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Abstract

The development of phase contrast methods for diagnostic x-ray imaging is inspired by the potential of seeing the internal
structures of the human body without the need to deposit any harmful radiation. An efficient class of x-ray phase contrast
imaging and scatter correction methods share the idea of using structured illumination in the form of a periodic fringe
pattern created with gratings or grids. They measure the scatter and distortion of the x-ray wavefront through the
attenuation and deformation of the fringe pattern via a phase stepping process. Phase stepping describes image acquisition
at regular phase intervals by shifting a grating in uniform steps. However, in practical conditions the actual phase intervals
can vary from step to step and also spatially. Particularly with the advent of electromagnetic phase stepping without
physical movement of a grating, the phase intervals are dependent upon the focal plane of interest. We describe a
demodulation algorithm for phase stepping at arbitrary and position-dependent (APD) phase intervals without assuming a
priori knowledge of the phase steps. The algorithm retrospectively determines the spatial distribution of the phase intervals
by a Fourier transform method. With this ability, grating-based x-ray imaging becomes more adaptable and robust for
broader applications.
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Introduction

X-ray phase contrast imaging and scatter correction are both

being developed for the benefit of medical diagnosis, where x-ray

modalities account for 70% of the diagnostic imaging procedures

in the US [1]. An interesting converging point of the two fields is a

class of methods that use gratings or grids to introduce a periodic

modulation into the x-ray wave, either by simple geometric

shadowing or coherent wave interference effects [2–6]. Phase

contrast relates to the distortion of the periodic fringes by

refractive bending of the x-rays in the imaged object, while

scattering in the object causes a loss of the fringe amplitudes in

excess of the conventional intensity attenuation [5,7]. Several

methods have been proposed to retrieve the amplitude and the

positions (phase) of the fringes in the two areas of application. The

quickest method requires just a single image, where the phase

value is measured by the displacement of the fringes, and the

amplitude is measured by the intensity oscillation in a fringe

period. Such measurements can be made efficiently over the entire

image through Fourier analysis [5,8,9], or directly in the real space

[10]. However, a limitation of single image analysis is that the

spatial resolution of the measurements is no finer than the fringe

period, which is at least 3 times the resolution of the imaging

device in order for the fringes to be clearly resolved.

This problem is solved by the phase stepping method at the cost

of acquiring multiple images [11]. In phase stepping, a grating is

moved perpendicular to its lines in uniform increments while

images are taken at each step. This ideally results in uniform shifts

of the fringes (Fig. 1A). Equivalently, it produces a periodic

oscillation of the intensity at each pixel in the image. In the

temporal domain, this procedure provides several points along the

intensity oscillation curve at uniform phase intervals. If the phase

interval is an integer fraction of a complete cycle, i.e. 2p/N where

N is the total number of steps, then the intensity at a location r in

the nth image can be expressed as

In(r)~H0(r)z
XM
m~1

2Hm(r) cos½2pmn=NzQm(r)�, ð1Þ

where Hm and Qm are the amplitude and phase of the mth order

harmonic of the intensity oscillation. By considering multiple

harmonics, this expression covers any possible periodic waveform

of the oscillation. The harmonic amplitudes are the Fourier

coefficients of the series of intensities In, and thus can be calculated

by an inverse Fourier transform:
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Hm(r) exp½iQm(r)�~ 1

N

XN

n~1

In(r) exp ({i2pmn=N): ð2Þ

This algorithm was developed in wave-front-measuring interfer-

ometry [11] and subsequently applied to x-ray phase contrast

[2,4,12,13] and scatter correction [6].

However, in practical settings there are often drifts and errors in

the position and orientation of the grating. Then, the phase

intervals become uncertain and may vary spatially with position.

Furthermore, electromagnetic phase stepping (EPS) has recently

been developed to eliminate all mechanical motion [14], where

phase stepping is synthesized by a relative movement between the

projection of the object and the fringe pattern (Fig. 1B). The

relative movement is realized by electromagnetically shifting the

focal spot of the cone beam, and it is thus dependent on the

position of the object, or more specifically the focal plane of image

reconstruction. Consequently, the phase intervals become variable

and not limited to integer fractions of 2p. In all these cases, the

intensity of the nth image needs to be expressed in a more

generalized way as

In(r)~H0(r)z
XM
m~1

2Hm(r) cos½Dm(r,n)zQm(r)�, ð3Þ

where Dm(r, n) is the phase shift applied by the phase stepping

process and can be arbitrary and position dependent (APD). The

problem we address is how to retrieve the harmonic oscillation

amplitude Hm and phase Qm from such arbitrary phase shifts.

