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Abstract

In the present study, we investigated brain morphological signatures of dyslexia by using a voxel-based asymmetry
analysis. Dyslexia is a developmental disorder that affects the acquisition of reading and spelling abilities and is
associated with a phonological deficit. Speech perception disabilities have been associated with this deficit,
particularly when listening conditions are challenging, such as in noisy environments. These deficits are associated
with known neurophysiological correlates, such as a reduction in the functional activation or a modification of
functional asymmetry in the cortical regions involved in speech processing, such as the bilateral superior temporal
areas. These functional deficits have been associated with macroscopic morphological abnormalities, which
potentially include a reduction in gray and white matter volumes, combined with modifications of the leftward
asymmetry along the perisylvian areas. The purpose of this study was to investigate gray/white matter distribution
asymmetries in dyslexic adults using automated image processing derived from the voxel-based morphometry
technique. Correlations with speech-in-noise perception abilities were also investigated. The results confirmed the
presence of gray matter distribution abnormalities in the superior temporal gyrus (STG) and the superior temporal
Sulcus (STS) in individuals with dyslexia. Specifically, the gray matter of adults with dyslexia was symmetrically
distributed over one particular region of the STS, the temporal voice area, whereas normal readers showed a clear
rightward gray matter asymmetry in this area. We also identified a region in the left posterior STG in which the white
matter distribution asymmetry was correlated to speech-in-noise comprehension abilities in dyslexic adults. These
results provide further information concerning the morphological alterations observed in dyslexia, revealing the
presence of both gray and white matter distribution anomalies and the potential involvement of these defects in
speech-in-noise deficits.
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Introduction

Dyslexia is a neurodevelopmental disorder affecting the
acquisition of reading and spelling abilities in the absence of
other neurological disorders and despite typical intelligence
and a favorable socio-educational environment [1]. Although it
is a developmental disorder, the difficulties associated with
dyslexia are long lasting and remain throughout adulthood
[2-4]. It has been suggested that dyslexic children present a
deficit in the processing of phonological information, preventing
the efficient acquisition of phoneme-to-grapheme conversion
rules. This phonological deficit is manifested through reduced
performance in tasks that quantify phonological awareness
(e.g., rhyme games or phoneme deletion tasks) [4,5], different

aspects of verbal memory [6,7], the repetition of complex
pseudowords or rare words [4], or rapid automatized naming
[4,8]. Associated with this phonological deficiency, speech
perception impairments have also been reported in dyslexia.
Although difficult to demonstrate in optimal listening situations,
these deficits are highly replicable when speech must be
perceived in challenging conditions, e.g., when masked by
noise [9-13]. Recently, we presented speech in different
backgrounds and under different listening configurations,
showing that the severity of this deficit was highly dependent
on the type of noise presented in the background and the
listening configuration tested [14]. In particular, the speech-in-
noise comprehension deficit of dyslexic adults was specifically
observed when the concurrent sound was speech compared
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with other speech-derived noises. This observation reinforces
the hypothesis of a specific difficulty with the processing of
speech information (i.e., phonological information) in dyslexia;
however, the cerebral origins mediating this deficit remain
largely undetermined.

In this context, different neuroimaging studies have shown
an association between behavioral deficits in dyslexia and
underlying cerebral dysfunctions and/or morphological
anomalies in the cortical regions directly involved in reading or
speech processing [15,16] (for a review, see [17]). The cerebral
network underlying phonological processing is well known. This
network largely overlaps with the more general speech network
(for reviews, see [18,19]) and primarily concerns cortical
regions along the posterior region of the superior temporal
gyrus (STG), Brodmann’s area (BA) 22, with a leftward
functional asymmetry outside of the primary and secondary
auditory areas (BA41/BA42). This network also contains the
posterior region of the inferior frontal gyrus (IFG), BA 44/6 [20].
When dyslexic individuals are compared with normal readers in
fMRI experiments, the observed functional differences most
often consist of hypo-activations in these brain regions or in
regions engaged in other aspects of reading or speech
processing, such as the medial and inferior temporal gyri
(MTG, ITG), or the left fusiform gyrus, which are all involved in
visual word recognition [21-23]. Beyond the magnitude of the
cerebral activations, which are decreased in dyslexics,
alterations in the inter-hemispheric distribution of functional
activation inside the speech-processing network were also
reported. Particularly, dyslexics often show decreased
activation in the left hemisphere [22-25], which is in some
studies even associated with increased activation in the
homologous right hemisphere [26]. These observations might
reflect the functional hemispheric specialization of language-
related networks, which are highly specialized towards the left
cortical hemisphere in typical participants, showing more
interindividual variability in dyslexics and less asymmetry in
general. Consistent with this idea, atypical functional
asymmetry patterns have been observed in dyslexics or in
children with reading disabilities, at primary stages of auditory
processing pathways, such as in the auditory brainstem [27] or
the primary auditory cortex [28,29]. Using
magnetoencephalography (MEG), Heim et al. [28] reported the
atypical asymmetry of the P100m, which is evoked in response
to the presentation of a /ba/ syllable in dyslexic children and
adolescents. P100m generators were asymmetric in normal
readers, but symmetric in dyslexics. Heim and colleagues
subsequently confirmed this observation, showing a similar
pattern of results for the N100m generators in dyslexic adults
[29]. More recently, and in the framework of the asymmetric
sampling in time (AST) theory [30,31], evidence of alterations
in asymmetric sampling in auditory cortices was reported in
dyslexics [32]. In this study, dyslexics showed a reduced
entrainment for rapid modulations in the left auditory cortex
potentially resulting in the impaired extraction of phonemic
cues in the left hemisphere. In addition, the right auditory
cortex of dyslexic individuals also demonstrated enhanced
entrainment to rapid modulations, suggesting atypical
functional inter-hemispheric specialization for slow and fast

