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Abstract

Identifying diagnostic biomarkers based on genomic features for an accurate disease classification is a problem of great
importance for both, basic medical research and clinical practice. In this paper, we introduce quantitative network measures
as structural biomarkers and investigate their ability for classifying disease states inferred from gene expression data from
prostate cancer. We demonstrate the utility of our approach by using eigenvalue and entropy-based graph invariants and
compare the results with a conventional biomarker analysis of the underlying gene expression data.
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Introduction

Molecular and clinal biomarkers have been investigated

extensively in medicine and related areas [1,2,3,4]. In particular,

biomarkers have been used for cancer analysis, cancer screening

and stratification and diagnosis [1,2,3,4]. Classically, diagnostic

biomarkers represent molecules such that their occurrence or

concentration in tissue samples or blood is representative for a

certain cancer state, see [5]. Numerous studies have been

performed for demonstrating the usefulness and impact of such

biomarkers in cancer research and related fields [1,2,3,4].

The above mentioned results dealing with biomarker research

are based on the widely accepted classical view that differentially

expressed genes can be interpreted as markers of diseases.

However, recent research revealed that classical single-gene

biomarker are often less meaningful for analyzing diseases than

using network-based biomarker, see [6,7,8,9]. Here, pathways

representing complex networks [10,6,7] serve as biomarkers of

diseases. We now briefly sketch relevant related work of so-called

network-based biomarkers as follows. For instance, a protein-

network-based method for identifying biomarkers subnetworks

inferred from protein interaction databases has been developed by

Chuang et al. [11]. This method has been proven useful when

classifying these subnetworks for disease signature discrimination

[11]. A similar approach due to Chen et al. [12] to prioritize

disease genes and protein interaction subnetworks turned out to be

useful too as these subnetworks can discriminate disease signatures.

Guyon et al. [8] used support vector machine classification such

that the method takes network interactions into account rather

than only single genes. Jin et al. [9] interpreted certain subgraphs,

for example triangle graphs, as protein biomarkers and performed

a statistical analysis thereof, see [9]. Finally Barabási et al. [13]

used, e.g., structural properties of graphs by using centrality

measures and degree distributions to find network-based biomark-

ers via feature selection.

In this paper, we introduce quantitative network measures as

structural biomarkers and investigate their ability when classifying

disease states inferred from prostate cancer (see section ‘Data’).

The problem of finding appropriate network measures which

capture structural information uniquely and, therefore, the

problem of identifying suitable candidates as structural biomarkers

is intricate. This relates to the open problem that it is not a priori

clear what kind of structural features could be best as there are

infinitely many features that are graph invariants [14,15] to

characterize the structure of pathways (complex networks), see also

[14,16,17,18].

The major contribution of this paper is as follows. We use

eigenvalues of biological networks inferred from prostate cancer

microarray data as structural biomarkers by using supervised

learning. More precisely, we demonstrate that these structural

biomarkers, representing eigenvalue-based graph invariants, can

be used to classify prostate cancer meaningfully; in this context we

obtain reasonable results when classifying cancer vs. benign tissue,

see also [19].

Methods

Structural Biomarkers
In this paper, we introduce quantitative network measures as

structural biomarkers. That means by starting from biological

networks inferred from microarray data (see section ‘Data’), we

calculate quantitative graph measures representing network
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complexity measures and employ supervised learning. If these

structural features can classify/discriminate disease states, they are

referred to as structural biomarkers. In fact, this opens new

perspectives in biomarker research as (i) infinitely many structural

features (e.g., graph invariants) exist for structural network

characterization and (ii) there exist several machine learning and

statistical methods to use the derived structural features for

classification/discrimination.

As structural biomarkers, we are going to use eigenvalue- and

entropy-based quantities. We start by explaining the procedure to

derive eigenvalue-based graph invariants. If G denotes a network,

then eigenvalue-based measures can be calculated by using a

graph-theoretical matrix M [20] inferred from G. Finally we yield.

det (M{lE)~anlnzan{1ln{1z � � �za1l1za0, ai[ IR: ð1Þ

In this paper, we set M : ~A~(aij)ij and M : ~D~(dij)ij .