The solution for the relatively ideal conditions in wave-front-

measuring interferometry has been described, under the assump-

tions that the phase increments in the phase stepping process is

globally uniform, and the fringes are well defined in the entire

image [15]. However, in diagnostic imaging situations the

conditions are usually less ideal and can violate both assumptions.

Specifically, the phase shifts can be position dependent, and the

fringe visibility in areas of high attenuation or scattering is

degraded. Here we extend the special solution for wave-front

characterization to a more general and adaptable one for x-ray

imaging, without making the above assumptions. We demonstrate

Figure 1. Phase stepping procedures measure the distortion and scattering of a grating-modulated wavefront. These are examples of
grating-based phase contrast imaging devices, where the combination of an absorption grating G0 and a phase grating G1 produces primary
interference fringes which are masked by a slightly rotated absorption grating G2, resulting in broader moiré fringes that can be resolved by the
detector. (A) In mechanical phase stepping, the phase grating G1 is moved in-plane perpendicular to the grating lines, at increments of a fraction of
the grating period. This creates incremental shifts of the moiré fringes, and equivalently a periodic oscillation of the intensity at each detector pixel.
The amplitude and phase of this oscillation encode the information about the distortion and scattering of the wavefront as it propagates through the
sample. These are retrieved by an adaptive algorithm which is the focus of this paper. (B) In motionless electromagnetic phase stepping, the focal
spot of the x-ray source is shifted with an externally applied magnetic (B) field, which results in a relative movement between the projection image of
the sample and the moiré fringes. The images are digitally shifted to re-align the projections while the moiré fringes appear to move, effectively
synthesizing the phase stepping process. In this example, the applied magnetic field deflects the electron beam in the x-ray tube, shifting its impact
point on the anode target where x-rays are emitted.
doi:10.1371/journal.pone.0078276.g001
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its use in x-ray phase contrast imaging of biological samples using

electromagnetic phase stepping.

Methods

Processing Algorithm for Arbitrary, Position-Dependent
Phase Steps

The algorithm consists of two steps, including determining the

applied phase shifts Dm(r, n) for the images in the phase stepping

set, and calculating the oscillation amplitude Hm(r) and phase

Qm(r). The second step will be described first using the applied

phase shifts as a priori information. From Eq. (3), the images can be

expanded into a linear combination of complex amplitudes Am:

In(r)~
XM

m~{M

Am(r) exp½iDm(r,n)�, ð4Þ

where Am relates to the harmonic amplitude Hm(r) and phase Qm(r)

by

Am(r):

Hm(r) exp½iQm(r)�, mw0

H0(r), m~0

A{m � (r), mv0

8><
>:

, ð5Þ

with * indicating the complex conjugate, and the positive and

negative harmonic orders are conjugate of each other such that

Dm(r,n)~{D{m(r,n): ð6Þ

The goal is to solve for Am. For this purpose the total number of

images in the phase stepping set N should be equal to or greater

than the number of unknowns, which is 2M+1. Generally N

.2M+1, in which case the unknowns Am are determined by a

least-squares method that minimizes the error function for every

location (r) as

E(r):
X

n

DIn(r){
XM

m~{M

Am(r) exp½iDm(r,n)�D2: ð7Þ

The solution can be expressed in matrix form as

Am(r)~
XM

j~{M

fC{1
mj (r)

XN

n~1

exp½{iDj(r,n)�In(r)g, ð8Þ

where the matrix C is calculated from the applied phase shifts

Dm(r, n) by

Cmj(r)~
XN

n~1

exp½iDj(r,n){iDm(r,n)�: ð9Þ

For efficient computation, the solution for Am is written as linear

combinations of the acquired images in the phase stepping set,

Am(r)~
XN

n~1

Bmn(r)In(r), ð10Þ

where the coefficients of the linear combinations are

Bmn(r)~
XM

j~{M

C{1
mj (r) exp½{iDj(r,n)�: ð11Þ

It will be shown below that the calculation of the coefficients Bmn(r)

is done at a reduced resolution to improve computation speed, and

then interpolated back to the full detector resolution and used as

inputs in Eq.(10) to obtain the complex amplitudes Am at full

resolution. Once the Am‘s are obtained, the amplitudes and phases

of the various harmonics of the intensity oscillation at each pixel is

expressed as the inverse of Eq. (5):

