathway #1.0E-06 - -

Fc gamma R-mediated phagocytosis #1.0E-06 - -

Galactose metabolism - - 9.4E-03

Glycerolipid metabolism 3.0E-03 - -

Glycerophospholipid metabolism 2.0E-04 - -

Graft-versus-host disease 4.4E-03 #1.0E-06 #1.0E-06

Herpes simplex infection 1.0E-03 #1.0E-06 #1.0E-06

HTLV-I infection #1.0E-06 #1.0E-06 #1.0E-06

Influenza A 2.6E-03 2.0E-04 1.5E-02

Inositol phosphate metabolism 3.4E-03 - -

Intestinal immune network for IgA production - #1.0E-06 1.5E-02

Jak-STAT signaling pathway #1.0E-06 - -

Leishmaniasis 1.6E-03 8.0E-04 1.2E-02

Leukocyte transendothelial migration - 1.6E-02 -

MAPK signaling pathway - 3.4E-02 -

Measles - 1.0E-03 -

Natural killer cell mediated cytotoxicity - 2.0E-04 9.2E-03

Neuroactive ligand-receptor interaction #1.0E-06 - -

Non-small cell lung cancer #1.0E-06 - -

Pathways in cancer #1.0E-06 - -

Phagosome - #1.0E-06 2.5E-02

Phosphatidylinositol signaling system 6.0E-04 - -

Rheumatoid arthritis 5.0E-03 3.2E-03 8.4E-03

RNA transport - - 8.2E-03

Shigellosis - - 2.4E-02

Small cell lung cancer #1.0E-06 - -

Staphylococcus aureus infection 2.0E-04 #1.0E-06 3.6E-03

Systemic lupus erythematosus - #1.0E-06 2.2E-02

Tight junction - 2.2E-03 -

Toxoplasmosis - 1.6E-03 8.0E-03

Tuberculosis 4.0E-04 4.0E-04 1.2E-03

Tumor viruses and cancer - #1.0E-06 #1.0E-06

Type I diabetes mellitus 8.0E-04 #1.0E-06 #1.0E-06

Viral myocarditis - #1.0E-06 #1.0E-06

To avoid that a pathway is only significant due to a small number of significant SNPs, we performed the multistage integrative pathway (MIP) analysis pipeline four
times with different constraints. In the first MIP run, all SNPs are included. In the next three runs, only those having a p-value smaller than a threshold of 1023, 1024, and
1025, respectively, are included. This table lists all pathways that had a p-value smaller than 0.05 during all four MIP runs. The complete results of each disease are
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detection of associated pathways; Baranzini et al. used an

application which identifies sub-pathways using protein interac-

tions [4]; DAPPLE is a tool that inverts the traditional approaches

by building disease associated protein interaction networks, using

interaction information from pathway databases [15]; Lastly,

GenGen combines single SNP statistics of overlapping genes [6] in

order to detect associations of SNPs and pathways. A more

detailed overview of the mentioned pathway approaches, the

investigated diseases and applied databases is shown in Table S1.

Nevertheless, all these above mentioned studies did not investigate

the role and influence of the most significant SNPs on the pathway

analysis results.

Therefore, we performed a multistage pathway analysis, which

allows the combination of GWAS data with pathway and protein-

interaction information to reveal novel pathways. The applied

protein-interaction data consists of both known and predicted

interactions from published prediction algorithms at the domain

level [16]. The advantage of using predicted protein-interactions

with genotypic data is to augment common pathway knowledge

with new possible interactions. This information helps to identify

new pathways involved in the disease pathogenesis. Additionally,

we developed a stand-alone user-friendly Java application, named

GWAS Pathway Identifier, to perform this multistage pathway

analysis for complex diseases.