A~(aij)ij is the adjacency matrix and D~(dij)ij is the distance

matrix, respectively [17,20]. By solving the algebraic equation.

det (M{lE)~0, ð2Þ

we obtain the non-zero eigenvalues lA
1 ,lA

2 , . . . ,lA
k and

lD
1 ,lD

2 , . . . ,lD
m . As A and D are symmetrical for undirected graphs,

it holds lA
i ,lD

i [ IR. From the sketched calculation of the

eigenvalues by using M inferred from G, we define the measures

[17,21,22]:
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Table 1. This table lists the public data sets we used to infer
this set of biological networks.

Number of Samples

Author Ref Platform Benign Cancer

Chandran
et al.

[50] Affymetrix
HG-U95av2

11 50

Liu et al. [51] Affymetrix
HG-U133a

13 44

Sing et al. [52] Affymetrix
HG-U95av2

37 48

Tsavachidou
et al.

[53] Affymetrix
HG-U133a

40 16

Wallace
et al

[54] Affymetrix
HG-U133a2

14 53

Varambally
et al.

[55] Affymetrix
HG-U133 2+

4 6

Yu et al. [56] Affymetrix
HG-U95av2

56 51

doi:10.1371/journal.pone.0077602.t001

Table 2. Error measures (mean values and standard errors)
for the evaluation of the classification. Best results are
highlighted in bold.

Eigenvalue Entropy Biomarker

mean
sd
error mean

sd
error mean sd error

Sensitivity 0.79 0.04 0.71 0.01 0.83 0.03

Specificity 0.79 0.04 0.71 0.01 0.83 0.03

Precision 0.72 0.16 0.68 0.12 0.81 0.07

Recall 0.79 0.04 0.71 0.01 0.83 0.03

Accuracy 0.76 v0.01 0.71 v0.01 0.85 v0.01

F-Score 0.72 0.07 0.68 0.07 0.82 0.05

doi:10.1371/journal.pone.0077602.t002

Table 3. ndV-values for the structural biomarkers (eigenvalue
and entropy-based measures) for all prostate cancer networks
and the corresponding subgroups (benign/cancer).

absolute relative

all benign cancer all benign cancer

HAs~1 0 0 0 0 0 0

SAs~1 0 0 0 0 0 0

ISAs~1 0 0 0 0 0 0

PAs~1 141 80 58 0.53 0.50 0.54

HAs~2 0 0 0 0 0 0

SAs~2 0 0 0 0 0 0

ISAs~2 0 0 0 0 0 0

PAs~2 115 66 46 0.43 0.42 0.43

HDs~1 0 0 0 0 0 0

SDs~1 0 0 0 0 0 0

ISDs~1 0 0 0 0 0 0

PDs~1 15 8 7 0.06 0.05 0.06

HDs~2 0 0 0 0 0 0

SDs~2 0 0 0 0 0 0

ISDs~2 0 0 0 0 0 0

PDs~2 9 4 3 0.03 0.03 0.03

EM~A 0 0 0 0 0 0

LEM~L 0 0 0 0 0 0

EEM~A 0 0 0 0 0 0

LEEM~L 0 0 0 0 0 0

SpRadM~A 0 0 0 0 0 0

doi:10.1371/journal.pone.0077602.t003

Quantitative Network Measures as Biomarkers
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EM (G)~
Xk

i~1

jlij ð7Þ

and

LEM~L(G)~
XN

i~1

mi{
2jEj
N

����
���� ð8Þ

EEM (G)~
XN

i~1

eli ð9Þ

LEEM~L(G)~
XN

i~1

emi ð10Þ

SpRadM (G)~ max
i
jlijf g ð11Þ

In order to calculate the measures concretely by using R, we set

M~A,D,L. L is the laplacian of G and mi are its eigenvalues

thereof [23].

The second class of graph measures we employ as structural

biomarkers represent entropy measures for graphs. These mea-

sures have been investigated extensively by Dehmer et al.

