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Abstract

Alzheimer’s disease (AD), the most common cause of dementia, is associated with aging, and it leads to neuron
death. Deposits of amyloid β and aberrantly phosphorylated tau protein are known as pathological hallmarks of AD,
but the underlying mechanisms have not yet been revealed. A high-throughput gene expression analysis previously
showed that differentially expressed genes accompanying the progression of AD were more down-regulated than up-
regulated in the later stages of AD. This suggested that the molecular networks and their constituent modules
collapsed along with AD progression. In this study, by using gene expression profiles and protein interaction
networks (PINs), we identified the PINs expressed in three brain regions: the entorhinal cortex (EC), hippocampus
(HIP) and superior frontal gyrus (SFG). Dividing the expressed PINs into modules, we examined the stability of the
modules with AD progression and with normal aging. We found that in the AD modules, the constituent proteins,
interactions and cellular functions were not maintained between consecutive stages through all brain regions.
Interestingly, the modules were collapsed with AD progression, specifically in the EC region. By identifying the
modules that were affected by AD pathology, we found the transcriptional regulation-associated modules that interact
with the proteasome-associated module via UCHL5 hub protein, which is a deubiquitinating enzyme. Considering
PINs as a system made of network modules, we found that the modules relevant to the transcriptional regulation are
disrupted in the EC region, which affects the ubiquitin-proteasome system.
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Introduction

The most common cause of dementia is late-onset
Alzheimer’s disease (AD), which is associated with age > 65
years and leads to neuron death. The AD brain is characterized
by atrophy, which is measured using volumetric magnetic
resonance imaging (MRI). Postmortem, the AD brain shows
senile plaques on the surface of the cerebral neocortex and
neurofibrillary tangle (NFT) staining. Senile plaques are
deposits of amyloid beta protein (Aβ) spliced out by cleavage of
the amyloid precursor protein (APP). NFTs are aggregations of
aberrantly phosphorylated microtubule-associated protein tau
(MAPT), a protein that lets microtubules stabilize in general.

The deposit of NFTs expands from the central regions of the
brain (e.g., entorhinal cortex, hippocampus) to the neocortex.
This pathological stage of AD is defined by Braak stages.
Braak stages are described as transentorhinal stages (Braak
stages I‒II), limbic stages (Braak stages III‒IV) and isocortical
stages (Braak stages V‒VI) [1].

To elucidate the mechanisms of the pathogenesis and
progression of AD, high-throughput gene expression analyses
using DNA microarrays have been conducted; in postmortem
AD brains, differentially expressed genes associated with AD
progression have been found to be more down-regulated than
up-regulated in the later stages of AD (Braak stage, density of
cerebrocortical neuritic plaque and clinical dementia rating
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scale [CDR] that is a scale to measure the severity of
dementia) [2]. Even in normal postmortem brains, gene
expression profiles change with age and differ between males
and females [3,4]. However, it has not yet been determined
whether the molecular networks in the various brain regions
can be affected by these changes of gene expression profiles
during the progression of AD and normal aging.

Understanding the dynamics of the molecular networks that
accompany the progression of AD can lead to the development
of biomarkers for this disease [5] and help to elucidate the
mechanisms of the pathogenesis and progression of AD.
Barabasi et al. hypothesized that in disease, modules are
disrupted into “disease modules” due to mutations, deletions,
copy number aberrations (CNAs), and expression aberrations
[6]. Disease modules are considered to lose their original
network structures and their original functions during disease
progression. In AD, analyses of co-expression networks and
the crosstalk of pathways have offered some insights into the
mechanisms of the pathogenesis and progression of AD [7–9].
However, the following questions have yet to be answered.
How are the molecular networks disrupted with AD progression
in brain regions? What are the disease modules in AD?

To uncover how the molecular networks and their constituent
modules collapse into dysfunction during AD progression, we
here show in detail (1) the disruption of protein expressions,
interactions, and protein interaction networks (PINs) (2), the
instability of modules and increasing dysfunction with AD
progression, and (3) AD-disrupted modules—i.e., disease
modules— that can help elucidate the mechanisms underlying
the pathogenesis and progression of AD.

Results and Discussion

Overview of this study
To uncover how the molecular networks and their constituent

modules are disrupted with the progression of AD, we used
gene expression profiles of AD brains and healthy brains from
a public gene expression database and a human protein-
protein interaction database (see Materials and Methods).

Gene expression profiles were obtained from healthy-brain
subjects (accession number: GSE11882) and from AD-brain
subjects (GSE5281) in three brain regions: the entorhinal
cortex (EC), hippocampus (HIP) and superior frontal gyrus
(SFG). The EC and the HIP belong to the limbic system, and
connect with each other through the perforant pathway. These
two regions are associated with short-term and long-term
memory as well as spatial memory [10,11]. The SFG is part of
the frontal lobe, and it contributes to working memory [12]. In
AD, the EC and the HIP are affected in the early stage, and the
SFG is affected in the later stages.

The gene expression profiles of the healthy brains were from
subjects who were 20 to 99 years old. Among them, we
considered the healthy brains of subjects over 60 years old as
normal-aging brains, because late-onset Alzheimer’s disease
(i.e., sporadic AD without genetic causes) is known to affect
individuals over 65 years old [13–15]. Normal aging subjects
were classified into the following four age groups: 60–69, 70–
79, 80–89, and 90–99 y/o. Similarly, AD datasets were also

grouped into four Braak stages. The EC datasets were
classified into the Braak stage I, II, III and IV because Braak
stages V and VI are not applicable to the EC. In contrast, the
HIP and the SFG datasets were classified into Braak stage I, II,
V and VI since Braak stages III and IV are inapplicable to the
HIP and the SFG. Note that AD and normal aging in each brain
region were classified into the four stages or groups.

