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Abstract

Sediments are widely accepted as a threat to coral reefs but our understanding of their ecological impacts is limited.
Evidence has suggested that benthic sediments bound within the epilithic algal matrix (EAM) suppress reef fish
herbivory, a key ecological process maintaining reef resilience. An experimental combination of caging and sediment
addition treatments were used to investigate the effects of sediment pulses on herbivory and EAMs and to determine
whether sediment addition could trigger a positive-feedback loop, leading to deep, sediment-rich turfs. A 1-week
pulsed sediment addition resulted in rapid increases in algal turf length with effects comparable to those seen in
herbivore exclusion cages. Contrary to the hypothesised positive-feedback mechanism, benthic sediment loads
returned to natural levels within 3 weeks, however, the EAM turfs remained almost 60% longer for at least 3 months.
While reduced herbivore density is widely understood to be a major threat to reefs, we show that acute disturbances
to reef sediments elicit similar ecological responses in the EAM. With reefs increasingly threatened by both
reductions in herbivore biomass and altered sediment fluxes, the development of longer turfs may become more
common on coral reefs.
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Introduction

Coral reefs are among the most biodiverse ecosystems on
the planet. Despite the ecological and physical complexity
associated with this biodiversity, they are remarkably fragile.
The increasing rate of disturbances associated with climate
change and other anthropogenically induced stressors has
repeatedly highlighted that acute stressors can have long
lasting impacts [1,2]. For example, temperature anomalies
lasting for very short periods can result in bleaching events,
which have long-term effects at reef-wide scales [3]. While
temperature anomalies might be the best understood, there are
many other acute threats to coral reefs. These include storms,
freshwater inundation and, potentially, sediments.

The source of sediment on coral reefs affects its physical
and chemical properties. Fine marine (primarily carbonate) and
terrigenous (primarily silicate) sediments can be transported
long distances in suspension and/or driven by hydrodynamic
activity [4]. While these sediments can be particularly
deleterious to coral reefs, blocking light penetration and, upon
settling, producing blankets of smothering silt [5], their affects

tend to be best-documented on near-shore reefs [6]. The
proximity to the sources of terrigenous sediments and shallow
waters allow sediments to be effectively resuspended and
transported to these reefs [4]. On reefs further from shore,
however, most sediment is produced in situ as the reef matrix
is eroded into sediments by physical, biological and, chemical
processes [7].

While benthic sediments are highly dynamic on offshore
coral reefs [8,9]. The continual production of sediments through
erosion is often balanced by hydrodynamically driven losses to
deep water or accretion into cays or beaches [8]. As such,
although the sediment is constantly moving, the system
remains in a state of dynamic stability [10,11], with all but the
most severe perturbations being short lived [12].

On hard coral reef substrata some sediment exists in sand
patches, but a large proportion of the benthic sediment is
bound within algal turfs [13–16]. The turfs also trap detritus and
provide habitat for infaunal organisms [17,18]. Together, these
components form an epilithic algal matrix (EAM; [19]); a
ubiquitous feature of coral reefs, often occupying more benthic
space than corals [16,20]. On the Great Barrier Reef, EAMs

PLOS ONE | www.plosone.org 1 October 2013 | Volume 8 | Issue 10 | e77737



cover between 18 and 59% of the reef surface [21]. While
EAMs can play positive roles on coral reefs, with some
components providing settlement cues for corals [22] and
others directly adding to carbonate accretion [23], they also
have several deleterious impacts. Algae within the EAMs can
compete with corals for space [24,25], increase sediment
deposition [26,27] and reduce the settlement success and
survivorship of juvenile corals [28,29]. The algal turfs in EAMs
can also represent an early stage in successional growth of
macroalgae on reefs [30,31].

On ‘healthy’ coral reefs, EAMs are maintained as well-
cropped productive turfs by herbivores, usually reef fishes [32].
The intensity of herbivory by fishes on these reefs can control
the growth of algae [33–35]. While herbivory is clearly a vital
function on coral reefs, recent evidence suggests that
sediments may affect reef fish communities [36,37], and
furthermore, sediments trapped in the EAM can deter
herbivores from feeding [10,11]. Sediment reductions result in
almost instantaneous increases in rates of reef fish herbivory
and measurable declines in algal turf length in less than four
hours [10]. The increased herbivory with reduced sediment
loads indicates that trapped sediments actively deter
herbivores, however, evidence for sediment suppression of
herbivory remains almost entirely based on sediment removal
experiments, which report increasing herbivory following
sediment reductions [10,11]. Yet questions remain: a) will an
increase in sediments produce similar changes in herbivory?
And b) are these effects long-lasting or temporary? This is
particularly interesting as increased sediments are believed to
pose an ongoing threat to coral reefs [5,38].