Results

Evaluation using GWAS Pathway Identifier
All 255 pathways from the KEGG database have been included

in our study. A total of 361,963 SNPs for CD, 362,229 SNPs for

RA, and 362,548 SNPs for T1D encompassing 16,820 genes were

included in the study. We were able to identify 157 pathways for

CD, 56 for RA and 46 pathways for T1D with a p-value smaller

than 1023 (see Tables S2, S3, and S4). Among these pathways, we

identified the influenza-A pathway for RA as well as the

phagosome and toxoplasmosis pathway for T1D, which represent

as-yet unknown genotypic links to the disease phenotype (see

Table S5). These three pathways were only discovered by using

the integrative pathway approach in our analysis. This highlights

the usefulness of integrating protein-interaction databases in

GWAS settings to uncover new leads that decipher the genetic

etiology of complex phenotypes. Notably, using the multistage

integrative pathway (MIP) approach for analyzing CD, T1D and

RA, our results, in addition to identifying new pathways for RA

and TID, are also in agreement with previously published studies

(see Table S5).

Besides the comparison to previously published studies, we also

performed an analysis using the application GenGen, a gene-set

enrichment analysis [6], on all three WTCCC datasets and

compared the results to our study. In contrast to GenGen, we

discovered the above mentioned three new significant links to

pathways associated with RA and T1D, which have not been

identified by GenGen (see Table S5).

Evaluating the bias of the pathway analysis
Using the MIP approach, we performed multiple analyses to

understand the influence of significant SNPs on the best pathways

for the given phenotypes. Furthermore, as described in the

methods section, we evaluated the influence of the most significant

markers on the pathway sets in our study by excluding markers

whose p-values were smaller than a defined threshold. We

discovered 24 pathways for CD, 31 for RA and 24 for T1D,

which remained significant over all sensitivity runs (see Table 1

and Table S6). After excluding the most significant SNPs, we were

not able to rediscover previously published associations to

pathways that are associated with RA, T1D and CD, for instance

the cytokine-cytokine pathway for CD [17].

Rheumatoid arthritis
The majority of pathways that are significant in our analyses for

RA are related to the immune system. Our results for RA are in

agreement with previously published studies [4,5]. We also

identified the influenza-A pathway, a novel disease associated

pathway. This pathway remained significant even after removing

the most significant SNPs and the association has not been

detected in previously published studies (see Table S5, RA).

Type 1 diabetes
The majority of pathways that are significant in our analyses for

T1D are related to immune functions. The investigation of T1D

with the MIP approach and subsequent sensitivity analysis

identified a relation to 24 pathways, out of which two have not

been published before. The two newly identified pathways are

phagosome and toxoplasmosis (see Table S5, T1D). Both

pathways are directly involved in the immune defense. Therefore,

a connection between T1D and autoimmune diseases is conceiv-

able. Especially, anti-toxoplasma antibodies might have an effect

to autoimmune diseases [18].

Crohn’s disease
Using the MIP approach and applying a sensitivity analysis, 24

out of 157 best pathway sets from the CD investigation remained

significant (15.3%). The top hit pathways encompass mainly

disease, infection and immune response pathways, such as Epstein-

Barr virus infection, B cell receptor signaling and the antigen

processing and presentation pathway. These findings support the

theory of a connection between CD and microbe interactions [19].

Furthermore, our study clearly confirms the role of previously

published pathways as important pathways in influencing the

susceptibility to CD (see Table S5, CD).

Suggested common biological mechanisms in three
different phenotypes

To understand the role of common biological pathways in

different phenotypes, we mined three phenotypes using SNP sets

that are based on known and predicted protein-interactions and

pathway information (see the methods section for more details).

We observed a substantial overlap of eleven pathways between

CD, RA and T1D (see Table 1). These pathways cover a broad

range of different functions, such as immune responses, and

provide new insights into disease-overlapping aspects. The

observation of common pathways might suggest a common

biological mechanism that triggers different disease phenotypes.