We analyzed gene expression profiles of the AD and normal
aging brains according to our workflow, shown in Figure 1.
First, we normalized gene expression datasets using the MAS
5.0 algorithm (Affymetrix, Santa Clara, CA). For each probe
set, the average expression values were calculated using the
samples marked as “present” by the detection call algorithm
(Affymetrix). We considered that a gene was expressed if the
average expression values exceeded 200 [10,11].

To characterize the disruption of PINs in AD, we then studied
genome-wide changes of PINs in AD from the following three
levels: (1) individual proteins, (2) pairs of known interacting
proteins, and (3) sets of proteins we called “modules.” Among
the protein-protein interactions from the BioGRID (Release
3.1.84) [16,17], we identified expressed protein interactions
whose constituent proteins were expressed at the same time
[18,19]. Expressed protein interactions were assembled into an
“expressed PIN” in each Braak stage and each age group. To
divide the expressed PINs into modules, we used the Infomap
algorithm [20,21].

Disruption of expressions of protein interactions in AD
To examine the disruption of protein interactions in AD, we

identified the expressed proteins and their interactions, and
then examined their numbers in the normal aging and AD
groups. A protein was hypothesized to be expressed if the
corresponding gene was expressed. An expressed protein was
thus defined as a protein if the corresponding gene was
expressed, and an expressed protein interaction was thus
defined as a protein interaction whose constituent proteins
were expressed at the same time. We identified expressed
protein interactions in each brain region (EC, HIP and SFG) in
each age group and AD progression stage, and then collected
the expressed protein interactions as an expressed protein
interaction network (PIN) in each brain region for each age
group and AD progression stage.

We compared the numbers of expressed proteins and
interactions in AD with those in normal aging. We found that
these numbers in AD were significantly lower than those in
normal aging across the EC and HIP regions (Wilcoxon test; P-
value = 0.0286; Figure 2A,B). The EC and HIP regions were
affected by AD from the incipient stages of AD pathogenesis;
protein expressions and interactions in the AD EC and AD HIP
regions were also thought to be disrupted from the beginning of
AD pathogenesis.

Disruption of PINs along with AD progression
As described above, the AD PINs were smaller than the

normal-aging PINs. To what extent were the AD cellular
networks disrupted with the progression of AD?

We examined correlations of the gene expression levels of
proteins that appear and disappear with aging and AD
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Figure 1.  Flowchart for the identification of expressed protein interaction networks (PINs) and the detection of
module.  Expressed proteins were extracted from gene expression profiles based on our criteria: detection call is “present” and the
average expression value is more than 200. Merging the list of expressed proteins and protein-protein interaction data, we obtained
interactions whose constituent proteins were expressed at the same time as expressed protein interactions, and we constructed
expressed PINs. We then detected modules from expressed PINs by using the Infomap algorithm. These processes were also
performed in the other brain regions.
doi: 10.1371/journal.pone.0076162.g001

Disease Modules in Alzheimer's Disease Progression

PLOS ONE | www.plosone.org 3 November 2013 | Volume 8 | Issue 11 | e76162



progression (Figures S1 and S2). The all expression levels
showed significantly correlated with both aging and AD
progression in each brain region.

Furthermore, we identified the appearing and disappearing
interactions with aging and AD progression in each brain region
(Figure 3). An appearing interaction was defined as an
expressed protein interaction that was not expressed at an
early age or stage of AD progression but was expressed in
later stages and age groups. A disappearing interaction was
defined as an expressed protein interaction that was expressed
at an early age or AD stage but was not expressed in later
stages or age groups.

We compared the ratios of appearing and disappearing
interactions to all expressed protein interactions in AD and
normal aging with those in randomized networks composed of
interactions whose number was equal to the number of
expressed interactions from all protein interactions without self-
interactions retrieved from the BioGRID (see details for
Material and Methods)(Figure 4). Except for the EC region in
the AD brains, the ratios of appearing and disappearing
interactions to all expressed protein interactions in the three
regions of both the AD and normal-aging brains were
significantly and remarkably lower than those in the
corresponding randomized networks, resulting in Z-scores
between −26.5 and −12.0, which suggested that the

appearance and disappearance of interactions were
significantly suppressed in age groups and AD progression
stages (except for the AD EC region) compared to the
corresponding randomized networks.

Interestingly, the ratio of disappearing interactions in the AD
EC region was not significantly lower than those in its
randomized networks (Z-score = −0.672), which suggested that
disappearance of interactions was no longer suppressed in the
AD EC region compared with its randomized networks.
Therefore, the AD EC region lost the original functions of its
PINs, and it lost protein interactions along with the progression
of AD, which resulted in disruption and dysfunction of its PINs.