The interactions between benthic sediment and herbivory
suggest the possibility of a positive feedback loop. Any
disturbance leading to increased EAM sediment load, such as
exposure to a sediment plume from storms, flooding or
dredging could deter herbivores. The reduced top down
pressure on the EAM is likely to result in an increase in EAM
length [10], allowing further sediment trapping [27,35]. The
potential result is a self-sustaining, long, sediment-rich EAM,
unpalatable to herbivores. Using a combination of herbivore
exclusion cages and pulsed sediment additions we attempt to
initiate this positive feedback and generate a deep, sediment-
rich EAM. In doing so, we will provide information on the
relative impacts of sediment pulses and herbivore removal on
coral reef resilience.

Materials and Methods

Ethics statement
All procedures were conducted according to the ethics

guidelines of James Cook University, Townsville (ethics
approval A1522), and permitting requirements of the Great
Barrier Reef Marine Parks Authority (permit number:
G10/33755.1). Data are available in the supplementary
material (Table S1).

Experimental procedures
Experimental manipulations were conducted at two sites on

the exposed reef crest southeast of Lizard Island in the

northern section of the Great Barrier Reef, Australia. The
experiment was conducted between December and March, in
the southern hemisphere summer. The sites had similar
topographies, were at a depth of 2-4 m, and separated by over
800 m. Sites were characterised by sparse coral colonies,
separated by expanses of short well-cropped EAMs on a flat,
low-complexity reef matrix. At each site, six fully caged, six
open (uncaged) and six partially caged 1 m2 plots were
haphazardly delineated on the flat EAM. Full cages were
constructed of a steel bar frame, 25 cm high, enclosing the 1
m2 plot, attached to the reef using epoxy putty and enclosed
with galvanised 4 cm wire mesh. Partial cages were
constructed of vertical panels identical to those used in the fully
caged treatments and were deployed to control for any effect of
the cage treatments on the EAM or sediment, while allowing
herbivores access to graze the EAM.

Half of the plots in each cage treatment were subjected to an
experimental sediment addition. In these addition plots, a
sediment load of 8.6 kg m-2 was maintained for one week. This
sediment load was equivalent to that on the adjacent reef flat
(approximately 40 m leeward of the crest), which was
determined by weighing dried sediment samples collected
using an electric vacuum sampler from 20 replicate 5.8 × 10-3

m2 rings (see [39]). The sediment for treatments was collected
from a reef-margin sand apron and had a similar particle size
profile to that found on the reef flat. When evenly spread, the
8.6 kg of sediment covered the 1 m2 plot to a depth of 15 mm.
Sediment was added daily to each plot to maintain this depth
for one week, simulating an acute sedimentation event. Then
the plots were left undisturbed for the remainder of the three-
month experimental period.

The sediment depth and EAM turf length in each plot were
recorded using the depth probe of vernier calipers (n = 20 reps
for each plot). Measurements were made as sediment was
initially manipulated (T0), then at weekly intervals for 6 weeks
post-manipulation (T1-6), and again after three months (T7).

EAM turf length data were standardised to percent increase
over initial turf length (at T0) correcting for initial variation
among plots. The data were then analysed using 2- and 3-way
analyses of variances (ANOVAs) of the T7 data. Site was
categorised as a random factor and was found to have no
significant effect or interaction. It was therefore pooled to
increase the power of the analysis [40,41]. Data normality was
assessed using residuals plots and square-root transformations
were applied where necessary. To allow data transformation
for statistical analyses, negative percent EAM turf length values
were removed by the addition of a constant to all data. Time
series data were analysed using 2- and 3-way repeated
measures ANOVAs (RM ANOVAs). Multivariate comparisons
(Pillai’s Trace; RM MANOVAs) were used if assumptions of
sphericity were violated.

Results

After three months (T7) the greatest increase in the length of
algae in the EAM was seen in the caged plots and a significant
difference in turf length was observed between the caged and
open plots (Figure 1; 3-way ANOVA on square root
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transformed data: F2,24 = 7.32, P = 0.003). While no other
factors or interactions were significant (Table S2), a Fisher’s
least significant difference (LSD) post-hoc test revealed two
groupings in the caging × sediment treatment interaction
(Figure 2). Without sediments, a clear cage effect was
observed. Algal length increased by 58.9%; no response was
seen in the open or partial cages.

Sediment additions to caged and partially caged plots
resulted in no observable differences to the EAM when
compared to the corresponding natural sediment plots.