sampling rates. Moreover, consistent with the idea of a close
association between the atypical functional asymmetries of the
speech processing network in dyslexia and the development of
deficient phonological abilities, several studies have shown that
the ability of typical listeners to reconstruct perturbed, e.g.,
time-reversed speech signals, was positively associated with
the functional asymmetry of the peripheral auditory system
[33], and dyslexic participants exhibited atypical peripheral
asymmetry [27]. Moreover, a functional re-asymmetrization
could be stimulated in dyslexics through phonological training,
with measurable effects at both the cortical [34] and cochlear
levels [27]. The question of the causal association between
functional asymmetry inside the speech network and the
phonological deficit observed in dyslexia remains unanswered,
as the acquisition of literacy skills modifies the development of
phonological processes in normal reading children [35]. One
approach to potentially understand the origin of functional
asymmetrization deficits observed in dyslexia is to associate
these deficits with the underlying morphology of the concerned
brain regions. Multiple studies have shown that the behavioral
and functional changes related to experience-dependent
plasticity were also associated with modifications of the
underlying cortical morphology, particularly, in the distribution
of gray and white matter (see [36] for a review). According to
previous anatomical studies, the functional asymmetry
abnormalities observed in dyslexia might be associated with
underlying morphological anomalies, as suggested through the
pioneering research of Galaburda and colleagues [37,38],
which suggested the existence of a reduced leftward
asymmetry in the planum temporale in reading-impaired
individuals, a region involved in speech and auditory
processing [39,40]. Although methodological concerns have
since challenged these early observations, and subsequent
studies using MR imaging have produced mixed results, some
of them consistent with the findings of Galaburda [41-44],
whereas other studies have not replicated these results
[45-48], morphological abnormalities in dyslexia have often
been reported. Atypical morphological asymmetry was
observed outside the planum temporale proper, including the
entire temporal lobe [49], the parietal operculum and Broca’s
area [47]. The question of the anomaly of functional and/or
morphological asymmetries in dyslexia thus remains
controversial, and the origin for this discrepancy might reflect
the heterogeneity of the cognitive profiles of the participants
included in the different studies. Indeed, a study designed to
differentiate brain abnormalities in participants with specific
language impairment (SLI, characterized by poor oral language
skills, associated with reading deficits) versus dyslexia,
suggested that symmetrical brain structures are associated
with cognitive profiles, such as SLI, whereas dyslexic
individuals have asymmetrical brain structures [48]. This result
emphasized the need for a careful examination of the cognitive
profiles of the participants and further investigation of the
morphological abnormalities in dyslexia. Voxel-based
morphometry (VBM), a morphometric technique that enables
the separation of gray (GM) and white matter (WM) volumes, is
useful for the investigation of morphological abnormalities in
dyslexia. Brambati et al. [50] reported reduced GM volumes
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bilaterally in the planum temporale, fusiform gyrus, and in the
left inferior and superior temporal gyri and right middle
temporal gyrus. Gray matter volume changes in the left and/or
right temporal regions were confirmed through different studies
[51-54]. Furthermore, studies associated with WM
abnormalities in dyslexia, such as VBM and diffusion tensor
imaging (DTI) studies, showed reductions in the volume/density
or connectivity along the arcuate fasciculus, including Broca’s
area and the temporal cortex [55-59].

The relationship between anatomical asymmetries in
temporal regions and the behavioral deficits consistently
observed in dyslexia remains unclear, and currently, there are
no VBM studies specifically reporting brain asymmetry
abnormalities in dyslexic individuals. However, VBM can be
efficiently used to derive asymmetry maps of the cortical
surface and to quantify the morphological asymmetry observed
in the distribution of the GM and WM [60-62]. Thus, the aim of
the present study was to compare the asymmetry patterns of
the GM and WM volumes along the superior and medial
temporal regions in dyslexic adults and normal readers and
examine the relationship between these asymmetries and the
speech-in-noise deficit associated with dyslexia. Thus, we
directly compared the distribution of GM and WM in dyslexic
and normal reading individuals and investigated the
relationship of these effects with speech-in-noise perception
abilities.

Materials and Methods

Participants
Fourteen dyslexic participants (6 females, mean age: 23.29

years, S.D.: 6.08) and 14 normal readers (6 females, mean
age: 26.07 years, S.D.: 6.19) participated in this study. All
subjects were right-handed (scores of ≥70 on the Edinburgh
Handedness Inventory [63]), with audiometric pure-tone
thresholds of ≤25 dB on a frequency range from 250 to 8000
Hz. Statistical analyses (t-test, all P>0.05) confirmed that both
groups did not significantly differ in age, nonverbal-IQ or
handedness (Table 1). All dyslexic individuals reported a
childhood history of reading/spelling disorders, and all but one
participant in the normal readers group were also screened for
reading, spelling, phonological and verbal short-term memory
abilities. The participants reported no history of psychiatric or
neurological disorders. In addition, all participants provided
written informed consent and were paid for participation. The
protocol used in this experiment was approved through a local
ethics committee (CPP Sud-Est IV, Lyon; ID RCB: 2008-
A00708-47).

Psychometric evaluation and speech-in-noise test
The nonverbal IQ was assessed using Raven standard

progressive matrices [64]. All participants obtained normal
scores above the 50th percentile (see Table 1 in Results
section). The reading-age was assessed using the French
‘L’alouette’ reading test [65], and the neuropsychological
battery ODEDYS [66] was administered to all participants. This
battery evaluated reading and spelling, metaphonology

Table 1. Psychometric evaluation scores in dyslexic and
normal reading participants.