Instability of consecutive modules in PINs during AD
To clarify the disruption of PINs during AD, we traced

“modules” composed of their expressed PINs along the
progression of AD and aging. We divided the expressed PINs
in aging and AD into modules based on the network structure,
using the Infomap algorithm [20,21]. The Infomap algorithm is
known for showing superior performance [22]. In our previous
study, we showed that the Infomap algorithm has high Q-
modularity, which is a quality index for divisions of a network
[23]; the use of this algorithm finely divided the PINs into
modules compared to the other methods (Table S1). As a

Figure 2.  The number of expressed proteins and interactions in expressed PINs in normal aging and AD.  A boxplot
represents the numbers of (A) expressed proteins or (B) expressed interactions for normal age groups (60‒69, 70‒79, 80‒89, 90‒
99 years old) and AD progression stages (Braak stage I, II, III/IV, V/VI). The numbers of expressed proteins and interactions in the
AD EC and HIP were significantly lower than those in the normal-aging groups (Wilcoxon test; P-value = 0.0286, respectively). Four
samples in AD and four samples in normal aging were compared. In the SFG, the number of expressed interactions in AD was not
significantly lower than that in normal aging (Wilcoxon test; P-value = 0.114).
doi: 10.1371/journal.pone.0076162.g002
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result, 309–392 modules were detected in expressed PINs in
each brain region of each age group and each AD progression
stage. The detected modules were then tracked between
consecutive age groups and AD progression stages though
aging and AD progression. We assessed the stability of

modules by the auto-correlation of proteins (CN), interactions
(CL), and cellular functions (CGO). Regarding each auto-
correlation, among all the possible pairs of tracked modules
between consecutive age groups or AD progression stages,
the module pairs exhibiting the highest auto-correlation were

Figure 3.  A scheme of appearing and disappearing interactions.  An appearing interaction was defined as an expressed
protein interaction that was not expressed at an early age or stage of AD progression but was expressed in later stages and age
groups. A disappearing interaction was defined as an expressed protein interaction that was expressed at an early age or AD
progression stage but was not expressed in later stages or age groups. Each interaction has three patterns indicated in a scheme.
doi: 10.1371/journal.pone.0076162.g003

Figure 4.  Ratios of appearing and disappearing interactions.  Red plots indicate the ratios of appearing protein interactions,
and blue plots indicate disappearing protein interactions. The boxplots indicate the ratios of appearing and disappearing protein
interactions from 1,000 corresponding randomized networks in each brain region in normal aging and AD. Values below the
boxplots show the Z-scores between the ratio and the ratios of 1,000 randomized networks. The ratio of the number of disappearing
interactions in the AD entorhinal cortex (EC) region showed no significant difference from those of the 1,000 randomized networks
(Z-score = −0.671).
doi: 10.1371/journal.pone.0076162.g004
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identified (Figure 5A). We also obtained the probability density
distributions of CN, CL, and CGO in each brain region for each
age group and AD progression stage (Figure 6).

As shown in Figure 6, across all the brain regions, the
module pairs in the normal-aging brains showed significantly
higher CN, CL, and CGO values compared to their counterparts in
the AD brains. Most of the modules in the consecutive age
groups maintained their constituent proteins, interactions and
functions, whereas most modules in the consecutive AD
progression groups dynamically changed their constituent
proteins, interactions and functions, suggesting a dysfunction
of modules.

Few inherited-module lineages along with AD
progression

If a module pair exhibits the highest CL in two consecutive
stages and their CL and CGO exceeded 0.5 (i.e., over one-half),
we assumed that the modules were “inherited” (Figure 5B). If
the modules were inherited from the earliest age group or AD
progression stage (60–69 y/o or Braak stage I) to the latest age
group or AD progression stage (90–99 y/o or Braak stage IV in
the EC region or Braak stage VI in the HIP and the SFG
regions), we called these modules “inherited-module lineages”
and called the other modules “disrupted inherited-module
lineages” (Figure 5C).

Accordingly, we identified 1046–1212 module lineages
(including inherited-module lineages and disrupted inherited-
module lineages). Inherited-module lineages imply modules
that have a stable network structure and maintain their cellular
functions with aging and AD progression. As a result, in the
normal-aging brains, 7.17% (75/1046), 6.46% (69/1069), and
6.25% (68/1088) module lineages were identified as inherited-

module lineages in the EC, HIP and SFG regions, respectively
(Figure 7). In AD, 1.87% (21/1123), 3.13% (35/1118), and
2.23% (27/1212) of the module lineages were identified as
inherited-module lineages in the EC, HIP and SFG regions,
respectively. The results held using different thresholds (that is,
CL and CGO exceeded 0.3, 0.4, 0.6, 0.7) (Figure S3). As shown
above, the ratio of inherited-module lineages to all module
lineages in AD was less than that in normal aging. Thus, stable
inherited-module lineages were fewer in AD; stated differently,
disrupted inherited-module lineages were relatively abundant in
AD.

In addition, we compared among module sizes of inherited
module lineages and appearing/disappearing module lineages
(Figure S4 and Table S2). As a result, module sizes of
inherited module lineages were significantly ~2.2-fold higher
than them of appearing/disappearing module lineages. On the
other hand, we did not find differences of module sizes
between appearing and disappearing module lineages. These
results suggest that aging and disease progression allow
variances of small modules rather than them of large modules.

Disease modules along with AD progression
In the previous section, we noted that the ratios of inherited

module lineages in AD were less than those in normal aging,
meaning that the module lineages in AD are unstable and
dynamic. However, the module lineages in normal aging were
not always inherited-module lineages. This finding suggests
that the stability of a module is affected not only by AD
progression but also by aging. To uncover disease modules
from identified module lineages, we needed to compare
module lineages between normal aging and AD. We then
examined the correspondence between 60–69 y/o and Braak

Figure 5.  The process used to generate the module lineages.  (A) Calculation of the interactions (CL) of all possible module
pairs in two consecutive stages. (B) Of the module pairs exhibiting the highest CL, if CL and CGO exceeded 0.5, the modules were
considered “inherited.” (C) If the modules were inherited from the earliest age group or AD progression stage (60–69 y/o or Braak
stage I) to the latest age group or AD progression stage (90–99 y/o or Braak stage IV in the EC region or Braak stage VI in the HIP
and the SFG regions), we called these modules “inherited-module lineages,” and called the other modules “disrupted inherited-
module lineages.” Each node indicates distinct modules. Thick links are the module pairs exhibiting the highest CL. Arrows
represent inherited relationships.
doi: 10.1371/journal.pone.0076162.g005
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stage I, 70–79 y/o and Braak stage II, 80–89 y/o and Braak
stage III (in the EC) or V (in the HIP and SFG), and 90–99 y/o
and Braak stage IV (in the EC) or VI (in the HIP and SFG).