Hm(r)~DAm(r)D,

Qm(r)~phase(Am(r)):
ð12Þ

Now we describe how to determine the actual phase increments

for all images in the phase stepping set, i.e. the applied phase shifts

Dm(r, n), without a priori knowledge. The basic idea is to treat the

applied phase shifts as free functions of position, and measure

them from the acquired images using a Fourier-transform method

[5,15]. The Fourier method was first developed for interferogram

analysis [8,16]. The application of the method requires the

presence of a spatial carrier frequency in the real space domain,

i.e. a fringe pattern in the image. In grid-based scatter imaging and

scatter correction, the projection of the absorption grids is a

periodic fringe pattern which provides the carrier frequency

modulation. In phase-contrast imaging using high line density

gratings, the grating periods are often smaller than the resolution

of the detector, requiring broader moiré fringes to be formed in

order to detect the phase shifts. This is accomplished by a slight

rotation of one of the gratings away from the perfect alignment.

An example is illustrated in the systems in Fig. 1, in which the

absorption grating G2 is rotated slightly around the beam axis

relative to the G0 and G1 gratings, leading to moiré fringes on the

detector screen. The frequency of the fringes is obtained in data

processing from calibration images without any sample. The 2D

Fourier transform of the calibration image contains discrete peaks

located at integer multiples of the carrier frequency [8]. The

position of the first-order peak is identified in the Fourier domain,

and provides the carrier frequency.

The spatial carrier frequency must be high enough to

adequately separate the components of various harmonic orders

in the Fourier domain [16]. In real space it means that the fringes

are dense enough such that the periods do not vary drastically

within the distance of a single period. In grating-based imaging,

the applied phase shifts in the phase stepping process, Dm(r, n),

may vary gently in space due to mild variations of the grating

period from imperfect fabrication, or slight bending and

misalignment of the gratings. The requirement means that the

spatial scale of such variations is larger than the fringe periods.

Additionally, the fringes may be severely degraded in highly

absorbing or scattering parts of the object, which renders the

Arbitrary Position Dependent Phase Stepping

PLOS ONE | www.plosone.org 3 October 2013 | Volume 8 | Issue 10 | e78276



Fourier method ineffective in these areas. The solution we propose

is to acquire a reference data set without any sample in order to

obtain a template of the applied phase shifts in the phase stepping

process. Then in imaging the samples, the measured phase shifts

are compared to the templates, and a correction is added to

account for drifts in the system that may occur between the sample

and reference acquisition. The correction is in the form of a linear

function of spatial coordinates. It is determined by a least-squares

fitting of the difference between the measured and template phase

shifts in areas where the fringe visibility is above a threshold.

The implementation follows the derivation of the Fourier

analysis of interferograms [5,8,15,16]. In the presence of a

fundamental carrier frequency g, a linear phase term can be

separated from the sample-induced phase shift and the applied

phase shift in the phase stepping process for each harmonic order

m:

wm(r)~Dm(r,n)zQm(r)zmg:r: ð13Þ

Then Eq. (4) becomes

In(r)~
XM

m~{M

Am(r) exp½iDm(r,n)zmg:r�: ð14Þ

Using the definition

Dm(r,n):Am(r) exp½iDm(r,n)�, ð15Þ

it is further reduced to

Figure 2. The arbitrary and position dependent (APD) phase stepping algorithm improves phase retrieval. (A) In an example of phase
contrast imaging with electromagnetic phase stepping, the measured phase increment in the first of 6 steps is shown. Considerable variation can be
seen over the oval area covered by the gratings. A profile across the center of the area (B) revealed a 20% gradual decrease of the phase increment.
(C) For comparison, the differential phase contrast image of two horizontal polyacetal rods was retrieved with both the APD and the previous
globally uniform algorithms. In the area outlined by the small square, the previous algorithm resulted in vertical fringe artifacts (D) which indicate
incomplete demodulation of the moiré fringes, while the APD algorithm removed the artifacts (E). The scalebar in (C) is 3 mm long.
doi:10.1371/journal.pone.0078276.g002
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In(r)~
XM

m~{M

Dm(r,n) exp (img:r): ð16Þ

The Fourier transform of the In(r) is in(k), given by

in(k)~
XM

m~{M

dm(k{mg,n), ð17Þ

with dm(k, n) being the Fourier transform of Dm(r, n). By its

definition in Eq. (15), Dm(r, n) is typically dominated by low-

spatial-frequency components, and thus, its Fourier transform,

dm(k, n), is strongly peaked at zero frequency. Equation (17) means

that the Fourier transform of the nth image, in(k), is the sum of the

individual Fourier transforms dm(k, n), but with each dm(k, n)

shifted by a multiple of the carrier frequency mg. Thus, in(k)

contains multiple peaks spaced by the carrier frequency g. We

make use of the area which is centered at a peak mg and extends

half way to the neighboring peaks. This area is dominated by the

Fourier transform dm(k, n). We translate this windowed area by -

mg back to the center, and then inverse Fourier transform to

obtain a version of Dm(r, n), but with reduced resolution due to the

cropped window in the Fourier domain:

