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Abstract

Changes in extracellular matrix (ECM) structure or mechanics can actively drive cancer progression; however, the underlying
mechanism remains unknown. Here we explore whether this process could be mediated by changes in cell shape that lead
to increases in genetic noise, given that both factors have been independently shown to alter gene expression and induce
cell fate switching. We do this using a computer simulation model that explores the impact of physical changes in the tissue
microenvironment under conditions in which physical deformation of cells increases gene expression variability among
genetically identical cells. The model reveals that cancerous tissue growth can be driven by physical changes in the
microenvironment: when increases in cell shape variability due to growth-dependent increases in cell packing density
enhance gene expression variation, heterogeneous autonomous growth and further structural disorganization can result,
thereby driving cancer progression via positive feedback. The model parameters that led to this prediction are consistent
with experimental measurements of mammary tissues that spontaneously undergo cancer progression in transgenic C3(1)-
SV40Tag female mice, which exhibit enhanced stiffness of mammary ducts, as well as progressive increases in variability of
cell-cell relations and associated cell shape changes. These results demonstrate the potential for physical changes in the
tissue microenvironment (e.g., altered ECM mechanics) to induce a cancerous phenotype or accelerate cancer progression
in a clonal population through local changes in cell geometry and increased phenotypic variability, even in the absence of
gene mutation.

Citation: Werfel J, Krause S, Bischof AG, Mannix RJ, Tobin H, et al. (2013) How Changes in Extracellular Matrix Mechanics and Gene Expression Variability Might
Combine to Drive Cancer Progression. PLoS ONE 8(10): e76122. doi:10.1371/journal.pone.0076122

Editor: Sui Huang, Institute for Systems Biology, United States of America

Received May 23, 2013; Accepted August 20, 2013; Published October 3, 2013

Copyright: � 2013 Werfel et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by a DOD Breast Cancer Innovator Award (BC074986 to DEI), a DOD Breast Cancer Multi-Team Award (W81XWH-10-1-0565 to
DEI), a Susan G. Komen postdoctoral fellowship (KG101329 to SK), and the Wyss Institute for Biologically Inspired Engineering at Harvard University. The funders
had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: don.ingber@wyss.harvard.edu

. These authors contributed equally to this work.

Introduction

Cancer is commonly thought of as a genetic disease, resulting

from a series of gene mutations that deregulate cell growth and

lead to neoplastic transformation. While gene mutations contrib-

ute to carcinogenesis, recent work has revealed that changes in the

tissue microenvironment also can initiate and drive cancer

formation. For example, breast cancer formation can be induced

in transgenic mice by constitutively expressing a gene that encodes

an enzyme that selectively degrades extracellular matrix (ECM)

[1], and conversely, some cancer cells can be induced to cease

proliferating and differentiate by combining them with normal

ECM [2,3,4,5,6,7,8]. Breast cancer progression is also accompa-

nied by progressive increases in ECM stiffness, and breast cancer

growth can be selectively accelerated or slowed by respectively

increasing or decreasing ECM cross-linking in vivo [9,10]. More

recently, breast cancer cells also have been shown to undergo a

phenotypic reversion in vitro when physically compressed [11].

But while the importance of the physical nature of the tumor

microenvironment is now well appreciated, the mechanism by

which these changes might drive (or reverse) cancer formation

remains unclear.

We initiated this computational modeling study based on the

observation that non-genetic factors also play a critical role in

control of cell fate and behavior. One key environmental factor is

cell shape [12], which alters gene expression and regulates cell fate

switching between growth, differentiation, and apoptosis

[13,14,15], as well as among different stem cell lineages [16,17].

Cell shape is, in turn, controlled by changes in mechanical forces

that are balanced between the cell’s contractile cytoskeleton and its

outside adhesions to ECM and to other cells [13,14,15]. Thus,

variations in ECM structure or mechanics can alter cell fate

switching and influence tissue morphogenesis by altering the force
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balance between cells and ECM, thereby producing localized cell

shape distortion. Moreover, artificially disrupting the cellular force

balance by suppressing cytoskeletal tension generation within

developing epithelium can lead to disorganized cell-cell relations

that mimic those observed during early stages of tumor formation

[18]. Thus, it has been suggested that changes in physical

interactions between cells and ECM can actively drive or

accelerate tumor formation by altering cell shape [19,20]. But

any rise in cell proliferation will be accompanied by an increase in

cell packing density that should compress the cells and thereby

suppress their growth. And so it remains unclear how changes in

ECM mechanics or cell shape distortion could drive cancer

formation.

Computer simulations based on dynamic Boolean networks and

experimental results indicate that the different cell fates that a

particular cell can exhibit (e.g., growth, differentiation, apoptosis)

represent a preprogrammed set of common end programs or

‘‘attractors’’ which self-organize within the cell’s regulatory

networks [14,21,22]. In this type of dynamic network model of

information processing, generalized stimuli, such as mechanical

forces, and specific molecular cues generate signals which lead cells

to follow different trajectories that eventually converge onto one of

a small set of common end programs (e.g., growth or differenti-

ation). In addition, because control of cell behavior involves

selection of preexisting behavioral modes of the cell, switching also

can be induced by genetic noise (i.e., stochastic variations in gene

expression profiles). Gene expression stochasticity governs transi-

tions between different fates because while network dynamics

driven by specific stimuli tend to drive a cell to a local attractor in

state space, transitions between attractors can occur when noise

pushes the cell out of one basin of attraction and into another [23].