Discussion

We here present the multistage integrative pathway analysis

(MIP) that incorporates information from protein-interaction

databases and GWAS genotypic data to perform a pathway-based

analysis of GWAS. Using our MIP approach, apart from

shown in supplementary Tables S2, S3 and S4, and a more detailed overview of all four MIP runs which also includes a comparison to the literature is depicted in Table
S5.
doi:10.1371/journal.pone.0078577.t001
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confirming previously published pathways, we also identified three

pathways associated with RA and T1D. The identified pathways

are considered to be associated to these phenotypes (see Table S5),

even though none of the SNPs in these pathways have been

identified as putative risk factor in recently published GWAS.

Additionally, we showed that it is important to consider the

influence of the top significant SNPs on a pathway analysis. These

SNPs distort the statistical evaluation in a manner that a whole

pathway is discovered to be associated to a disease although it is

only one or few SNPs which are associated to it. We overcome this

problem by excluding SNPs having a p-value smaller than 1023,

1024 or 1025 and performed our analysis again. Finally, we

compare these results to the original study that includes all SNPs.

After this comparison 24 pathways of the CD analysis, 31

pathways of the RA analysis and 24 pathways of the T1D

pathways kept significant in all analysis runs. Thus, our method is

not biased by single SNPs having very low p-values.

Up to now, there exist several pathway analysis approaches for

GWAS. They differ in statistics, machine learning methods or text

mining approaches which are applied for the identification of

disease related pathways. Besides these fundamental differences,

the used bioinformatics databases and/or the releases also vary

between the studies (see Table S1). Due to these facts, it is not

straightforward to compare different pathway analysis methods

[20].

In this study, we used experimentally validated and predicted

protein interaction data to extend the existing biological knowl-

edge for the identification of disease associated pathways. Other

approaches used such information in a different way. For instance,

the application DAPPLE extracts existing interaction knowledge

from pathway databases to build its own protein interaction

networks [15] and the application Path requires manually entered

interaction data from the user [14]. In contrast to these

approaches, we automatically combine pathway data with

additional protein interaction. To our knowledge there exists no

similar approach which makes a direct comparison between the

study results difficult. However, it was possible to compare our

results to the application GenGen as this tool used similar data

sources (see Table S7), to the results of [4–6,21] and we

additionally mined the literature to validate the presented results

(see Table S5). Finally, most of our results were found by other

pathways tools and in literature, thus, we only denoted those

pathways as new associated disease pathways which cannot be

identified by any other source.

Further, it was possible to show that including biological a priori

knowledge improves the quality of SNP sets and leads to more

Figure 1. Consistency of pathway sets generated with the proposed analysis methods. The procedure described in this manuscript
includes multiple analysis methods to identify significant pathways that are related to the phenotype of a given GWAS. This diagram shows with
which analysis methods the consistent pathway sets that are listed in Table 2 have been determined. In average, 61% of the sets are determined with
the interaction methods. In contrast, the characteristic interaction methods only identified less significant pathway sets. Concluding, it is more
important to focus on the interaction based methods for the identification of important SNP sets.
doi:10.1371/journal.pone.0078577.g001

Table 2. Overview of the investigated WTCCC data sets.

WTCCC data set
Number of
cases

Number of
controls Number of SNPs after quality control

All p-value ,1.0205 p-value ,1.0204 p-value ,1.0203

Crohn’s disease 2,005 1,504 361,963 361,872 361,637 360,543

Rheumatoid arthritis 1,999 1,504 362,229 361,996 361,866 361,240

Type 1 diabetes 2,000 1,504 362,548 362,153 361,981 361,348

The SNPs were genotyped with an Affymetrix GeneChip 500K. The 1958 British Birth cohort with 1,504 samples was used as control.
doi:10.1371/journal.pone.0078577.t002
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significant results. We designed four different kinds of pathway

analysis methods to build pathway-based SNP sets. Two of these

methods include protein-interaction data. In summary, 45.83%

for CD, 77.42% for RA, and 70.83% for T1D of the best pathway

sets are determined using the interaction methods (see Figure 1).