Dm
0(r,n)~FT{1½in(k{mg)�, D(k{mg):eg DvDgD=2, ð18Þ

with ‘ indicating that the resolution is reduced to the period of the

fringes in the direction of the vector g, which is noted as eg. Since

the inverse Fourier transform is preceded by translating the mth

order peak back to the center, this step removes the linear phase

ramp of mg?r in Eq. (13) in real space. Correspondingly, the phase

of the harmonic image Dm’(r, n), noted as wm’(r, n), is a low-

resolution version of the remaining contributions from the sample

and the applied phase shift in phase stepping, i.e.

wm
0(r,n)~Dm

0(r,n)zQm
0(r): ð19Þ

As discussed earlier, the applied phase shift Dm(r, n) only varies

mildly over the length scale of the fringe period. Thus it is

adequately captured by the low-resolution version Dm’(r, n) in Eq.

(19). Also by definition, the applied phase shift is relative to a

Figure 3. Retrieved images of a cricket from an electromagnetic phase stepping set. The arbitrary and position dependent phase stepping
algorithm was used to calculation (A) the differential phase, (B) the scatter (dark-field), (C) the conventional attenuation, and (D) the phase-contrast
enhanced images. The phase-contrast enhanced image combines the high spatial frequency information of the differential phase image with the low
spatial frequency information of the attenuation image. The bright dot above the cricket is a tungsten bead. Two small areas in the leg and head of
the cricket are outlined with white squares and shown in magnified view. The details seen in the phase contrast images (A) and (D) are absent in the
conventional attenuation image (C). The scalebar in (C) is 3 mm long.
doi:10.1371/journal.pone.0078276.g003
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particular image in the phase stepping set, e.g. the first image.

Thus we can set

Dm
0(r,0)~0, ð20Þ

and derive the phase shifts for the rest of the images from Eq. (19)

as

Dm
0(r,n)~wm

0(r,n){wm
0(r,0): ð21Þ

At this point we reached the goal of measuring the applied phase

shifts without a priori knowledge. The measured Dm’(r, n) are then

used in Eq. (9) and Eq. (11) to provide the linear coefficients Bmn(r)

at a reduced resolution. These are interpolated to the full detector

resolution, and input into Eq. (10) to retrieve the amplitude Hm(r)

and the phase factor Qm(r) on a pixel-by-pixel basis, after removing

the linear phase ramp mg?r arising from the carrier frequency

fringes.

In imaging experiments the fringes can diminish due to

attenuation or scattering in the object. In such areas the above

procedure would result in noisy measurements of the applied

phase shifts. The solution is to acquire a set of reference images

without samples, from which the applied phase shifts Dr,m’(r, n) are

obtained as templates. When imaging a sample, the actual applied

phase shifts may differ from the templates due to instrumental

drifts. This is accounted for by adding a correction term to the

template in the form of a linear function of position

Dm
0(r,n)~Dr,m

0(r,n)zam(n)zbm(n):r: ð22Þ

The correction term is determined from areas in the sample

images where the fringes are well defined. The implementation is

am(n)zbm(n):r~linear regression(Dm
0(r,n){Dr,m

0(r,n)) for r

whereDDm
0(r,n)Dwthreshold:

ð23Þ

Lastly, the final results of the amplitude Hm(r) and phase Qm(r)

generally contains baseline contributions from instrumental factors

including grating imperfections and misalignments, in addition to

the linear phase ramp mg?r from the carrier frequency. These are

all removed by processing the reference data set to obtain the

Figure 4. Retrieved images of the head region of a mouse. The body of the mouse was fixed in formalin and then immersed in water in a
plastic tube. Sagittal projections of the head and thorax area were taken. The arbitrary and position dependent phase stepping algorithm was used to
analyze an electromagnetically phase stepped set of images. The results are (A) the differential phase contrast, (B) the dark-field (scatter), (C) the
intensity attenuation and (D) the phase-contrast enhanced images (defined in Fig. 3). The beak-like structures in the top left are the upper and lower
jaws and teeth of the mouse. The front legs can be seen below the skull. The bright rectangular object is a metallic ID tag. Phase contrast brings forth
soft tissue details that are missing in the attenuation image. The scalebar in (C) is 3 mm long.
doi:10.1371/journal.pone.0078276.g004

(23)
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baseline Hr,m(r) and phase Qr,m(r), then removing them in the

sample data according to

Hc,m(r)~Hm(r)=Hr,m(r),

Qc,m(r)~Qm(r){Qr,m(r),
ð24Þ

with the subscript c indicating corrected results.