To find the correspondence of module lineages between
normal aging and AD, we aligned their constituent modules at
each age group and each AD progression stage (e.g., a
module in 60–69 y/o and a module in Braak stage I). We then
evaluated the correspondence between aligned modules by
calculating the auto-correlation of their interactions (CL) and

cellular functions (CGO). If an aligned module pair exhibited the
highest CL and both CL and CGO were over 0.5, the aligned
modules showed a correspondence of both constituent
interactions and exhibited functions.

If a module lineage in normal aging is an inherited module
lineage and the corresponding module lineage in AD is
disrupted, we can assume that the module lineage collapses
with AD progression. We called such modules “AD-disrupted
modules.”

Figure 6.  Auto-correlations of proteins, interactions, and functions for inherited modules.  Probability density distributions of
the (A) auto-correlation of proteins, (B) interactions, and (C) cellular functions of a consecutive module pair. Orange curves indicate
normal aging and green curves indicate AD. P-values were calculated from the Wilcoxon test. Auto-correlations in AD were
significantly lower than those in normal aging through all brain regions.
doi: 10.1371/journal.pone.0076162.g006
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Each AD-disrupted module was classified as either the early-
disrupted type or the late-disrupted type (Figure 8 and Table
S3). An early-disrupted type was defined as a module in an AD
brain that has no correspondence to an early age group in
normal aging, but corresponds to a later age group. A late-
disrupted type was defined as a module in AD that corresponds
to an early age group in normal aging, but has no
correspondence to a later age group.

The ratio of the number of late-disrupted types to the number
of inherited module lineages of normal aging in the EC region
was 40.0%, and was higher than those in the other regions
(3.45 times that in the HIP region, 3.88 times that in the SFG
region) (Table 1). This finding is consistent with the result
shown in Figure 4 that the ratio of disappearing interactions
was equivalent to that in randomized networks in the AD EC
region.

We then identified the two late-disrupted modules in the EC
region with the largest and second-largest numbers of
disappearing interactions (Figure 9A and B, respectively). A
gene ontology (GO) analysis using the DAVID algorithm [24,25]
revealed that the modules in Figure 9A and 9B were
associated with histone acetyltransferase complex and RNA
polymerase complex, respectively (modified Fisher’s exact test;
P-value = 1.6×10−20 and 1.2×10−20, respectively).

Regarding the histone acetyltransferase-associated module,
we found eight hub proteins with more than 10 disappearing

interactions: RUVBL1, RUVBL2, ACTB, KAT5, DMAP1,
NFRKB, INO80B and INO80C. RUVBL1 and RUVBL2 are the
highly conserved AAA+ chaperone-like ATPases [26] and are
involved in various cellular processes, including transcription,
DNA repair and RNA modification [27,28]. In the budding yeast
Saccharomyces cerevisiae, RUVBL1/RUVBL2 homologs
(Rvb1/2) interact physically and functionally with cofactors of
molecular chaperone Hsp90 that is associated with the
formation of NFTs [29,30].

We also found beta-actin (ACTB), which is known as one of
the housekeeping genes. However, it was reported that the
expression of ACTB is unstable in AD, in real-time quantitative
polymerase chain reaction (PCR) [31]. RUVBL1/RUVBL2 and
ACTB are present in INO80/SWR1 chromatin-remodeling
complex [27,32–34]. Chromatin remodeling controls the
epigenetic regulation of gene expression. A recent study
showed that the epigenetic suppression of gene expression by
increased histone deacetylase 2 prompts cognitive decline [35].
In the present analysis, we showed that the histone
acetyltransferase-associated module was damaged in the AD
EC region, supporting the proposal that epigenetic inhibition
occurs in AD.

In the RNA polymerase-associated module, five hub proteins
were found (RPAP2, MED1, MED12, POLR2G and CTDP1).
RNA polymerase II-associated proteins (RPAP1, RPAP2 and
RPAP3) provide an interface of RNA polymerase II regulatory

Figure 7.  Ratio of inherited module lineages.  The ratio of inherited module lineages to the total number of module lineages. The
ratios of inherited module lineages in AD were lower than those in normal aging through all brain regions.
doi: 10.1371/journal.pone.0076162.g007
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complexes (mediator complex and integrator complex),
RUVBL1/RUVBL2, and molecular chaperones/scaffolding
proteins [36]. MED12 is one of the RNA polymerase II
transcriptional mediator subunits, and is implicated in neuronal
development and cognitive development [37–40]. The
disruption of the RNA polymerase-associated module may
contribute to impaired transcription in the AD EC region.

To detect modules that are affected by the disruption of two
identified modules, we searched each late-disrupted module
sharing the largest number of disappearing interactions with
the histone acetyltransferase-associated module and the RNA
polymerase-associated module, respectively. Interestingly, the
module sharing disappearing interactions with the histone
acetyltransferase-associated module was enriched with a
proteasome complex (Figure 9C; modified Fisher’s exact test;
P = 7.3×10−63). One of the major factors of AD is the
aggregation of insoluble proteins (e.g., senile plaques and
NFTs) and misfolding proteins (e.g., amyloid fibrils). In normal
cells, these abnormal proteins are decomposed by protein
quality control systems such as the ubiquitin-proteasome
system. However, the degradation process of proteins in AD
does not work as well as in healthy subjects.