Variable   Dyslexics
Normal
Readers p-value

Age (years)   
23.29
(6.08)

26.07
(6.19)

0.241

Gender (male/
female)

  8/6 8/6 -

Handedness   
84.29
(10.16)

90
(11.09)

0.167

Raven’s
(percentile)

  
49.07
(3.83)

51.69
(4.25)

0.104

Reading age
(months)

  
138.46
(19.47)

168
(4.53)

<0.001*

Reading
(words)

Regular Score (/20)
19.64
(0.63)

20 (0) 0.053

  Time (s)
15.00
(5.07)

9.83
(1.90)

0.003*

 Irregular Score (/20)
19.50
(0.85)

19.84
(0.55)

0.227

  Time(s)
13.79
(4.26)

10 (2.12) 0.008*

 Pseudowords Score (/20)
18.07
(1.82)

19.15
(1.21)

0.083

  Time(s)
25.43
(6.87)

13.38
(2.50)

<0.001*

Spelling Regular  8.50 (1.45)
9.61
(0.50)

0.015*

 Irregular  9.50 (0.65)
9.84
(0.37)

0.106

 Pseudowords  9.21 (1.05)
9.85
(0.37)

0.051

 Sentences Orthography 9.14 (1.17)
9.85
(0.55)

0.059

  Grammar 7.21 (2.58) 9.77 (0.6) 0.002*
Phonological
awareness

Phoneme
deletion

Score (/10) 8.50 (1.51) 10 (0) 0.001*

  Time (s)
36.92
(9.60)

24.08
(4.15)

<0.001*

 Acronyms Score (/10) 8.50 (1.83)
9.46
(0.78)

0.091

  Time (s)
60.77
(18.45)

42.31
(9.01)

0.003*

Visual
assessment

Letter
sequences

Scores (/20)
19.54
(0.78)

19.75
(0.45)

0.418

  Time (s)
45.39
(8.44)

35.33
(6.85)

0.003*

 Bell’s test (/35)  
34.21
(1.05)

33.77
(1.17)

0.307

Oral skills
Word repetition
(/16)

 16.00(0) 16.00 (0) -

 
Pseudoword
repetition (/20)

 
19.07
(1.21)

19.75
(0.45)

0.078

 R.A.N (s)  
16.00
(3.17)

14.15
(2.19)

0.094
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(acronyms and phoneme deletion tests), verbal short-term
memory, visual attention, and rapid automatized naming.

The participants also performed a speech-in-noise
intelligibility test, involving the perception of words presented in
background babble-noise according to different listening
configurations. The materials and procedures of this test have
been previously described [14]. The stimuli included 60
disyllabic words embedded in a 5-s background of 4-talkers
babble. Target words were selected in an intermediate range of
lexical frequencies (0.13–338.19 occurrence per million (opm),
average: 16.82 opm, S.D.: 43.74). The number of phonemes
and word frequencies were counterbalanced between the
conditions. The background babble-noise comprised 4
individual voices recorded in a soundproof room while reading
extracted passages of a French book. The individual
recordings were modified according to the following protocol: i)
removal of silences and pauses of more than 1 s; ii) deletion of
sentences containing pronunciation errors, exaggerated
prosody or proper nouns; iii) removal of low-amplitude
background noise using noise reduction optimized for speech
signals (CoolEdit Pro© 1.1 – Dynamic Range Processing –
preset Vocal limiter); iv) intensity calibration in dB-A and
normalization of each source at 70 dB-A; and v) final mixing of
the 4 sources. Three listening configurations were used:
Dichotic, Monaural and Spatialized. In the Dichotic
configuration, the target words were presented in one ear and
babble was presented in the other ear at the same intensity. In
the Monaural configuration, the target speech and babble
background were presented in one ear only, on the right side,
at a signal-to-noise ratio of 0 dB. In the Spatialized
configuration, the target speech and babble background were
presented in both ears but with an interaural level difference
(ILD) for the background of 10 dB, thus mimicking a listening

Table 1 (continued).

Variable   Dyslexics
Normal
Readers p-value

Memory span Forward digit  5.93 (1.00)
6.61
(0.65)

0.046*

 Backward digit  4.93 (0.47)
5.54
(1.20)

0.090

Speech-in-
noise

Dichotic  0.98 (0.03) 1.00 (0) 0.092

 Monaural  0.71 (0.10)
0.80
(0.03)

<0.001*

 Spatialized  0.97 (0.03)
0.96
(0.03)

0.509

Significant group differences are indicated in bold and with an asterisk. Values
represent the mean score of each group, the standard deviation is indicated in
brackets. All dyslexic participants and all but one participant of the normal readers
group took part in these tests. Reading age was derived from the test ‘L’alouette’
[65]; other reading skills, phonological abilities, motor oral skills, visual assessment
and memory span were evaluated using the ODEDYS test [66]. The speech-in-
noise test was an in-house developed test [14]; values for each group indicate
mean intelligibility sores (1=100% intelligibility). R.A.N.: rapid automatized naming.
doi: 10.1371/journal.pone.0076823.t001

situation in which the target and background are slightly
separated in space. Stimuli were presented using headphones
(Sennheiser HD 25 SP) at a comfortable hearing level. The
participants were asked to repeat the target words. Intelligibility
scores were obtained after calculating the proportion of words
correctly repeated. A two-way ANOVA was performed, with
Group (Normal Readers and Dyslexics) as the between-subject
factor and Configuration (Dichotic, Monaural, and Spatialized)
as the within-subject factor. Statistical tests were performed at
a P<0.05 threshold and a post-hoc Bonferroni test was used to
investigate specific differences.