[24,25,26] and originally by Mowshowitz [27,28,29,30]. Such

measures rely on Shannon’s entropy and, hence, a probability

distributions must be assigned to a graph G. This problem is

intricate as, again, infinitely many structural features exist (e.g.,

vertex degrees, vertices, edges, distances, and partitions thereof) to

define entropic measures on a network.

Basically, two methods exist to infer a probability distribution of

a graph by taking its structural features into account. The first

method is based on determining partitions by using an arbitrary

graph invariant and equivalence criterion [31,27]. The second

procedure is based on using so-called information functionals and

on assigning a probability value to every vertex. Properties of

graph entropies based on both methods have been investigated in

[24,25,26,16]. As a result of the extensive research in this field of
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Figure 3. Distributions of the Eigenvalues of the distance
matrix for the benign networks.
doi:10.1371/journal.pone.0077602.g003
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Figure 2. Distributions of the Eigenvalues of the adjacency
matrix for the cancer networks.
doi:10.1371/journal.pone.0077602.g002
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Figure 1. Distributions of the Eigenvalues of the adjacency
matrix for the benign networks.
doi:10.1371/journal.pone.0077602.g001
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Figure 4. Distributions of the Eigenvalues of the distance
matrix for the cancer networks.
doi:10.1371/journal.pone.0077602.g004
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the last three decades, numerous graph entropy measures have

been developed, see, e.g., [31,32,24,27,33,34]. It would go beyond

the scope of the paper to examine all existing graph entropy

measures as candidates for structural biomarker. Nevertheless, we

used the following entropies from different paradigms (as a result

of the feature selection process, see also section ‘Results’) [31,24]:

1. Dehmer entropy by using the information functional fC (vertex

centrality), see [24].

2. Topological Information Content [35].

3. Graph Vertex Complexity Index [36].

4. Mean information content of distance-degree equality [31].

5. Mean information content on the edge equality [31].

6. Balaban index X [37].

7. Entropic symmetry index [38].

8. Bonchev index IE
D [31].

9. Dehmer-entropy by using the information functional fS (j-

spheres), see [24].

10. Bonchev index ID [31].

The concrete formulas thereof and the technical details can be

found in [31,24].

Data
The data set we use in this paper has never been used for

classification cancer disease states. To create the set of biological

networks, we used seven publicly available data sets (see Table 1)

related to prostate cancer from NCBI GEO [39] and EBI

Arrayexpress [40]. The data sets have been selected in cooperation

with the Urology Department at the Medical University Innsbruck

to identify transcriptional changes in prostate cancer, including

tumors with ERG gene rearrangements, see [19]. A first result by

using this data has been achieved by Massoner et al. [19] as they

found robust population-independent transcriptional changes and

signs of ERG rearrangements inducing metabolic changes in

cancer cells by activating major metabolic signaling molecules like

NPY.

We reanalyzed the publicly available data sets (see Table 1) and

inferred biological networks by using the C3NET inference

method [41]. This resulted in seven C3NET networks fGB
i g

7
i~1

representing the benign tissue (from the control group) and seven

networks fGC
i g

7
i~1 representing cancer tissue. Here, benign means

that we refer to sick patients with a tumor.

In order to obtain a larger set of networks, we used the gene

ontology (GO) database [42] to extract subgraphs from these 14
networks. For each network and each GO-term in the category

‘biological process’, we extract one subgraph containing the genes

associated with this specific GO-term resulting in 159 and 108

networks representing benign and cancer tissue, respectively. We

determined the GO-terms by using the Bioconductor Package

goProfiles.