Indeed, an impaired ubiquitin-proteasome system has been
observed in AD [41,42]. We found both the deubiquitinating
enzyme UCHL5 and subunits of 26S proteasome PSMD7/
PSMC4 as hub proteins. Interestingly, UCHL5 in the
proteasome was reported to interact with INO80 complex
containing RUVBL1/RUVBL2 via NFRKB [43]. In fact, the

proteasome-associated module interacts with the histone
acetyltransferase-associated module through only UCHL5
(Figure 9C). This suggests that in the AD brains, not only was
the ubiquitin-proteasome system impaired by decreased
proteasome subunits (PSMD7/PSMC4), but the relationship
between proteolysis and transcriptional regulation was also
broken down by down-regulated UCHL5.

The RNA polymerase-associated module shared
disappearing interactions with the module related to the
transcription factor complex (Figure 9D; modified Fisher’s exact

Table 1. The number of module lineages in early- and late-
disrupted types.

 Module type  

Brain
region

Early-disrupted
type

Late-disrupted
type Other

Total (All
inherited
module
lineages)

EC 3 (4.0%) 30 (40.0%) 42 (56.0%) 75
HIP 3 (4.3%) 8 (11.6%) 58 (84.1%) 69
SFG 2 (2.9%) 7 (10.3%) 59 (86.8%) 68
Inherited module lineages in normal aging were divided into two module types
(early- and late-disrupted type). The numbers in parentheses represent the ratios
of the number of module lineages to the number of all corresponding inherited
module lineages.
doi: 10.1371/journal.pone.0076162.t001

Figure 8.  Schematic illustration of AD-disrupted modules.  AD-disrupted modules were classified as the early-disrupted type or
the late-disrupted type. Red nodes: modules in normal aging. Blue nodes: modules in AD. Black lines: inherited relationships in
normal aging. Red lines: correspondences between the module in each age group in normal aging and the module in the
corresponding Braak stage in AD.
doi: 10.1371/journal.pone.0076162.g008
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test; P = 6.7×10−46). We found three hub proteins (ATXN7,
TAF10 and SUPT3H) in the transcription factor-associated
module. ATXN7 is known as a gene that causes the
neurodegenerative disease spinocerebellar ataxia type 7, and it

is reported to stabilize microtubules [44]. As we mentioned
above, tau protein is associated with the stabilization of
microtubules but they cannot work by aberrant phosphorylation
in AD. These findings suggest that the decreased expression of

Figure 9.  Late-disrupted modules in the EC region.  (A) The histone acetyltransferase-associated module, which is the late-
disrupted module with the largest number of disappearing interactions. (B) The RNA polymerase-associated module, which is the
late-disrupted module with the second largest number of disappearing interactions. (C) The proteasome-associated module, which
is the late-disrupted module sharing the largest number of disappearing interactions with the histone acetyltransferase-associated
module. (D) The transcription factor-associated module is the late-disrupted module sharing the largest number of disappearing
interactions with the RNA polymerase-associated module. The large nodes are hub proteins with more than 10 disappearing
interactions in the module. Links in red and blue indicate disappearing interactions and the other, respectively. These modules are
depicted by the superimposition of modules in AD that corresponded with normal aging.
doi: 10.1371/journal.pone.0076162.g009
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ATXN7 promotes the destabilization of microtubules in AD and
leads to neuron death.

We identified hub proteins that have key roles in the
mechanisms underlying AD. Our network-based research will
be helpful to further filter disease-candidate genes from
differentially expressed genes identified by gene expression
analyses from the standpoint of network biology.

In summary, using protein interaction networks (PINs) as a
system comprised of multiple network modules, our findings
revealed that the modules relevant to the transcriptional
regulation are disrupted in the entorhinal cortex region, which
affects the ubiquitin-proteasome system.

Validity for inference of presence/absence of a protein
In our study, we found 76.7% (16,147 genes) of 21,050

genes analyzed were expressed across normal aging and AD
tissues. The previous studies reported that 76~86 % of genes
were expressed in human brain [4,45,46]. This accordance
supports that our threshold to infer presence/absence of a
protein is reasonable.

We assumed that a protein was expressed if the
corresponding gene was expressed. Schwanhäusser et al.
reported the correlation between copies of mRNA and protein
was R2=0.41 using more than 5,000 genes in mammalian cells
[47]. The correlation between copies of mRNA and protein is
not high. However, Schwanhäusser also reported that if an
impact of transcription, mRNA stability, translation and protein
stability on protein abundance is taken into account, predicted
protein levels agreed very well with measured protein levels
(R2=0.85). In this study, we used an expression threshold 200
which is proven to correspond with 3~5 mRNA copies
expression per cell experimentally considering an effect of
transcription, mRNA stability, translation and protein stability on
protein abundance [18]. It thus supports that our threshold is
reliable.

In our study, RNAs in AD and normal aging were extracted
from laser-captured postmortem brains and frozen unfixed
tissues using different protocols, respectively. Direct
comparison between those gene expression values is not
appropriate because of including such batch effects. We now
identified binarized genes (“expressed” or “unexpressed”) using
the threshold, and confirmed that lists of expressed proteins in
AD and normal aging are supported by the preceding studies;
e.g., in AD, RBAK, RBL1, ZNF268, HOXC4, and HOXB5 genes
disappeared along with the Braak stage progression in the HIP
region, and in normal aging, OGG1 and MT1G genes appeared
along with aging in the HIP region. In AD, transcriptional and
tumor suppressor responses activates along with AD
progression, and RBAK, RBL1, ZNF268, HOXC4, and HOXB5
genes are known as transcription factors increasing their
expressions along with NFT accumulation [48]. In normal
aging, reactive oxygen species is produced with age, and the
major oxidation product 8-oxoguanine levels increases after 70
years old. To respond the stress, OGG1 gene is considered to
over-express with normal aging [49]. MT1G gene is also
considered to over-express in aged hippocampus to respond
the oxidative stress [49]. Therefore, a list of expressed proteins
is reasonable in AD and normal aging, respectively.