Image acquisition
The MRI acquisition was performed at La Timone Hospital

(Marseilles, France) using a 3.0T Brucker Medspec 30/80
AVANCE scanner. One 3D structural image was acquired for
each subject, using a T1-weighted MPRAGE sequence: TR:
9.4 ms, TE: 4.42 ms, pulse angle: 30°, field of view: 256 x 256
x 180 mm, matrix: 256 x 256 x 180, and voxel size: 1x1x1 mm3.

Image processing, segmentation and asymmetry
analysis

To evaluate the morphological differences between the
dyslexic and typical participants, the structural T1 images were
used to perform a voxel-wise analysis of the tissue asymmetry,
directly derived from the voxel-based morphometry (VBM)
approach [67], involving the creation of GM/WM asymmetry
maps and performance of between-group comparisons using
these maps. The analysis was performed using the VBM8
toolbox (Gaser, http://dbm.neuro.uni-jena.de/vbm), which
employs the unified segmentation approach [68] implemented
in SPM8 (Wellcome Department of Imaging Neuroscience,
http://www.fil.ion.ucl.ac.uk/spm/software/spm8/). This method
involves a multiple-step procedure that alternates tissue
classification, bias correction and normalization. This toolbox
extends the unified segmentation using a maximum a posteriori
(MAP) technique [69] and a Partial Volume Estimation (PVE) to
account for partial volume effects [70]. The VBM8 toolbox also
controls the quality of the procedure by calculating the
covariance between the resulting images to confirm the
homogeneity of the variance and identify potential outliers.

The T1 images were bias-corrected and segmented into gray
matter, white matter and cerebro-spinal fluid maps based on a
set of symmetrical a priori Tissue Probability Maps provided in
the VBM8 toolbox. The GM and WM maps underwent a spatial-
normalization procedure, targeting the standard MNI T1
template. The standard SPM spatial normalization procedure
was performed using a 12-parameter affine linear
transformation and non-linear warping, by deselecting the
DARTEL option in VBM8 [71]. Jacobian modulation was
applied to preserve the local GM and WM values, and the voxel
values were multiplied by the non-linear components of the
registration to account for individual brain size variations. We
flipped the GM and WM modulated images along the horizontal
plane (x-axis) and applied the formula (original - flipped)/
0.5*(original + flipped) using previously described procedures
to generate GM and WM asymmetry maps [60-62]. The
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asymmetry maps were smoothed using a Gaussian kernel of
10 mm (FWHM).

Statistical analyses
Statistical analysis was performed using the General Linear

Model (GLM) [72], implemented in SPM8, according to a two-
step procedure: first, whole-brain differences in the GM and
WM distribution were separately investigated from the specific
tissue maps across each group of participants, using a one-
sample t-test, including age and gender as co-variables of non-
interest. The cluster-level threshold was set at P<0.05 (FWE-
corrected), with a voxel-level threshold set at P<0.001
uncorrected. A correction for the non-stationarity of
smoothness was also applied, allowing cluster-level statistics in
VBM data. The significant differences displayed on the right
side of the obtained maps represented a rightward
morphological asymmetry. The SPM extension Anatomical
Automatic Labeling (AAL) [73], and when required, Talairach
Daemon [74,75] were used to localize the effects. Second,
whole brain group differences in the GM/WM asymmetry were
investigated using a two-sample t-test with age and gender as
co-variables of non-interest. The statistical threshold was also
set at P<0.05 (FWE-corrected at the cluster level). To better
characterize the obtained differences in GM/WM asymmetry,
we used the GM/WM modulated images obtained after the
segmentation/normalization procedure, which were smoothed
(10mm FWHM), to extract GM/WM volumes at the location of
the significant asymmetry clusters. This allowed to better
understand the origins of the asymmetry differences.

For further specific inquires (correlations), the analyses were
performed in two symmetric regions of interest (ROI) covering
the middle and superior parts of the temporal lobe. These
regions were defined using the Marsbar Toolbox (http://
marsbar.sourceforge.net/) [76]. In this toolbox, the left and right
Heschl’s, superior temporal and middle temporal gyri were
selected from the AAL database and combined to form two
large regions (the left and right hemispheres), which covered
the superior and middle parts of the temporal cortex.
Symmetric ROIs were generated after flipping each region
along the x-axis, and a mean image from the original and
flipped images was subsequently created for each side (Figure
S1). In each pre-defined ROI, a small volume correction (SVC)
was applied, with the statistical threshold set at P<0.05 (cluster
level - FWE-corrected). A correlation analysis between the
morphological observations and performance on the speech-in-
noise intelligibility test was performed. In our speech-in-noise
test, only the Monaural condition was associated to significant
interindividual variability inside both groups and to a significant
difference between groups, the two other conditions leading to
roof effects. Therefore, we did not add the results from the
other conditions to this model. In each group, the speech-in-
noise intelligibility scores in the Monaural configuration were
added in the model as a covariable to investigate the voxel-by-
voxel correlation in the pre-defined ROIs.

Results

Psychometric evaluation
Compared with the normal reading group, the dyslexic

participants showed a clear profile of reading impairment,
conforming to the symptomatology of dyslexia (Table 1). This
profile comprised a significantly lower reading age (Dyslexics:
mean age: 138.46 months, S.D.: 19.47 vs. Normal Readers:
mean age: 168 months, S.D.: 4.53; P<0.001), associated with a
normal nonverbal IQ in both groups, and no group differences
(Dyslexics: average percentile: 49.07, S.D.: 3.83 vs. Normal
Readers: average percentile: 51.69, S.D.: 4.25; P=0.10). The
literacy skills of dyslexic individuals were characterized by
longer reading times for regular words (P<0.005), irregular
words (P<0.01) and pseudowords (P<0.001). The reading
accuracy showed a tendency towards a significant difference
for regular words (P=0.05) and pseudowords (P=0.08), not for
irregular words (P=0.23). The phonological skills were also
affected in participants with dyslexia, with lower performances
and speeds in the phoneme deletion task (respectively,
P<0.005 and P<0.001) and lower speeds for acronyms
(P<0.005). Dyslexics also showed impaired verbal short-term
memory, with a significant deficit in the forward digit span
(P<0.05). Moreover, dyslexic participants exhibited normal oral
motor skills, with no significant deficit in word repetition or rapid
automatized naming (both: P>0.05) and a difference in
pseudoword repetition accuracy showing a tendency towards
significance (P=0.08).