The majority of pathways that are significant for CD, RA and

T1D cover a wide variety of different functions. For example, for

CD we were able to identify pathways dealing with cell signaling

(see Table 1). This includes among others, the Jak-STAT and B

cell receptor signaling pathway in CD pathogenesis. The latter was

already reported in other studies [22].

Likewise for RA and T1D, the majority of pathways that are top

hits in our study are related to immunological functions. The

involvement of immunological pathways in these disorders is not

surprising and has been shown in previous studies [19,23,24]. The

involvement of the influenza pathway in RA, however, has not

been reported before and may provide new clues to understand

the pathophysiology mechanism of the disease. Indeed, a recent

study showed that RA patients have an increased risk of infection

although the increased susceptibility to infections could not be

attributed to a compromised humoral immune response [25].

The significance of the phagosome pathway in T1D seems to be

obvious since it plays an important role in the immune system,

whose activity is increased in T1D patients. The pathways

identified in RA and T1D have not been nominated by other

pathway studies.

The identification of common pathways for different pheno-

types suggests common molecular underpinnings for these

disorders which is likely due to a cumulative effect of multiple

low risk factors in these pathways that might trigger different

phenotypes. For example, the allograft rejection and the intestinal

immune network for IgA production pathways have been shown

to be involved in RA and T1D [26–29].

Out of many publicly available databases such as BioCarta and

Gene Ontology (GO), we choose to construct our pathways based

on KEGG PATHWAY. Each of these databases has its own

advantage and disadvantage. However, we chose KEGG, because

its pathways are manually curated, represent a high-quality

resource and provides a well-defined amount of metabolic and

signaling pathways [30,31]. In contrast, GO is an ontology and

has the purpose of categorizing biological terms [32] while KEGG

aims at reflecting biological workflows.

Our study also has a few limitations. Despite the use of an

integrative approach in deciphering newly associated pathways for

diverse phenotypes for any given pathway study, the basic unit of

analysis is a pathway, which is extracted from existing databases.

Despite the advancement in genomics, the function of many genes is

not deciphered and hence those genes cannot be assigned to

Figure 2. Established analysis pipeline for a multistage integrative pathway analysis. The analysis consists of three steps: 1) Construction
of the SNP data structure, 2) Creation of the pathway sets, and 3) evaluation of these sets and determination of the best ones. The data structure is
built by mapping all SNPs to their corresponding gene. Depending on the domain-interactions of the gene’s proteins, each gene is assigned to a
gene interaction class, which describes the number of interactions and the interaction confidence of the encoded proteins. For this purpose,
information from UniProt, Pfam, DOMINE, and KEGG is used. Additionally, the KEGG pathways of the genes are determined. In the second step, four
different pathway sets are built (for more details see Figure 3). In the final step, these sets are statistically evaluated with a variation of the Fisher’s test
statistic. Since there are several pathway sets built for one pathway, a best list is determined containing exclusively one set per pathway which has a
p-value smaller or equal 0.05.
doi:10.1371/journal.pone.0078577.g002
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pathways. Moreover, recent studies also suggest the role of non-

coding regions in influencing the susceptibility to complex pheno-

types, therefore, like GWAS, pathways also capture a relatively

modest amount of genetic variations. The technological advance-

ment will expedite the annotation of the human genome, which will

help to curate comprehensive pathway data sets for genetic studies.

Materials and Methods

Study cohorts
We used four publically available Wellcome Case-Control

Consortium (WTCCC) GWAS datasets for our study: Crohn’s

disease (CD), rheumatoid arthritis (RA) and type 1 diabetes (T1D)

as cases, and the British Birth cohort as control. These datasets

have already been subject to extensive quality control procedures,

whose details are described elsewhere [33]. Additionally, we

filtered all datasets to exclude samples or SNPs with more than 5%

missing values, variants with less than 5% minor allele frequency,

and samples deviating from the Hardy-Weinberg equilibrium

using the PLINK command line tool [34]. A detailed overview of

the datasets is shown in Table 2.