Conclusions

We have shown genome-wide changes of PINs in AD at the
following three levels: (1) individual proteins, (2) pairs of known
interacting proteins, and (3) sets of proteins called modules.
We observed that expressed PINs in the AD EC region lost as
many expressed interactions as those of randomized networks.
In contrast, expressed PINs in the other brain regions were
significantly suppressed, regardless of the AD or normal-aging
status of the brain. These results indicate that the EC region,
one of the brain regions affected at the early stage in AD, was
disrupted at the network level. We also identified AD-disrupted
modules (early-disrupted type and late-disrupted type) as
disease modules. Interestingly, the number of late-disrupted
type modules was greater than that of early-disrupted types
across all brain regions, and the number of late-disrupted types
in the EC was much greater than that in the HIP and SFG,
indicating that with the progression of AD, PINs in the EC
rapidly collapse at the module level. Among the late-disrupted
modules in the EC region, we found the histone
acetyltransferase-associated module and the RNA polymerase-
associated module where many expressed interactions
disappear with AD progression. We also found each module
affected by the disruption of the histone acetyltransferase-
associated module and the RNA polymerase-associated
module (the proteasome-associated module and the
transcription factor-associated module, respectively). Our
detailed observations also exposed some hub proteins that
contributed to the disruption of the modules. Of these hub
proteins, UCHL5 in the proteasome-associated module
interacted with the histone acetyltransferase-associated
module, suggesting that UCHL5 causes a rupture between
epigenetic transcriptional regulation and protein degeneration
in AD. Our findings provide the new insight that in AD, the
relationship between transcriptional regulation and the
ubiquitin-proteasome system is collapsed via the down-
regulation of UCHL5.

Materials and Methods

The human protein interaction network (PIN)
The human protein interaction dataset was retrieved from the

BioGRID (http://thebiogrid.org/; Release 3.1.84) [16,17]. Self-
interactions were removed, and the rest of protein interactions
were extracted as the human protein interaction network. The
human protein interaction network comprises 8,765 proteins
and 35,819 interactions.

Gene expression datasets of postmortem brains of AD
subjects and normally aging subjects

A gene expression dataset of the postmortem brains of 48
AD subjects for Braak pathological stages (I‒VI) was retrieved
from the U.S. National Center for Biotechnology Information
(NCBI) Gene Expression Omnibus (GEO) (http://
www.ncbi.nlm.nih.gov/geo/) (GSE5281) [50,51]. The mean
postmortem interval (PMI) was 2.5 h. Postmortem brains were
laser-captured in six brain regions: entorhinal cortex (EC),
hippocampus (HIP), posterior cingulate cortex (PC), superior
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frontal gyrus (SFG), middle temporal gyrus (MTG) and primary
visual cortex (VCX) regions. The Affymetrix U133 Plus 2.0
Array (Affymetrix, Santa Clara, CA) was used for the
measurement of gene expression.

A gene expression dataset of postmortem brains of 55
cognitively intact subjects aged 20 to 99 years was also
retrieved from the NCBI GEO (http://www.ncbi.nlm.nih.gov/
geo/) [52,53] (GSE11882) [3]. Frozen unfixed tissue was
categorized into four brain regions: EC, HIP, SFG, and
postcentral gyrus (PCG) regions. The Affymetrix U133 Plus 2.0
Array was used for the measurement of gene expression. We
used only the brains of subjects aged 60–99 years as
examples of normal aging.

The gene expression datasets were quality controlled, and
we used those in the EC, HIP, and SFG regions that had both
a gene expression dataset from postmortem AD brains and a
gene expression dataset from cognitively intact brains: 22 AD
brains and 18 normal brains in the EC region, 23 AD and 25
normal brains in the HIP region, and 30 AD and 26 normal
brains in the SFG.

Gene-expression data processing in each AD
progression stage or in each age group

Gene expression datasets were normalized using the MAS
5.0 algorithm (Affymetrix) to obtain normalized absolute values
of gene expressions in each array because they were
compared with the absolute threshold based on the previous
studies. For each probe set, the average expression values
were calculated using the samples marked as “present” by the
detection call algorithm (Affymetrix). To reduce as much as
possible batch effects, we not only normalized gene expression
levels but also used only “Present” call probe sets. We
considered that a gene is expressed if the average expression
values exceeded 200 [16,17]. We assessed the robustness of
our results/conclusions using the different expression threshold
(expression levels >150 and > 250) (Figures S5-S8). When a
gene had plural probe sets, we adopted the probe set showing
the highest variance.

Identification of expressed protein interaction networks
in each AD progression stage or in each age group

We assumed that expressed genes were transcribed to
mRNAs, and that mRNAs were translated to proteins. That is, a
protein was hypothesized to be expressed if the corresponding
gene was expressed. Thus, an expressed protein interaction
was defined as a protein interaction whose constituent proteins
were expressed at the same time. Expressed protein
interactions were also identified in each brain region in each
AD progression stage or each age group, and then assembled
into expressed PINs in each brain region and in each Braak
stage.