Overall, the first step of the processing algorithm is to measure

the applied phase shifts in phase stepping, which comprises the

calculations described by Eqs. (18–23); the second step is to

retrieve the amplitude and phase of the fringes at full detector

resolution, which comprises the calculations described by Eqs. (8–

12), followed by the reference baseline correction of Eq. (24).

In the phase contrast imaging experiments below, the retrieved

information is displayed in three images of different contrasts: the

differential phase contrast image is simply the reference-corrected

phase image of the first harmonic order Qc,1(r); the conventional

intensity attenuation image is the reference-corrected amplitude of

the zeroth harmonic in log scale, –ln[H0(r)/Hr,0(r)]; the scatter

(dark-field) image is the attenuation of the fringe amplitude due to

scattering in excess of intensity attenuation, again in log scale as –

{ln[H1(r)/Hr,1(r)]–ln[H0(r)/Hr,0(r)]}. For the application of scatter

correction, the reference-corrected amplitude of the first harmonic

in log scale, –ln[H1(r)/Hr,1(r)], is the desired image which is free of

scattered x-rays.

Application to Phase-Contrast Imaging Using
Electromagnetic Phase Stepping

Ethics statement. The ex vivo mouse imaging study was

performed under a National Heart, Lung and Blood Institute

Animal Care and Use Committee approved protocol.

Electromagnetic phase stepping is a method for phase stepping

without mechanical motion. In the presence of a carrier frequency,

the essential requirement for phase stepping is a relative

movement between the fringes and the projection image of the

object. EPS achieves the condition by electromagnetically shifting

the focal spot of the x-ray tube in a transverse direction across the

fringe pattern, e.g. with an externally applied magnetic field that

deflects the electron beam in the x-ray tube (Fig. 1B). Shifting the

focal spot causes an opposite movement of the projection of the

object on the detector plane, while the fringes can be made to

remain stationary or move by a different amount. For example, in

the case where a single grid is placed in front of the object for

scatter (dark-field) imaging or scatter correction [5,6], the fringes

are displaced by larger shifts when compared with the projection

image. In the case of the three-grating Talbot-Lau interferometer

for phase contrast imaging [17], the movement of the fringes is

controlled by the arrangement of the gratings, and can be either

null (as illustrated by imaging experiments in this study), or larger

than the projection of the object. In all cases, the images are

digitally shifted back to align the projections of the object. The

result is that the fringes move over a stationary projection of the

object, effectively synthesizing the phase stepping process.

In EPS the shift of the focal spot scales proportionally with the

applied magnetic field according to the action of the Lorenz force

on the electron beam in the X-ray tube. The magnetic field is

generated by the applied electrical current into a solenoid coil

(Fig. 1B), which is set at pre-programmed levels. The amount of

the focal spot shift as a linear function of the applied current is

determined in a calibration procedure by measuring the opposite

movements of the projections of small tungsten beads on the image

plane under different current levels. Through the calibration

procedure the shift for a given applied current is known to an

accuracy of 0.01 mm (10 mm) or better. The response time of the

focal spot movement is the time it takes to switch the magnetic

field in the solenoid coil, which is the time constant of the coil. It is

set by the inductance and resistance of the coil, and was 200 ms in

our setup. Thus, the response time of the focal spot movement was

200 ms in our experiments. The amount of movement of the

projection image depends on where the object is situated along the

optical axis from the source to the detector. As a result, the digital

alignment process is specific for a plane (the focal plane) along the

optical axis. For a thick object, a single data set can be used in

separate processing runs for a series of focal planes which focuses

on different sections of the object.