Figure 2.  EAM turf lengths at T7 (3 months post sediment
addition).  Filled bars represent sediment addition treatments
and open bars natural sediment treatments. A and B denote
significant groupings (Fisher’s LSD). Data are shown as
percentage of T0 ± standard error, sites are pooled, therefore n
= 6 replicates for each.
doi: 10.1371/journal.pone.0077737.g002

Sediment additions to the open plots, however, resulted in
remarkable EAM turf algae growth, i.e., over 435% greater than
observed on open, natural sediment treatment plots (Figure 2).

The time series data showed an initial rapid increase in turf
length followed by an apparent asymptote after approximately
three weeks (Figure 3). Data differed significantly over time
(RM MANOVA; Pillai’s Trace = 0.647, F6,25 = 7.639, P <0.0001)
and in the time × caging interaction (Pillai’s Trace = 0.636,
F12,52 = 2.022, P = 0.041). No other factors showed significant
interactions (Table S3).

Direct measurements of the sediment loads in the EAMs
were conducted alongside measurements of the EAM turf
length. Unlike the turf length, sediment rapidly declined in all
treatments to levels indistinguishable from natural sediment
loads within three weeks (Figure 4; Table S4).

Discussion

We found that a one-week pulsed increase in sediment loads
resulted in significant and sustained (3-month) increases in the
length of turfs in EAMs on a coral reef (Figure 1). However, our
results provide only limited support for the existence of the
proposed positive feedback loop. Although the length of turfs
increased, high hydrodynamic activity on the crest (e.g. [42])
quickly removed sediment from the turfs and the predicted
deep, sediment-rich turfs were not formed. Increased EAM turf
length did not appear to require high sediment loads.

The EAMs on the exposed crest used in this study are
heavily grazed by coral reef fishes, which maintain short,
productive algal turfs [43]. Previous studies have demonstrated
that when EAM with long turfs are transplanted from the reef
flat (low herbivore pressure) to the crest (high herbivore
pressure) they are rapidly consumed by fishes [13,35]. It was,

Figure 1.  The effects of the experimental manipulations, at sediment addition, 2 and 12 weeks.  Black circles represent
added sediment and vertical lines the relative length of turfs in the EAM. Fishes indicate where herbivores had access to the plots.
doi: 10.1371/journal.pone.0077737.g001

Sediment on High-Energy Coral Reefs

PLOS ONE | www.plosone.org 3 October 2013 | Volume 8 | Issue 10 | e77737



therefore, expected that any sediment-induced increase in the
length of EAM turfs would be rapidly reversed as sediments
returned to normal levels, as a result of hydrodynamic activity,

Figure 3.  EAM turf length over time.  Data are pooled
between sites and standardized as percentage of T0. Filled
circles represent sediment addition, open circles represent
natural sediment loads. Time is measured in weeks except T7,
which is three months after T0. a. shows the responses of the
caged plots, b. the open plots, and c. the partially caged plots.
Data are shown as percentage of T0 ± standard error, with sites
pooled, n = 6 replicates for each point. The lines fitted follow a
one-phase decay model where appropriate.
doi: 10.1371/journal.pone.0077737.g003

Figure 4.  Sediment depth over time.  Filled points represent
sediment addition treatments, open points represent natural
sediment treatments. Circles represent data from site 1, and
triangles site 2. Time is measured in weeks except T7, which is
three months after T0. a. shows data from the caged plots, b.
the open plots, and c. the partially caged plots. Data are shown
as mean depth in mm ± standard error, n = 3 replicates for
each.
doi: 10.1371/journal.pone.0077737.g004
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releasing the algae from any sediment-induced suppression of
herbivory (e.g. [10,11]). This was not the case.

The EAMs in the present study grew in response to reduced
herbivory (cages), increased sediments, or a combination of
these factors. Growth in the cages was probably a result of the
reduction in grazing [33,35]. While sediment addition may
increase algal turf length as a result of the algae investing
greater energy resources in linear extension to reach light [44]
and/or increased availability of nutrients desorbed from the
sediment [13,45]. In both cage and sediment treatments the
algal growth was rapid and occurred soon after the initial
manipulations were made, while any added sediment was still
present. The growth of the EAMs slowed rapidly as sediment
loads diminished. Notably, there was no growth of macroalgae,
only an increase in turf length. Whether the time for macroalgal
development was insufficient, if propagules or juveniles were
absent or if the high hydrodynamic activity at this site limited
development of macroalgae [10,42], the key result is that
responses of algal turfs with artificially reduced herbivory
(cages) were comparable to those with increased sediment
loads.