Randomized networks and comparison with an
observed value by Z-score

To construct randomized networks of an expressed PIN, we
shuffled labels ("expressed" or "unexpressed") assigned to
each interaction in all protein interactions without self-
interactions retrieved from the BioGRID, and constructed

randomized networks from interactions with "expressed" labels
(Figure S9). We obtained randomized networks having the
same number of interactions as the expressed PIN. We
prepared randomized networks for each age group and each
AD progression stage, and calculated the ratios of the number
of appearing and disappearing interactions to the number of
interactions in these randomized networks. This procedure was
repeated 1,000 times. We could shuffle labels assigned to each
“protein” in all proteins retrieved from the BioGRID, however
we did not. If we shuffle labels assigned to each “protein”, we
expected that the number of interactions of the randomized
network should smaller than that of an original expressed PIN
because proteins with a low connection degree tend to be
selected due to scale-free property in connection degree. This
method would cause low expected values in ratios of
appearing/disappearing interactions. We thus did not adopt this
randomization procedure. To construct a randomized network
keeping the number of interactions, we also could change
interacting partners, however we did not. The degree
distribution was expected to be kept, however many
randomized interactions could not be found in the original
interaction set. As mentioned above, appearing/disappearing
interactions are defined by whether the interaction includes in
interactions selected from the original interaction set. If a lot of
interactions were not included in the original interaction set,
expected values would be low. We thus did neither adopt this
randomization procedure.

To determine whether the ratios of appearing and
disappearing interactions for each age group or each AD
progression stage in each brain region were significant, we
evaluated the Z-score for statistical significance. The Z-score is
defined as follows:

(1)

where robs indicates the ratio of appearing or disappearing
interactions in an expressed PIN, rr̄andom indicates the mean of
ratios calculated from 1,000 randomized network sets along
with the age group or AD progression stage, and σrandom is the
standard deviation of rrandom.

Module detection
Modules were detected in each expressed PIN using the

Infomap algorithm [20,21]. The infomap algorithm seeks to
minimize the description length of a random walker on a
network by assigning nodes to modules.  The algorithm uses
the map equation to measure the description length and
identifies modules in which the random walker tends to stay for
a long time. The map equation takes low values for solutions in
which a random walker spends long time in (small) modules
with infrequent module transitions. For a given network,
minimizing the map equation over all possible partitions both
gives the optimal assignments of nodes into modules and the
optimal number of modules. We set the number of trials to
divide a network to 1,000 times. To examine the precision of
module detection, we also used the Louvain method [54], the
Fast greedy algorithm [55] and the Markov cluster algorithm
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(MCL) [56]. The MCL’s inflation option was set to 4.0. In our
study, we used only modules composed of three or more
expressed proteins through all algorithms.

Auto-correlation of proteins (CN), interactions (CL), and
cellular functions (CGO)

To quantify how frequently a module changes its constituent
proteins, interactions and cellular functions with aging and with
AD progression, we defined the auto-correlation of proteins
(CN), interactions (CL) and cellular functions (CGO) as follows
[57]:

(2)

where A t  is a set of proteins (CN), interactions (CL) and
cellular functions (CGO) in a module at time t (i.e., an age group
or an AD progression stage), A(t)∩A(t+1) is the number of the
common proteins (CN), interactions (CL) and cellular functions
(CGO) between a module at time t and a module at time t+1,
and A(t)∪A(t+1) is the number of proteins (CN), interactions (CL)
and cellular functions (CGO) in the union between a module at
time t and a module at time t+1. We retrieved cellular functions
from the “biological process” of the Gene Ontology Annotation
(GOA) [58].

Inherited module lineage and disrupted inherited-
module lineage

If a module pair exhibits the highest CL in two consecutive
stages and their CL and CGO exceeded 0.5 (i.e., over half), we
assumed that the modules were inherited. For example, in
Figure 5, there are two and three modules at time t and t+1,
respectively. To seek a module at time t+1 inheriting a module
at time t, we made a bipartite graph (Figure 5A). The number of
links is six. We computed CL between a module at time t and a
module at time t+1, and identified module pairs with the highest
CL for both module at time t and t+1 (e.g. a red module in time t
and a green module in time t+1). If their CL and CGO exceeded
0.5, a module at time t+1 inherits from the module at time t.
That is, we considered that a red module at time t and a green
module at time t+1, a blue module at time t and a purple
module at time t+1 are same in Figure 5B. We repeated these
procedures. If their modules were inherited from the earliest
age group or earliest AD progression stage (60–69 y/o or
Braak stage I) to the latest age group or AD progression stage
(90–99 y/o or Braak stage IV in the EC region or Braak stage
VI in the HIP and the SFG regions), we called these modules
“inherited-module lineages,” and called the other modules
“disrupted inherited-module lineages.”

Enrichment analysis of module function
We performed enrichment analyses to assign functions to a

module using the following procedures. First, we assigned the
GOA common to both proteins constituting an interaction to the
interaction. GOAs were simplified by manual curation. We
repeated this procedure for all interactions. Second, we

considered subset S1 and subset S2. Each S1 is an interaction
set in a module, and each S2 is an interaction set with a
function. The significance of the overlap between S1 and S2
was evaluated by determining the hypergeometric distribution
and fold enrichment ratio (FER) as follows:

(3)

(4)

(5)

where x is the number of interactions that overlapped
between S1 and S2, and m and n are the numbers of
interactions in S1 and S2, respectively. N is the total number of
interactions with GO functions. If the probability by
hypergeometric distribution was less than 0.05 and the FER
was greater than 2, we assigned the GOA to the module.