Overview of the study
We developed a three step multistage integrative pathway (MIP)

analysis pipeline to perform a pathway-based GWAS analysis for

each WTCCC dataset. In the first step, we constructed a multi-

layered data structure consisting of SNP, gene, known and

predicted protein-interaction, and pathway data. Based on this

data structure, four different kinds of SNP sets were generated in

the second step. Finally, these sets were evaluated with a

modification of the Fisher’s combined statistic approach using

5000 permutations and a best list of the pathways was determined

(see Figure 2 and a more detailed method overview in Figure S1).

The MIP was performed four times: the first time with all SNPs

and three times with an exclusion of the most significant SNPs

having a p-value smaller than a predefined threshold. For these

three runs, we selected a threshold of 1023, 1024, and 1025 (see

Table 2 for detailed SNP numbers). With the exclusion of the top

significant marker hits, we avoid that a pathway is significant only

due to a small number of markers with extraordinary significance.

Finally, only those pathway sets are selected which have a p-value

smaller than 0.05 in all four MIP runs. The results are summarized

in Table 1 and a detailed view is given in Table S6.

Figure 3. Definition of the interaction pathway sets. We built
four interaction pathway sets: ultra (yellow), high (red), medium (blue)
and low (green) depending on the interaction classes of the genes.
These interaction classes are either EV (experimentally validated), HC
(high interaction confidence), MC (medium interaction confidence) and
LC (low interaction confidence). The low interaction set is the superset
of all interaction sets because it includes genes of all interaction classes.
In contrast, the smallest ultra set only contains the genes of the EV class.
doi:10.1371/journal.pone.0078577.g003

Figure 4. Pathway set creation example. This example shows how the different pathway sets are built for a given pathway x. The pathway x is
depicted as blue rectangle and the genes 1 to 5 as orange rectangles. For the pathway x, six different pathway sets are created. First, the pathway
set containing the SNPs of all genes occurring in pathway x. Second, the characteristic pathway set that only contains the SNPs of those genes
occurring exclusively in pathway x, i.e., genes 2, 3, 4 and 5. Since gene 1 also shows up in pathways y and z, the SNPs of these genes are not
considered in the characteristic pathway interaction set. Third, two pathway interaction sets are created: first, the ultra-set for the SNPs of the
genes assigned to the EV interaction class and second, the high-set with SNPs of genes assigned to the HC and EV class. Finally, the characteristic
interaction pathway sets are generated. These sets are built similar to the interaction pathway sets but they contain only those SNPs of genes
occurring exclusively in pathway x. In contrast to the ultra interaction set, the ultra characteristic interaction set does not include the SNPs 1, 2 and 3
because the corresponding gene also occurs in pathways y and z.
doi:10.1371/journal.pone.0078577.g004

Integrative Pathway-Based Approach for GWAS
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In addition to our study, we performed an analysis for the CD,

RA and T1D dataset with the program GenGen using the

published GenGen pathway-definition file for KEGG pathways

(kegg.gmt) [6]. Finally, we compared the top pathways of our study

to the results from GenGen, to the pathway analysis approaches

from [4,5,21,35], and to previously published literature (see Table

S5).

SNP data structure
We designed a special data structure for this analysis by

incorporating information content from KEGG PATHWAY

(release 63.0, July 1, 2012 [36]), as well as known and predicted

protein-interaction data from the databases UniProt (release

2011_02 [37]), Pfam (release 25, March 2011 [38]) and DOMINE

(v2.0, September 2010 [16]). Our data structure implemented in

GWAS Pathway Identifier consists of five connected layers: (i) the

SNP layer consists of SNPs and p-values determined using a

single marker analysis of PLINK [34]; (ii) the pathway layer
contains pathways from KEGG; (iii) the gene layer provides

genes for the SNPs, a gene interaction class (see below), and a

connection to the pathway and protein layer; (iv) the protein
layer combines data from UniProt and Pfam and provides all

encoded proteins of the gene layer and protein domains; (v) the

domain-interaction layer contains known and predicted

domain-interactions from the DOMINE database (see Figure 2).