The resulting sizes of the obtained classes are potentially

different because the network structures of GB
i and GC

i are

different and, hence, not all pathways are captured by these

networks. Furthermore, we exclude a subnetwork whenever it

Table 4. ndV-values for the structural biomarkers (eigenvalue
and entropy-based measures) for prostate cancer networks
and the corresponding subgroups (benign/cancer) for [50].

absolute relative

all benign cancer all benign cancer

HAs~1 0 0 0 0 0 0

SAs~1 0 0 0 0 0 0

ISAs~1 0 0 0 0 0 0

PAs~1 9 8 0 0.39 0.36 0

HAs~2 0 0 0 0 0 0

SAs~2 0 0 0 0 0 0

ISAs~2 0 0 0 0 0 0

PAs~2 7 7 0 0.3 0.32 0

HDs~1 0 0 0 0 0 0

SDs~1 0 0 0 0 0 0

ISDs~1 0 0 0 0 0 0

PDs~1 2 2 0 0.09 0.09 0

HDs~2 0 0 0 0 0 0

SDs~2 0 0 0 0 0 0

ISDs~2 0 0 0 0 0 0

PDs~2 0 0 0 0 0 0

EM~A 0 0 0 0 0 0

LEM~L 0 0 0 0 0 0

EEM~A 0 0 0 0 0 0

LEEM~L0 0 0 0 0 0

SpRadM~A0 0 0 0 0 0

doi:10.1371/journal.pone.0077602.t004

Table 5. ndV-values for the structural biomarkers (eigenvalue
and entropy-based measures) for prostate cancer networks
and the corresponding subgroups (benign/cancer) for [51].

absolute relative

all benign cancer all benign cancer

HAs~1 0 0 0 0 0 0

SAs~1 0 0 0 0 0 0

ISAs~1 0 0 0 0 0 0

PAs~1 29 15 14 0.94 0.94 0.93

HAs~2 0 0 0 0 0 0

SAs~2 0 0 0 0 0 0

ISAs~2 0 0 0 0 0 0

PAs~2 26 12 14 0.84 0.75 0.93

HDs~1 0 0 0 0 0 0

SDs~1 0 0 0 0 0 0

ISDs~1 0 0 0 0 0 0

PDs~1 2 0 0 0.06 0 0

HDs~2 0 0 0 0 0 0

SDs~2 0 0 0 0 0 0

ISDs~2 0 0 0 0 0 0

PDs~2 0 0 0 0 0 0

EM~A 0 0 0 0 0 0

LEM~L 0 0 0 0 0 0

EEM~A 0 0 0 0 0 0

LEEM~L0 0 0 0 0 0

SpRadM~A0 0 0 0 0 0

doi:10.1371/journal.pone.0077602.t005

Quantitative Network Measures as Biomarkers

PLOS ONE | www.plosone.org 4 November 2013 | Volume 8 | Issue 11 | e77602



contains less that 10 genes associated with a specific GO-term.

The obtained two sets of networks can be interpreted as an

approximation of two populations. One population represents the

benign state and the second the cancerous state. We note that this set

of biological networks has already been used in [43] when

demonstrating the functionality of the recently developed R-

package QuACN.

Results

Classification: Prostate Cancer Networks vs. Gene
Expression Biomarkers

In order to evaluate the performance of the new structural

biomarkers, we compare the classification of the networks with the

classification of the gene expression data itself by using supervised

learning. To classify the normalized gene expression data by using

the data sets described in section ‘Data’, we combined the samples

of the seven studies (see Table 1) by determining the intersection of

the measured genes. This results in a feature vector that contains

all genes that are measured in each of the seven different studies.

In order to select the most important genes, we apply a feature

selection mechanism based on the information gain method [44].

Then we classify the data set by using the 10 most important

features as a feature vector by using SVM classification [45] with a

polynomial kernel function. For performing the classification, we

apply the R-implementation of Libsvm [46] and for learning the

optimal parameters, we perform a 10-fold cross validation.

In order to obtain the best classification performance we assess

the following parameter settings for the classification exhaustively:

c~10{3,10{2,10{1,1,10,102,103,d~1,2,3,4,5,6,7,8,9,10, ð12Þ

and

c~2{3,2{2,2{1,1,2,22,23: ð13Þ

For the three studied measures, their results in form of error

measures of the classification are summarized in Table 2. For these

measure, we found the optimal parameter settings used for this

analysis: c~100, c~1, d~3 (eigenvalue-based measures), c~10,

c~1, d~3 (entropy-based measures) and c~10, c~1, d~4 (gene

expression data).