The results of the speech-in-noise intelligibility test (see
Table 1) confirmed our previous observation of a speech-in-
noise perception deficit in dyslexic adults, which was significant
only in the most difficult listening situation, Monaural, whereas
no significant group difference was observed when comparing
the Dichotic or Spatialized conditions [14]. The statistical
analyses revealed a significant Group x Configuration
interaction (F(2,52)=8.60, P<0.001), highlighting the presence
of this deficit in the Monaural configuration (Normal Readers:
average intelligibility rate: 0.80, S.D.= 0.03vs. Dyslexics: 0.70,
S.D.= 0.1; P<0.001) and the absence of this deficit in the
Dichotic and Spatialized configurations (both P>0.05).

Voxel-wise analysis of asymmetry - Gray Matter
In samples from both groups, different cerebral regions were

identified as exhibiting a GM distribution asymmetry. Table 2
and Figure 1 show the results of the whole-brain group-specific
GM asymmetry analysis.

Regions showing significant leftward asymmetry involved a
large cluster centered on the inferior temporal gyrus (left ITG)
and extending downwards along the lateral bank of the left
cerebellar hemisphere (Normal Readers: k = 2235 voxels, peak
at MNI: [-53, -37, -30]; Dyslexics: k = 3865 voxels, peak at MNI:
[-56, -42, -30]). A second major cluster comprised the left basal
ganglia, with peaks centered on the globus pallidus in normal
readers and on the putamen in dyslexic participants (Normal
Readers: k = 2012 voxels, peak at MNI: [-12, 9, 1]; Dyslexics: k
= 1959 voxels, peak at MNI: [-20, 9, 7]). One significant cluster
was present only in the dyslexic group, centered on the left
superior temporal gyrus (k = 214 voxels, peak at MNI: [-69, -42,
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Table 2. Gray matter asymmetries.

 AAL Region

Cluster
Size
(voxels)

Corr.
p-
value
(clust.
level)

Corr.
p-
value
(vox.
level) T max

Peak location
MNI
coordinates

      x y z

Normal Readers

Left
Hem.

Inferior
Temporal Gyrus

2235 <.001 0.047 11.49 -53 -37 -30

 Pallidum 2012 <.001 0.031 12.08 -12 9 1

 Temporal Pole 657 0.008 0.863 6.61 -18 12 -32

 Thalamus 504 0.017 0.793 6.87 -11 -28 6

Right
Hem.

STG / MTG 4038 <.001 0.028 12.19 44 -34 1

 Cerebellum 3178 <.001 0.053 11.29 12 -54 -60

 Medial Cingulate 1292 <.001 0.531 7.71 12 21 36

 Insula 1076 <.001 0.01 13.52 38 -6 24

 
Inferior Frontal
Gyrus

950 <.001 0.072 10.79 41 35 -9

 Cuneus 447 <.001 0.26 8.85 9 -84 28

 
Medial Frontal
Gyrus

356 <.001 0.187 9.35 44 53 3

 
Parahippocampal
Gyrus

266 0.019 0.263 8.84 6 -18 -30

 Precentral Gyrus 171 0.014 0.675 7.25 33 -19 69

Dyslexics

Left
Hem.

Inferior
Temporal Gyrus

3865 <.001 0.031 12.09 -56 -42 -30

 Putamen 1959 <.001 0.178 9.4 -20 9 7

 Medial Cingulate 292 0.009 0.921 6.34 -8 -43 39

 
Parahippocampal
Gyrus

219 0.002 0.547 7.64 -20 -42 -5

 STG (posterior) 214 0.03 0.115 10.06 -69 -42 13

Right
Hem.

STG / MTG 1481 <.001 0.002 15.86 44 -25 -6

 Cerebellum 1750 <.001 0.577 7.54 5 -45 -35

 
Inferior Frontal
Gyrus

878 <.001 0.052 11.28 32 27 -12

 
Medial Frontal
Gyrus

573 <.001 0.047 11.46 30 8 39

 
Postcentral
Gyrus

500 0.001 0.929 6.29 35 -22 48

 
Postcentral
Gyrus

488 <.001 0.772 6.93 38 -7 34

 
Anterior
Cingulate

369 0.041 0.795 6.85 6 42 15

13]), corresponding to the posterior region of the STG (BA 22).
The direct group comparison, however, showed that this
difference was not significant (see below).

Regions showing a rightward morphological GM asymmetry
revealed a large cluster at the frontier of the right STG and
MTG, developing along the right superior temporal sulcus
(STS) (Normal Readers: k = 4038 voxels, peak at MNI: [44,
-34, 1]; Dyslexics: k = 1481 voxels, peak at MNI: [44, -25, -6]).
A second rightward asymmetric cluster was centered on the
right cerebellum (Normal Readers: k = 3178 voxels, peak at
MNI: [12, -54, -60]; Dyslexics: k = 1750 voxels, peak at MNI: [5,
-45, -35]). Moreover, a large cluster was also observed in the
right IFG, BA47 (Normal Readers: k = 950 voxels, peak at MNI:
[41, 35, -9]; Dyslexics: k = 878 voxels, peak at MNI: [32, 27,
-12]). Complete GM asymmetry observations are described in
Table 2.