We used the freely available mapping file from the chip

manufacturer to obtain a link between SNPs and genes. Therefore,

we combined two SNP annotation files as given by Affymetrix for

the GeneChip 500k, Mapping250K_Sty.na32.annot.txt and

Mapping250K_Sty.na32.annot.txt (both version number 32).

The combined file provides NCBI gene and reference sequence

identifiers to map the SNPs onto genes. With this mapping

method, it was possible to assign 98.7% of the SNPs to genes. After

mapping the SNPs to genes using the recommended Affymetrix

annotation, 37% of these SNPs are directly located in the coding

region of their associated genes and 61.7% of these SNPs are

located 59 upstream or 39 downstream of associated genes. Those

SNPs are also included in the analysis.

Depending on the domain interactions, we assigned an

interaction class to each gene which reflects the number of

interactions of the corresponding protein, and the interaction

confidence of these interactions. We chose four interaction classes

defined by the DOMINE database (ordered in descending

interaction confidence): experimentally validated (EV), high

interaction confidence (HC), medium interaction confidence

(MC) and low interaction confidence (LC). The interaction class

corresponds to the median of all interaction categories, i.e., at least

50% of the interactions must belong to the defined class or to a

class of higher confidence.

The advantage of constructing such a data structure is that SNP

sets can be built that reflect the biological background and

biochemical interplay of the SNP genes more precisely than

randomly created SNP sets.

Construction of pathway sets
In the following, a pathway set describes a set of SNPs that

meets different requirements. Thus, the basis of every set is a

pathway, i.e., it consists exclusively of SNPs located on genes that

are contained in this specific pathway. For our analysis, we built

four different pathway sets: (i) simple pathway sets, (ii) character-

istic pathway sets (iii) interaction pathway sets, and (iv) character-

istic interaction pathway sets. The simplest set is the pathway
set, which contains all SNPs located in any gene of a specific

pathway. In contrast the characteristic pathway set contains

only those SNPs of genes occurring exclusively in the pathway. If a

gene occurs in more than one pathway it is not considered for the

analysis. In addition to that, the characteristic pathway set allows

us to explore the influence of overlapping genes between different

pathways.

The interaction pathway set additionally considers the gene

interaction classes for the SNP-set construction. For each pathway,

four different sets are created depending on the gene interaction

classes: ultra-set, high-set, medium-set and low-set. The low-set is

the superset of all interaction-pathway sets and includes the SNPs of

genes of all interaction classes. The medium-set contains only

SNPs of genes assigned to the EV, HC and MC class. The high-set

is built by genes with EV and HC class and finally, the ultra set

consists of the SNPs of the EV class (see Figure 3). The

characteristic interaction pathway set is a combination of

the characteristic pathway set and the interaction pathway set. A separate

set is built for each interaction class analogous to the interaction

pathway sets. But only those SNPs are included, whose

corresponding gene occurs exclusively in this pathway. This is

similar to the generation of the characteristic pathway sets. An

example of the construction of these pathways sets is shown in

Figure 4.

Statistical analysis of pathway sets
We applied the statistical method proposed by De la Cruz et al.

with 5000 permutations to evaluate the defined pathway sets [39].

We used the algorithm with 5000 permutations because our

analyses showed that more permutations did not yield any

improvements. The method is a variation of Fishers’s combined

probability test and implicitly overcomes the problem of handling

linkage disequilibrium between SNPs, multiple testing and an

adjustment of different sizes of genes. Briefly, the method proceeds

as follows: for each pathway set 5000 new SNP sets are defined

with randomly permuted disease states. The number of SNPs in

these new sets is equal to the number in the original pathway set.