From our numerical classification of the data, summarized in

Table 2, it follows that the network approach based on eigenvalues

(second column) and the biomarker analysis of the gene expression

data (forth column) perform best. Specifically, the classification of

the gene expression biomarkers is always best but the eigenvalue

method results in a comparable performance, within one standard

error. Due to the fact that all error measures are random variables,

estimated from a 10-fold cross validation, it appears sensible to

consider performance intervals, given by the mean and standard error,

rather than point estimators. This will lead to more robust

statements regarding the obtained performance values.

Table 6. ndV-values for the structural biomarkers (eigenvalue
and entropy-based measures) for prostate cancer networks
and the corresponding subgroups (benign/cancer) for [52].

absolute relative

all benign cancer all benign cancer

HAs~1 0 0 0 0 0 0

SAs~1 0 0 0 0 0 0

ISAs~1 0 0 0 0 0 0

PAs~1 12 8 3 0.18 0.21 0.08

HAs~2 0 0 0 0 0 0

SAs~2 0 0 0 0 0 0

ISAs~2 0 0 0 0 0 0

PAs~2 8 3 4 0.12 0.08 0.11

HDs~1 0 0 0 0 0 0

SDs~1 0 0 0 0 0 0

ISDs~1 0 0 0 0 0 0

PDs~1 2 0 2 0.03 0 0.05

HDs~2 0 0 0 0 0 0

SDs~2 0 0 0 0 0 0

ISDs~2 2 0 2 0.03 0 0.05

PDs~2 0 0 0 0 0 0

EM~A 0 0 0 0 0 0

LEM~L 0 0 0 0 0 0

EEM~A 0 0 0 0 0 0

LEEM~L 0 0 0 0 0 0

SpRadM~A 0 0 0 0 0 0

doi:10.1371/journal.pone.0077602.t006

Table 7. ndV-values for the structural biomarkers (eigenvalue
and entropy-based measures) for prostate cancer networks
and the corresponding subgroups (benign/cancer) for [53].

absolute relative

all benign cancer all benign cancer

HAs~1 0 0 0 0 0 0

SAs~1 0 0 0 0 0 0

ISAs~1 0 0 0 0 0 0

PAs~1 19 10 9 0.49 0.34 0.09

HAs~2 0 0 0 0 0 0

SAs~2 0 0 0 0 0 0

ISAs~2 0 0 0 0 0 0

PAs~2 12 5 7 0.31 0.17 0.07

HDs~1 0 0 0 0 0 0

SDs~1 0 0 0 0 0 0

ISDs~1 0 0 0 0 0 0

PDs~1 3 2 0 0.08 0.07 0

HDs~2 0 0 0 0 0 0

SDs~2 0 0 0 0 0 0

ISDs~2 0 0 0 0 0 0

PDs~2 0 0 0 0 0 0

EM~A 0 0 0 0 0 0

LEM~L 0 0 0 0 0 0

EEM~A 0 0 0 0 0 0

LEEM~L 0 0 0 0 0 0

SpRadM~A 0 0 0 0 0 0

doi:10.1371/journal.pone.0077602.t007

Quantitative Network Measures as Biomarkers
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In contrast to the eigenvalue and gene expression biomarker

method, the classification method based on the entropies of

networks results in the lowest performance for all error measures,

however, still giving a sensible classification performance indicat-

ing that also this method is capable for discriminating the two

biological classes, at least to a certain extent.

Eigenvalue-based Structural Analysis of the Prostate
Cancer Networks

In this section, we examine some properties of the eigenvalues

by using the prostate cancer networks representing two classes

(cancer and benign tissue). First results are summarized in Figure 1,

2 and Figure 3, 4. We plotted all eigenvalues for the cancer and

benign networks by employing the adjacency and distance matrix,

respectively. By using the adjacency matrix, the eigenvalues of the

benign networks show a characteristic distribution where nearly all

eigenvalues are situated in a horizontal strip. In fact, 64% of these

eigenvalues are negative and 36% are positive. The plot of the

cancer networks by employing the adjacency looks very similar.