The direct between-group comparison performed on the
whole-brain data, revealed that dyslexic participants showed a
significant reduction of rightward asymmetry in the
STG/STS/MTG cluster compared with normal readers (P<0.05
cluster-level FWE-corrected; k= 172 voxels; T=7.58). The peak
of this asymmetry difference was located at MNI [62, -22, -3]
(see Figure 2A), corresponding to Talairach’s STG BA22, at
the interface between STG BA22 and MTG BA21, the STS.
This significant difference was associated with an increase in
the variability of asymmetry of GM distribution in that location in
the dyslexic group (P=0.05 on the Levene test on the
homogeneity of variance; Figure 2B). To better characterize
this difference in GM asymmetry and clarify its origin, we
extracted the GM volumes at the peak location on both sides
[+/- 62, -22, -3] and in both groups (Figure 2C). A 2-way
ANOVA (Group, Hemisphere) confirmed the presence of a
significant Group x Hemisphere interaction (P<0.05), and a
post-hoc LSD test confirmed that normal readers showed
increased GM volumes over the right STS compared with the
left site (P<0.01), while dyslexic participants did not show this
difference (P=0.68).

In summary, amongst brain regions showing a GM
asymmetry in both groups, we identified a large cluster
corresponding to a rightward STS asymmetry. When
comparing normal readers to dyslexics, dyslexics showed
reduced GM asymmetry in this region, and normal readers
showed significant asymmetry due to increased GM on the
right side.

Voxel-wise analysis of asymmetry - White Matter
Whole-brain WM asymmetries were also separately

characterized in normal readers and dyslexic participants (see
Figure 3 and Table 3).

Table 2 (continued).

Detailed results from the whole-brain analysis in both participants’ groups.
Statistical thresholds set at P<0.05 FWE corrected at the cluster level. Results are
ranked depending on cluster extent. Asymmetry differences also significant
(P<0.05 - FWE corrected) at the voxel-level are marked bold.
doi: 10.1371/journal.pone.0076823.t002
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In both groups, the WM was primarily leftward lateralized,
with a principal cluster observed in normal readers and
dyslexics following the unfolding of the arcuate fasciculus, with

a pronounced leftward asymmetry (Normal Readers: k = 18343
voxels; Dyslexics: k = 14983 voxels). Peak locations were less
informative given the spatial extent of the cluster, and the

Figure 1.  Gray matter asymmetry and whole-brain analysis.  The images show cerebral regions with significant (cluster-level
FWE-corrected, P<0.05) GM distribution asymmetry in normal-readers (upper row) and dyslexic participants (lower row). Significant
clusters are displayed on the mean GM image of the whole sample of participants.
doi: 10.1371/journal.pone.0076823.g001

Figure 2.  The results from the group difference analysis for gray matter asymmetry.  A: significant group difference,
suggesting that dyslexics show reduced GM asymmetry at [62, -22, -3]. B: GM asymmetry values (raw signal intensity values
expressed in arbitrary units) at [62 -22 -3] in normal readers and dyslexics, illustrating the interindividual variability of GM distribution
at this location. C: GM volumes (raw signal intensity values expressed in arbitrary units) at [62 -22 -3] and [-62-22 -3] in normal
readers (black) and dyslexics (gray), showing a significant GM asymmetry at that location only for normal readers.
doi: 10.1371/journal.pone.0076823.g002
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details are provided in Table 3. This major leftward asymmetric
WM cluster was accompanied by a second large cluster
covering the left cerebellar hemisphere and extending into the
left inferior temporal gyrus in normal readers and dyslexic
participants (Normal Readers: k = 16930 voxels, peak at MNI:
[-38, -40, -48]. Dyslexics: k = 13600 voxels, peak at MNI: [-44,
-40, -39]).

Regions showing a rightward WM asymmetry were less
numerous and concerned a smaller cortical volume but were
located in the basal ganglia (Normal Readers: k = 3569 voxels,
peak at MNI: [12, 6, -2], globus pallidus; Dyslexics: k = 3720
voxels, peak at MNI: 15, 14, 3] caudate nucleus) and frontal
lobe (Normal Readers: k = 841 voxels, peak at MNI: [6, 47,
-11], medial frontal gyrus; Dyslexics: k = 391 voxels, peak at
MNI [8,9,63]: superior frontal gyrus). Other rightward WM
asymmetric clusters comprised the calcarine sulcus in normal
readers and the anterior cingulate cortex in dyslexics.

Between-group differences in the WM asymmetry were
investigated using a two-sample t-test at the whole-brain level
using the same thresholding parameters (FWE-corrected at the
cluster level P<0.05). This analysis, however, revealed no
significant group difference. Performing the same analysis in
the bilateral STG ROIs, using small volume correction, did not
generate any significant results.

Correlation between asymmetry and speech-in-noise
We performed an analysis of the correlation between the GM

and WM asymmetry and the intelligibility scores in the
Monaural configuration, associated with significant deficit in
dyslexics. Because correlational analyses may yield rather
large false-positive rates, we restricted the search of significant
correlations to the inside of symmetric superior temporal ROIs
(Figure S1). This analysis revealed a significant positive
correlation between the intelligibility scores in the Monaural
configuration and the leftward WM asymmetry in the posterior

STG of dyslexic individuals (Figure 4 A,B,C). Dyslexics: k = 186
voxels, peak at MNI: [-62, -31, 9], P<0.05 FWE corrected both
at the cluster- and the voxel-level, SVC. No significant
correlation between the GM asymmetry and speech-in-noise
intelligibility measures was observed.