Then, for each set a p-value is calculated. Finally, it is determined

how often the original pathway set performs better than the

randomly permuted ones. Notably, by comparing against

randomly generated data, this method already performs an FDR

and calculates the p-value on this basis [39]. In this study, we

denote the resulting performance of an analysis with this method

as the ‘‘set p-value’’.

Supporting Information

Figure S1 A detailed overview of the analysis pipeline
for a multistage integrative pathway analysis. In addition

to Figure 2, this supplementary Figure shows a more detailed

overview of the analysis pipeline. The topmost blue rectangle

depicts the input files which are needed for the analysis. The input

files (bed, bim and fam) contain the GWAS data and can be

generated using PLINK [34]. The SNP annotation file is provided

by the chip manufacturer and contains a mapping from SNPs to

genes. In the second rectangle, the construction of the SNP data

structure is described step-by-step and the used bioinformatics

databases with the release number are shown. In the third

rectangle, the construction of the different pathway sets is

described and how they are evaluated. The undermost rectangle

shows how the most significant pathway set is determined and

merged into the best list. This list finally summarizes the most

significant pathways sets which are associated to the investigated

disease.

(TIF)
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Table S1 Overview of several pathway analysis studies.
This table gives an overview of related pathway analysis studies for

GWAS. The methods are briefly described and the investigated

disease and used bioinformatics databases are listed.

(XLSX)

Table S2 Best lists of the MIP analyses of Crohn’s
disease. This excel file contains four spreadsheets presenting the

results of our MIP analysis for Crohn’s disease (CD): the best list of

the analysis with all SNPs, the best list of the analysis using SNPs

having a p-value #1023, the best list of the analysis using SNPs

having a p-value #1024 and the best list of the analysis using SNPs

having a p-value #1025.

(XLSX)

Table S3 Best lists of the MIP analyses of rheumatoid
arthritis. This excel file contains four spreadsheets presenting the

results of our MIP analysis for rheumatoid arthritis (RA): the best

list of the analysis with all SNPs, the best list of the analysis using

SNPs having a p-value #1023, the best list of the analysis using

SNPs having a p-value #1024 and the best list of the analysis using

SNPs having a p-value #1025.

(XLSX)

Table S4 Best lists of the MIP analyses of type 1
diabetes. This excel file contains four spreadsheets presenting

the results of our MIP analysis for type 1 diabetes (T1D): the best

list of the analysis with all SNPs, the best list of the analysis using

SNPs having a p-value #1023, the best list of the analysis using

SNPs having a p-value #1024 and the best list of the analysis using

SNPs having a p-value #1025.

(XLSX)

Table S5 Literature comparison. This table presents for

each investigated disease the comparison of the MIP analysis

results to literature and other pathways analysis tools. The red font

indicates that this pathway was found by other pathway analysis

tools. No highlighting is used if the pathway-disease association has

been reported previously in other literature. A yellow highlighting

indicates that other literature reported the pathway-association as

a side-effect and orange is used if no supporting literature could be

found. Abbreviations: CD = Crohn’s disease, RA = rheumatoid

arthritis, T1D = type 1 diabetes.

(XLSX)

Table S6 Sensitivity analysis. This table presents the joined

results of all four MIP analyses for each disease. The pathways

which kept consistently significant during all analyses in all diseases

are highlighted in yellow. Abbreviations: CD = Crohn’s disease,

RA = rheumatoid arthritis, T1D = type 1 diabetes.

(XLSX)

Table S7 Comparison to GenGen. This table shows a

comparison of the results of MIP and GenGen. The pathways

which kept significant during our sensitivity analysis are highlight-

ed in yellow. Abbreviations: CD = Crohn’s disease, RA =

rheumatoid arthritis, T1D = type 1 diabetes.

(XLSX)
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