We applied the APD phase stepping algorithm to phase-contrast

imaging using EPS in a three-grating Talbot-Lau interferometer

[17]. The imaging device (Fig. 1B) employed of a tungsten-target

x-ray tube operating at 55 kVp/1 mA with a focal spot size of

approximately 50 mm, and an x-ray detector with a pixel size of

30 mm and a matrix size of 204862048. The interferometer

consisted of three gratings of 4.8 mm period with the first and third

being intensity gratings (Microworks GmbH) and the second being

a phase grating. All gratings were rotated around the vertical axis

by 45u to increase the effective depths. The gratings were

positioned at equal spacing over a total distance of 76 cm. The

third grating was slight rotated around the optical axis to create

vertical moiré intensity fringes of 290 mm period. In this

particularly way of creating the moiré fringes, the fringe pattern

is independent of the position of the focal spot of the cone beam,

and remains stationary during electromagnetic phase stepping. For

EPS a home-made copper solenoid coil was attached to the front

surface of the x-ray tube housing to generate a magnetic field in

the tube. The coil was driven by a digital power supply which

provided up to 2.0 A of current at up to 8 W of power. The

corresponding peak magnetic field was 3.1 mT at the location of

the electron beam inside the x-ray tube. The field from a 1.5 A

current was sufficient to shift the focal spot by 380 mm in the

horizontal direction, perpendicular to the moiré fringes. The

deflections of the focal spot at various levels of input current into

the coil were known from calibration measurements. Each EPS set

comprised 6 images of increasing current levels from 0 to 1.5 A.

Results

We compared the APD algorithm with the previous algorithm

assuming globally uniform phase steps by Goldberg and Bokor

[15]. A sample consisting of two horizontal polyacetal plastic rods

was imaged for the comparison. The phase increments measured

by the APD algorithm showed variations with position, in a peak-

to-peak range of 20% of the global mean over the area covered by

the gratings (Fig. 2A, B). The global mean phase increments

among the 6 phase steps varied from 20.979 to 1.020. When

spatially uniform phase increments were assumed, the retrieved

differential phase maps contained residual fringe artifacts in the

areas where the phase increment deviated from the global mean

value (Fig. 2D). The artifacts represent incomplete demodulation

of the carrier frequency fringes. When the APD algorithm was

used, the artifacts were eliminated and the fringe demodulation

was complete in the entire grating area (Fig. 2E).

An example of applying the APD algorithm to biological

samples was demonstrated in an imaging experiment of a cricket.

A single set of data from the electromagnetic phase stepping

procedure was used to retrieve several types of contrasts, including

the differential phase contrast, the scattering or dark-field, and the

conventional attenuation contrast (Fig. 3). A phase-contrast

enhanced (PCE) image was also obtained by combining the low

Arbitrary Position Dependent Phase Stepping
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spatial frequency information of the attenuation image and the

high spatial frequency information from the differential phase

contrast [18,19] (Fig. 3). The PCE image shares the same global

features with the conventional attenuation image but with more

visible details at smaller length scales.

A further example of a biological application was an imaging

study of a formalin fixed body of a mouse under an institutional

IACUC approved protocol (C57BL/6 wild-type, 5 year old male).

A sagittal projection of the head and chest region of the mouse was

acquired. The three types of contrasts along with the phase-

contrast enhanced image are shown in Fig. 4. The value of phase

contrast lies in the enhanced high-spatial-frequency details that are

visible in the differential phase contrast and the phase-contrast

enhanced images but are either absent or less visible in the

conventional attenuation image.

Discussion

By introducing a high-spatial-frequency modulation into the

propagating wave of an x-ray imaging system using grids or

gratings, both the scattering and refraction of the wave can be

quantified at the full resolution of the detector through the phase

stepping procedure. This then allows for phase-contrast [2,4] and

scatter imaging [5,7] as well as removal of the ‘‘fog’’ of diffusely

scattered x-rays for improved image clarity [3,6]. In less than ideal

experimental conditions as well as practical application settings,

both mechanical and electromagnetic phase stepping procedures

can bring about phase increments that vary from step to step and

also spatially from location to location in the field of view [20]. We

showed that the APD algorithm can effectively deal with such

conditions, and is particularly well suited for the implementation

of electromagnetic phase stepping. Although the experimental tests

were performed with x-ray, the algorithm traces its lineage back to

optical wavefront measurements and can be directly applied there.

The APD algorithm involves more computation than previous

algorithms that assume ideal or uniform phase increments. We

found that the computation time for each data set was

approximately 30 seconds on a 2008 model laptop PC using a

home-made software. The software was written in the IDL data

processing language (Exelis Visual Information Solutions, Inc).

Thus, it should be possible to perform image processing in near

real time with modern workstations.
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