Here, the ratio of positive and negative eigenvalue is the same as

by using the benign networks. The fact that these distributions look

similar can be also explained by arguing with the corresponding

zero-free regions (e.g., strip-like regions in which no zeros of the

characteristic polynomial lie). As mentioned in section ‘Structural

Biomarkers’, eigenvalues are the zeros (that means the solutions of

the equation det (M{lE)~0) of the characteristic polynomial by

using a graph-theoretical matrix M (here, we use M : ~A~(aij)ij

and M : ~D~(dij)ij ). Then, we see that the zero-free regions of

benign vs. cancer networks by using the adjacency matrix look

very similar. But from this, we cannot conclude that eigenvalues

are generally unsuitable for discriminating the two network classes

as seen in section ‘Classification: Prostate Cancer Networks vs.

Gene Expression Biomarkers’. By using the distance matrix, we

yield the eigenvalue-ratios 74% negative and 26% positive for

benign; 76% negative and 24% for cancer networks. In contrast to

the distributions by using the adjacency matrix, the horizontal

strips and, hence, the zero-free regions are different. This can be

understood by analyzing the distributions of the matrix elements of

the adjacency and distance matrix. The fact that those are

different also implies that the coefficients of the resulting

characteristic polynomials differ significantly.

In summary, we may conclude that certain eigenvalue-based

measures by using the adjacency and distance matrix capture

structural information differently. Here, this could mean that some

of these measures by using the distance matrix are more sensitive

toward slight structural changes in the network. The validity of this

hypothesis can be underpinned by evaluating the discrimination

power of eigenvalue-based measures. This relates to determine

whether the measure captures structural information uniquely, see

[47,16,14]. For instance, if the network structure is slightly altered,

the measure should detect this structural change by giving

distinguishable values. In this paper, we measure the discrimina-

tion power or uniqueness by the quantity, ndv, expressing the non-

distinguishable values by a particular eigenvalue-based measure. That

is to calculate ndv, we compute all measures on the networks and

determine the number of graphs which cannot be distinguished by

Table 8. ndV-values for the structural biomarkers (eigenvalue
and entropy-based measures) for prostate cancer networks
and the corresponding subgroups (benign/cancer) for [54].

absolute relative

all benign cancer all benign cancer

HAs~1 0 0 0 0 0 0

SAs~1 0 0 0 0 0 0

ISAs~1 0 0 0 0 0 0

PAs~1 13 12 0 0.42 0.40 0

HAs~2 0 0 0 0 0 0

SAs~2 0 0 0 0 0 0

ISAs~2 0 0 0 0 0 0

PAs~2 10 9 0 0.32 0.30 0

HDs~1 0 0 0 0 0 0

SDs~1 0 0 0 0 0 0

ISDs~1 0 0 0 0 0 0

PDs~1 15 2 0 0.48 0.07 0

HDs~2 0 0 0 0 0 0

SDs~2 0 0 0 0 0 0

ISDs~2 0 0 0 0 0 0

PDs~2 0 0 0 0 0 0

EM~A 0 0 0 0 0 0

LEM~L 0 0 0 0 0 0

EEM~A 0 0 0 0 0 0

LEEM~L 0 0 0 0 0 0

SpRadM~A 0 0 0 0 0 0

doi:10.1371/journal.pone.0077602.t008

Table 9. ndV-values for the structural biomarkers (eigenvalue
and entropy-based measures) for prostate cancer networks
and the corresponding subgroups (benign/cancer) for [55].