Remarkably, after the initial growth of the algal filaments the
new, longer, EAMs remained for at least three months in both
caged and open plots. The three treatments followed different
trajectories: (1) by reducing herbivory, cages maintained a long
EAM regardless of sediments (as in previous studies, e.g.
[31,34]). (2) In open plots, EAMs likewise remained long, but
only if exposed to sediment. This was particularly striking given
the rapid loss of sediment. It may be that the vertical
distribution of the remaining sediments through the EAM plays
an important role in deterring herbivores, or that changes in the
microbial community [46,47] or detrital load of the turfs [48]
made them less palatable to herbivores. The methods used in
this study, however, could not detect any of these factors and,
as such, further study is necessary to determine what is
underpinning this stability. However, the lack of recovery is
worrying as it highlights that reefs are slow to recover from
sediment-induced disturbances, even short, ‘pulsed’ events. (3)
The partially caged plots followed similar initial growth
trajectories to their equivalent open plots, however, the longer
EAMs appeared to ‘recover’ (i.e. reduce in length) as sediment
was removed. The apparent ‘recovery’ of the EAM in the partial
cages was unexpected. It was expected that, as herbivores
had access to the benthos, the EAMs would follow the
responses seen in the open plots. However, this difference
appears to be a result of increased herbivory in the partial
cages. The partial cages increased topographic complexity,
and provided shelter for a range of reef herbivores allowing
localised increases in grazing (cf. [49–52]).

We found that the growth of EAMs after a one-week
sediment pulse was equivalent to, or greater than, that seen in
simulated herbivore removals using cages. While increased
sediment is often considered deleterious to reefs, most
information pertaining to its effects are at a physiological scale,
considering the impact on individual organisms [53]; little is
known about how sediments affect the broader ecosystem
functions on which coral reefs rely [54]. At physiological scales,
sediments have deleterious impacts on almost all benthic reef

taxa [53], however the role of sediments in mediating reef
processes is currently limited to studies addressing the impact
of sediment laden EAMs in driving settlement and survivorship
of corals. While some algae within EAMs may induce
settlement [22] increased sediments result in reduced
settlement of reef corals as they create a mobile substrate,
preventing access to the consolidated reef matrix [14,29].
Furthermore, benthic sediments reduce survival of post-
settlement corals particularly during their early development
presumably due to abrasion and shading [29,55]. In addition to
affecting benthic coral reef organisms, our findings suggest that
increased sediments might suppress herbivory resulting in the
development and persistence of longer EAMs driving further
implications for reef ecosystems. Reduced herbivory through
increased fishing pressure is widely publicised as a major
threat to coral reefs on a global scale [56], but it appears that
short-term increases in sediment release or resuspension
through anthropogenic activities (e.g. [5,38,57]) have the
potential to have similar effects at localised scales.

The manipulation used in this study is comparable to that of
other short-term (acute) perturbations caused by natural or
anthropogenic disturbances. Storms and cyclones can move
sediment from areas with high natural loads, such as lagoons
or reef flats, which, as with this study site, may be only a few
tens of meters away [58]. Storms can also increase runoff to
inner and mid-shelf reefs [8,9,59]. Similarly, anthropogenic
sediment perturbations caused by dredging and other shallow-
water maritime activities can resuspend sediments [5,60,61].
These events may all generate long EAMs similar to those
seen after the experimental sediment manipulation. An even
greater impact may be observed if these events happen in
succession, without sufficient recovery time. The longer EAMs
generated in this study persisted for at least 3 months, with no
obvious sign of recovery. If disturbances increasing sediment
loads occurred more often than this, there is the risk that the
turfs may grow longer still and persist for longer periods. An
assessment of the recovery time is necessary to assess
whether such a ratchet effect (sensu [62]) is likely to lead to the
disruption of ecological processes on reefs.

It is essential to note that our observations are of the effects
of ‘natural’ carbonate dominated sediments, which characterise
offshore coral reefs. The disturbance induced by this study,
therefore, represents the best-case scenario for the effects of
sediments on reefs. Terrigenous sediments, with higher silicate
and nutrient loads alongside a high likelihood of associated
pollutants (e.g. from metals, chemical fertilisers and
pesticides), are likely to have even greater impacts [38,63].

Although our study did not find evidence to support the
existence of a positive feedback leading to sediment-laden
turfs, a clear and lasting effect was observed following an acute
disturbance, with the development of a long-turfed EAM.
Longer EAMs on reefs have the potential to reduce coral
settlement [29], provide inferior grazing surfaces for fishes
[10,11], and present an ecologically and economically less-
desirable state [2]. The development of these long EAMs
appears to be driven by increases in both benthic sediments
and reductions in herbivory. In a world where reefs are affected
by increasingly unpredictable climatic conditions and chronic
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reductions in herbivore abundances, these longer EAMs are
likely to become an increasingly common feature on coral
reefs.
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univariate tests, as such multivariate tests (Pillai’s Trace) were
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