Discussion

This study was designed to characterize and compare the
inter-hemispheric cerebral asymmetries of gray and white
matter distribution in dyslexic adults and normal readers and
establish relationships between these morphological
characteristics and the speech-in-noise processing deficit
observed in dyslexia. To achieve this aim, we explored the
distribution of the different types of brain tissue using a VBM-
based asymmetry analysis. Correlations with the speech-in-
noise intelligibility measures were also performed to examine
the structure/function relationships in both groups.

Asymmetry analyses in the WM primarily identified a leftward
asymmetry in the arcuate fasciculus, a well-characterized
group of WM bundles involved in the specialization of language
and speech in the left-hemisphere of the human brain. No
group difference between dyslexics and normal readers
emerged; therefore, we will not further discuss this aspect. The
results of the GM asymmetry analysis demonstrated a
significant rightward GM asymmetry involving a large cluster
centered at the border between STG BA 22 and MTG BA 21 in
both groups of participants, initiating along the superior
temporal sulcus (STS) at the caudal extremity and extending
forward to approximately two-thirds of the length of the
temporal lobe. This observation is consistent with previous
morphological asymmetry studies that characterized this GM
asymmetry [77,78]. Interestingly, in the present study, this
morphological asymmetry was associated with a significant
group difference: dyslexic participants showed reduced GM

Figure 3.  White matter asymmetry, whole-brain analysis.  The images show cerebral regions with a significant (cluster-level
FWE-corrected, P<0.05) WM distribution asymmetry in the normal readers (upper row) and dyslexic participants (lower row). The
significant clusters are displayed on the mean WM image of the whole sample of participants.
doi: 10.1371/journal.pone.0076823.g003
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asymmetry in an area located at MNI [62, -22, -3], at about
mid-length of the right-STS. The extraction of the GM volumes
at this location revealed that, in contrast to normal readers who
exhibited significantly more GM on the right compared with the
left side, dyslexics did not show this asymmetry. This result is
consistent with former observations of reduced functional
asymmetry in dyslexia, particularly in regions associated with
auditory and speech processing [28,29,32]. Moreover,
functional abnormalities have been observed in dyslexic adults
in the right STS during word processing [79]. This rightward
mid-STS asymmetry could directly reflect the functional
specialization of this region for the processing of voice
information in humans [80-82]. The locus in which we observed
rightward asymmetry was termed the Temporal Voice Area
(TVA), described by Grossman et al. [83] and Charest et al.
[81]. This area is a counterexample of a cortical region with a

potentially important role in speech perception and a clear
rightward functional asymmetry [80], potentially resulting from
an underlying rightward morphological asymmetry in the GM
[84]. This region is clearly sensitive to human voice compared
with other complex but scrambled sounds, without the
harmonic structure of voicing [85]. Specifically, the anterior to
mid STS/STG has been previously linked to processes
associated with recognizing and directing attention toward
voice characteristics when hearing speech [86]. Furthermore,
this region might also be involved in the processing of
competing auditory sources [87] and could therefore play a role
in the processing of masked speech [88]. The right STS might
play an important role in the cortical network during the
cocktail-party effect, particularly, during speech-in-speech
comprehension. In this situation, the streaming of individual
voices, based on the processing of fundamental frequencies,

Table 3. White matter asymmetries.

 AAL Region Cluster Size (voxels) Corr. p-value(clust. level) Corr. p-value(vox. level) T max Peak location MNI coordinates