absolute relative

all benign cancer all benign cancer

HAs~1 0 0 0 0 0 0

SAs~1 0 0 0 0 0 0

ISAs~1 0 0 0 0 0 0

PAs~1 19 11 8 0.46 0.58 0.36

HAs~2 0 0 0 0 0 0

SAs~2 0 0 0 0 0 0

ISAs~2 0 0 0 0 0 0

PAs~2 15 8 7 0.37 0.42 0.32

HDs~1 0 0 0 0 0 0

SDs~1 0 0 0 0 0 0

ISDs~1 0 0 0 0 0 0

PDs~1 0 0 0 0 0 0

HDs~2 0 0 0 0 0 0

SDs~2 0 0 0 0 0 0

ISDs~2 0 0 0 0 0 0

PDs~2 0 0 0 0 0 0

EM~A 0 0 0 0 0 0

LEM~L 0 0 0 0 0 0

EEM~A 0 0 0 0 0 0

LEEM~L 0 0 0 0 0 0

SpRadM~A 0 0 0 0 0 0

doi:10.1371/journal.pone.0077602.t009
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them. Importantly, the networks need to be structurally non-

equivalent (non-isomorphic) to perform this study meaningfully;

we emphasize that the cancer networks used in this study have

been checked to be structurally non-equivalent. By inspecting

Table 3, we see first of all that many of the computed eigenvalue-

based measures are fully unique; *to normalize the values, we

employed Konstantinova’s sensitivity measure S, see [48,17].*

That means they structurally distinguish the networks by their

values uniquely. The only measure that produces degenerate

values is PMs
, see Equation 5. Moreover, we observe that PDs

is

more unique than PAs
that can be seen by the ndv-values. Thus,

we may conclude that the distance matrix encodes structural

information more meaningfully than by using the adjacency

matrix when employing the measure PMs
.

Note that the supplementary files (File S1, S2, S3) contain the

values of the calucated networks.

Discussion and Conclusion

Within recent years there is a considerable interest in the

identification of biomarkers within genomic datasets. Usually, if

gene expression data are used from DNA microarray experiments,

a biomarker is considered as a gene, or a set of genes, for which

gene expression data are available. Then, classification methods

are based on the gene expression data of these biomarkers leading

to biologically interpretable results with respect to their classifica-

tion abilities, e.g., for diagnostic purposes. In contrast, in this paper

we assumed structural biomarkers, derived from gene regulatory

networks inferred from gene expression data, and used these to

conduct a classification of disease states. From our numerical

analysis we found that gene expression biomarkers and eigenvalue-

based features perform similarly, although, the gene expression

biomarkers perform slightly better.

This result is interesting because it demonstrates, first, a

biomarker does not need to be a gene but it can be an abstract

property of a biological system, e.g., eigenvalue-based network

measures, as in our case. In principle this idea is not new.

However, what is new is that we demonstrate this explicitly by

giving an example for structural biomarkers. As such, we provide

practical evidence to this argument which usually is only discussed

argumentatively instead of numerically. Second, the way our

structural biomarkers are defined does no longer allow to say, e.g.,

‘gene A and gene B’ are able to distinguish the biological

conditions under consideration. Instead, our features, respectively

biomarkers, correspond to features of the system and are as such

gene independent, but reflect their collective properties, as

captured by the inferred gene regulatory networks. Hence, our

approach represents a practical realization of systems medicine.

For a future analysis it would be interesting to use protein

expression data rather than gene expression data to repeat a

similar analysis. Such an analysis would allow to gain insights into

the robustness of our results with respect to a change of the

molecular level, as provided by protein interactions. Specifically, it

would help to understand if pure [49] or mixed interaction types,

as represented by gene regulatory networks, are better suited for

constructing structural biomarkers.

Overall, our results provide promising evidence that none-gene

biomarkers can be a beneficial means to classify disease states from

gene expression data for diagnostic purposes.

Appendix
For completeness, in the Tables 4, 5, 6, 7, 8, 9, 10 we show the

same results as in Table 3 but for the individual data sets, as listed

in Table 1.

Supporting Information

File S1 R data file containing descriptor values.

(ZIP)

File S2 Excel file containg the descriptor values by using

eigenvalue-based measures.

(CSV)

File S3 Excel file containg the descriptor values by non-

eigenvalue-based measures.

(CSV)
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