Supporting Information

Figure S1.  The correlation of the gene expression levels of
proteins that appear/disappear with aging. A boxplot
represents the gene expression levels of proteins that appear/
disappear in each aging group (60‒69, 70‒79, 80‒89, 90‒99
years old). A red line indicates expression level 200 as
threshold. The gene expression levels significantly correlated
with aging.
(TIFF)

Figure S2.  The correlation of the gene expression levels of
proteins that appear/disappear with AD progression. A
boxplot represents the gene expression levels of proteins that
appear/disappear in each AD progression stages (Braak stage
I, II, III/IV, V/VI). A red line indicates expression level 200 as
threshold. The gene expression levels significantly correlated
with AD progression.
(TIFF)

Figure S3.  Ratio of inherited module lineages using
different thresholds. The figure shows the ratio of inherited
module lineages to the total number of module lineages using
different CL and CGO (i.e. 0.3, 0.4, 0.5 (default), 0.6, 0.7). The
ratios of inherited module lineages in AD were lower than those
in normal aging through all brain regions.
(TIFF)

Figure S4.  The correlation between module size and a
kind of module. Module size is interpreted as the number of
proteins in the union among the inherited modules. A boxplot
represents the number of proteins in the union among the
inherited modules. Multiple comparison was perfomed by
Kruskal-Wallis test. As a result, module sizes of inherited
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module lineage were significantly ~2.2-fold higher than them of
appearing/disappearing module lineages. On the other hand,
we did not find differences of module sizes between appearing
and disappearing module lineages.
(TIFF)

Figure S5.  The number of expressed proteins and
interactions in expressed PINs for two different
thresholds. When a gene is expressed, if the average
expression value exceeded 150, the boxplot represents the
numbers of (A) expressed proteins or (B) expressed
interactions for normal age groups (60‒69, 70‒79, 80‒89, 90‒
99 years old) and AD progression stages (Braak stage I, II,
III/IV, V/VI). When the threshold was 250, (C) and (D) show the
numbers of expressed proteins and expressed interactions,
respectively. As with the main text (threshold 200), the
numbers of expressed proteins and interactions in the AD EC
and HIP were significantly lower than those in the normal aging
groups (Wilcoxon test; P < 0.05, respectively).
(TIFF)

Figure S6.  Ratio of appearing and disappearing
interactions for two different thresholds. Red and blue plots
indicate ratios of newly appearing and disappearing protein
interactions, respectively. Boxplots indicate ratios of appearing
and disappearing protein interactions from 1,000 corresponding
randomized networks in each brain region in normal aging and
AD. Values below the boxplots show the Z-scores between the
ratio and the ratios of the 1,000 randomized networks. The
ratio of the number of disappearing interactions in the AD EC
region showed no significant difference from those of the 1,000
randomized networks for two different thresholds, 150 and 250,
at which a gene is expressed (Z-score = −1.24 and Z-score =
−0.614, respectively).
(TIFF)

Figure S7.  Auto-correlations of proteins, interactions, and
functions for inherited modules using the threshold 150.
Probability density distributions of (A) auto-correlations of
proteins, (B) interactions, and (C) cellular functions of a
consecutive module pair. Orange and green curves indicate
normal aging and AD, respectively. P-values were calculated
from the Wilcoxon test. Auto-correlations in AD were
significantly lower than those in normal aging through all brain
regions.
(TIFF)

Figure S8.  Auto-correlations of proteins, interactions, and
functions for inherited modules using the threshold 250.
Probability density distributions of (A) auto-correlations of
proteins, (B) interactions, and (C) cellular functions of a
consecutive module pair. Orange and green curves indicate
normal aging and AD, respectively. P-values were calculated
from the Wilcoxon test. Auto-correlations in AD were

significantly lower than those in normal aging through all brain
regions.
(TIFF)

Figure S9.  A scheme for constructing a randomized
network. To construct randomized networks of an expressed
PIN, we shuffled labels ("expressed" or "unexpressed")
assigned to each interaction in all protein interactions without
self-interactions retrieved from the BioGRID, and made
randomized networks from interactions with "expressed" labels.
We obtained randomized networks having the same number of
interactions as the expressed PIN.
(TIFF)

Table S1.  Q-modularity and the number of proteins
included in a module. To evaluate the quality of divisions of a
network, we compared Q-modularity among four algorithms.
The Q-modularity of a network with strong module structure
usually falls in the range between 0.3 and 0.7. Infomap,
Louvain and Fast greedy algorithms had more than 0.3 Q-
modularity, and suited our expressed PINs to divide into
modules. We also examined the number of proteins included in
a module. Consequently, each maximum module by the
Louvain and Fast greedy algorithms included more than half of
all proteins in the PIN. The maximum module obtained with the
Infomap algorithm included only 22.7% in all proteins in the
PIN. The Infomap algorithm had high Q-modularity and finely
divided the PINs into modules compared to the other methods.
We therefore used the Infomap algorithm.
(PDF)

Table S2.  Summary for module sizes in inherited module
lineages and appearing/disappearing module lineages.
Module size is interpreted as the number of proteins in the
union among the inherited modules. Medians of module sizes
were shown. The module sizes of inheireted module lienages
per them of appearing/disappearing module lineages were also
shown.
(PDF)

Table S3.  The list of AD-disrupted modules. The “Enriched
GO annotation” column indicates significant cellular functions
by an enrichment analysis. The “Gene symbol” column
indicates genes expressed once in stages. In cases of early-
and late-disrupted type modules, “Gene symbol” shows genes
in AD modules that corresponded to modules in normal aging.
(PDF)
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