      x y z

Normal Readers

Left Hem. Heschl/STG/IFG 18343 <.001 0.001 17.14 -50 -13 10

 Cerebellum / ITG 16930 <.001 0.018 12.73 -38 -40 -48

 Medial Occipital Gyrus 2789 <.001 0.054 11.02 -18 -88 15

 Precuneus 466 0.003 0.745 6.87 -2 -67 46

 Paracentral Lobule 274 0.007 0.744 6.87 -8 -36 63

 Precuneus 106 0.018 0.863 6.46 -11 -55 52

Right Hem. Pallidum 3569 <.001 0.181 9.21 12 6 -2

 Medial Frontal Gyrus 841 0.001 0.664 7.12 6 47 -11

 Lingual Gyrus 911 <.001 0.263 8.66 18 -49 -3

 Anterior Cingulate 239 0.041 0.989 5.6 3 50 9

 Calcarine Sulcus 174 0.043 0.617 7.27 33 -54 15

 Putamen 165 0.002 0.035 11.74 27 14 13

Dyslexics

Left Hem. IFG / Left MTG 14983 <.001 0.001 17.47 -35 23 -20

 Cerebellum 13600 <.001 0.002 15.62 -44 -40 -39

 Cuneus 238 0.005 0.54 7.49 -18 -64 21

 IFG 218 0.005 0.887 6.34 -50 24 27

 Inferior Parietal 212 0.004 0.487 7.67 -53 -37 55

 MTG 413 0.031 0.981 5.71 -54 -69 12

 Precentral Gyrus 625 <.001 0.257 8.66 -39 11 46

 Superior Occipital Gyrus 75 0.015 0.646 7.15 -15 -87 18

Right Hem. Caudate 3720 <.001 0.003 15.19 15 14 3

 Superior Frontal Gyrus 391 0.001 0.528 7.53 8 63 9

 Anterior Cingulate 242 0.028 0.909 6.24 2 38 18

Detailed results from the whole-brain analysis in both participants’ groups. Statistical thresholds set at P<0.05 FWE corrected at the cluster level. Results are ranked
depending on cluster extent. Asymmetry differences also significant (P<0.05 - FWE corrected) at the voxel-level are marked bold.
doi: 10.1371/journal.pone.0076823.t003
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i.e., f0 characteristics, is key to successfully maintaining
intelligibility in an environment where multiple voices are
present together [89,90]. Indeed, this listening situation
constitutes a three-fold challenge, involving the integration of
linguistic, spatial localization and auditory object identification
processes. Consistently, Altmann et al. showed using different
animal vocalizations that could change either the nature or the
spatial location of the source, that the right STS was highly
sensitive to changes in the identity of the auditory object
represented and less sensitive to changes in spatial position
[91,92]. Therefore, the right STS region is specifically engaged
in the recognition and identification of complex auditory objects
belonging to different semantic categories [93,94]. The right
STS would therefore be responsible for the object-fold of the
speech-in-speech situation, identifying, representing and
tracking specific voices over time. The reduction of GM in this
area in dyslexic participants could reflect the reduced functional
specialization of this region towards the processing of auditory
objects, specific to human voices associated with the speech-
in-noise deficit observed in dyslexics [13,14].

Another role proposed for the right middle STS involves the
processing of speech rhythms and intonation [95]. The
processing of intonation primarily relies on variations in pitch-
contours (f0), whereas the processing of speech rhythm relies
on the processing of slow modulations (envelope). Notably,
dyslexic people exhibit deficits in the processing of slow
amplitude modulations during auditory and speech processing

[96-98] and these processes involve right auditory regions [99].
In addition, this observation is consistent with the hypothesis of
an involvement of the right STS in the speech-in-noise
perception deficit in dyslexia, as slow modulations are a crucial
cue in the processing of speech-in-noise [100]. The question of
the causal relation between dyslexia and morphological gray
matter plasticity remains. Therefore, additional studies are
needed to clarify this issue.

The second major observation in this study was the
presence of a significant correlation between the speech-in-
noise abilities in the dyslexic group and the WM leftward
asymmetry in the posterior STG, indicating that when the WM
was more leftward asymmetric in dyslexic individuals, the
performance was better in the speech-in-noise test. This result
was consistent with a number of studies showing the
involvement of the left superior temporal regions in speech
processing. Specifically, superior temporal activations in fMRI
studies have been obtained when hearing speech-in-noise
[101,102]. For example, Zeckveld et al. [102] showed that in
difficult listening situations, such as for a -5 dB SNR versus a
+20 dB SNR, there was activation in the left posterior STG. We
did not observe the same correlation in the normal-readers
group, likely reflecting a lack of variability in the results from the
speech-in-noise test for this group, as observed in Table 1.
This region corresponds to the caudal aspect of BA22,
Wernicke’s area, which is a major end of the arcuate
fasciculus, its auditory/phonological end. The correlation

Figure 4.  The results of the correlation analysis between the speech-in-noise intelligibility scores in the Monaural
configuration and WM asymmetry in dyslexic participants.  A: behavioral results of the speech-in-noise comprehension test.
The intelligibility of the individual words presented in a 4-talkers babble noise in three listening conditions (Dichotic, Monaural,
Spatialized). B: Correlation between the speech-in-noise comprehension scores and WM asymmetry at [-62, -31, 9] for dyslexic
participants. C: Visualization of the significant cluster, reflecting the correlation between WM volume and speech in noise scores
centered at [-62, -31, 9] in dyslexic participants only.
doi: 10.1371/journal.pone.0076823.g004
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between white matter density at this location and the speech-
in-noise deficit might reflect the phonological/linguistic
compound of the speech-in-noise deficit. When listening to
speech, this region is often associated with phonological
processing and the identification of phonemes in speech
streams. When listening to speech in noisy environments, the
functional connectivity between these regions and the frontal
regions at the other end of the arcuate fasciculus increases
[103,104], as motor representations of speech are recruited to
facilitate intelligibility. A lack of WM in this region might be
associated with difficulties in speech-in-noise comprehension
tasks and is ultimately associated with the phonological deficit
observed in dyslexia; however, additional studies are needed
to further investigate these aspects.

The interpretation of the results of this VBM-based analysis
should be carefully undertaken. Indeed, VBM did not provide
information on the microscopic structures in the cortical
regions, and the results were not specific to underlying tissue
properties. The described changes might reflect not only
modifications in neuronal density but may also indicate other
cellular modifications, such as differences in the density and
size of other cell types, myelination or vascularization [36].
Thus, additional studies are required to understand the precise
cellular basis underlying dyslexia. In this framework, studies
combining the use of different neuroimaging techniques (fMRI,
VBM, DTI) and more precise anatomical techniques, such as
the measurement of cortical thickness, fiber tracking, or
analyses of brain sulci are clearly needed.

Conclusions

The results of this study contribute to the characterization of
the morphological deficits in dyslexia. Our major findings
confirmed both the presence of a significant deficit in the
perception of masked speech and the existence of GM
abnormalities in regions traditionally associated with speech
processing. Moreover, these results extend the findings of
previous studies, showing GM and WM volume reduction in the
superior temporal regions and highlighting two important

points: first, the rightward GM asymmetry is reduced in the
STS, a region involved in processing functions, such as
speech-in-noise or auditory temporal processing, which are
impaired in dyslexia. Second, speech-in-noise abilities are
dependent on the WM asymmetry of the auditory regions, at
least in the dyslexic group. These results suggest potentially
impaired processing in secondary auditory regions, resulting in
difficulties in speech-in-noise comprehension. Taken together,
these findings clearly highlight the necessity of functional
measures for these regions during speech-in-noise perception
to better characterize the involvement of these areas in the
deficit present in dyslexia.

Supporting Information

Figure S1.  Image of the symmetric ROIs used for the
analysis.
(TIF)
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