The environment’s influence on these transitions can be under-

stood as occurring through regulation of the noise amplitude

[21,24]. The importance of these non-genetic factors is empha-

sized by experiments showing non-genetic variability among

clonal cells [25,26,27], which reflects stochastic gene expression

[25,26,28] and responses to different microenvironments

[26,27,29].

Importantly, morphological loss of regularity of cell shape and

position is a hallmark of cancer progression [29], and tumor

formation is accompanied by a progressive loss of normal shape-

dependent controls over cell growth, differentiation and survival

[27,29,30,31,32]. In addition, the fidelity of genetic control

appears to be tightly coupled to nuclear and chromatin structure,

which in turn are sensitive to cytoskeletal structure and cell shape

regulation [33,34,35]. Thus, increases in cell shape variation that

accompany early stages of tumor formation could potentially play

an active role in cell fate transitions that drive carcinogenesis both

by harnessing mechanical signaling pathways and by enhancing

genetic variability.

Driven by these considerations, we used a computer simulation

model to investigate whether increases in variance in cell

morphological parameters caused by changes in ECM structure

or mechanics could actively drive cancer progression by increasing

genetic noise (gene expression variability) in the altered microen-

vironment. These modeling studies revealed that deregulation of

normal control of cell behavior due to development of structural

irregularities in the tissue microenvironment can cause a positive

feedback loop that further destabilizes tissue structure, accelerating

neoplastic transformation and leading to unconstrained growth.

Histological studies in a murine transgenic breast cancer model

support our conclusions, and show that cancer progression is

associated with progressive increases in the variability of cell shape

and cell-cell relations, which our model predicts would promote

unconstrained growth.

Results

Computational Model of Tissue Homeostasis
The cells and tissues of every organ exhibit characteristic three-

dimensional (3D) shapes that are highly regular in form, whereas

cell and tissue shape become progressively disorganized during

tumor formation and cancer progression. Individual cells also

exhibit different behaviors depending on the degree to which they

physically extend: in general, anchorage-dependent cells grow

more when spread, and they shut off and undergo apoptosis when

compact, round or detached from their adhesions, even when

cultured in the presence of saturating concentrations of soluble

growth factors [13]. The hypothesis we focus on in this work is that

irregularities in a cell’s local tissue environment can lead to

increased variability in its shape, which may also impair fidelity of

cellular genetic control and, hence, lead to increased variability in

its responses to the physical forces that act on it to control its

growth and viability.

Thus, in our model of tissue form regulation, the phenotypic

parameter we focus on is the cell’s behavioral variability, in terms

of its propensity to grow in response to physical tension caused by

shape distortion. This variability changes as a function of physical

factors in the cell’s microenvironment that alter its shape, in

particular the number of neighbors it contacts, which changes with

cell population density and arrangement. The model is construct-

ed such that cell growth and apoptosis are tightly regulated by

forces on the cell (e.g., compaction reliably suppresses growth and

increases apoptosis) when a cell is in a ‘‘healthy’’ microenviron-

ment [13], whereas irregularities in the physical microenviron-

ment disrupt that regulation by increasing population variability in

cells’ behavioral responses to physical tension or pressure. The aim

was to investigate whether these factors alone could result in

increases in cell number and tissue mass over time without a

genetic mutation occurring in any cell.

Simulation models of carcinogenesis and tumor growth

explored in the past have focused at different levels, ranging from

individual cells [36,37,38,39] to bulk tissues [40,41,42,43,44,45].

Because of the relevant length scales and central importance of

variation within cell populations in our study, we chose to

construct our simulation as an agent-based model with each agent

representing a distinct cell, rather than as a bulk model of

continuous tissue. The importance of forces based on relative cell

locations dictated an off-lattice [36,37] rather than cellular

automaton (CA) model [38,46], so that cells can have arbitrary

continuous-valued positions rather than being constrained to

discrete locations.

As more than 90% of cancers are epithelial in nature, we

constructed our computer simulation model to represent cells in a

3D planar epithelium. In our model, cells act like deformable

adhesive spheres on a planar adhesive substrate (Fig. 1A). Each cell

experiences a force from each of its neighbors, as though the

centers of the two cells were connected by a spring whose rest

length is based on the cell sizes. The substrate also exerts forces on

cells: vertically to model attachment, and horizontally if a cell

borders on an empty area of unoccupied substrate, to model the

way a cell spreads in such a case. The net force governs the cell’s

movement in 3D space. Outward forces on a cell are registered as

tension, inward ones as compression. The net tension on a cell,

Ttotal, governs its tendency toward growth or apoptosis (Fig. 1B); a

cell under greater tension has an increased probability of growth,

while greater compression increases the chance of apoptosis [13].

Non-Genetic Control of Cancer
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The characteristic level of tension at which a cell tends to switch

from quiescence to growth is referred to here as the expansion

threshold (Te). If Ttotal exceeds Te during a time step, the cell adds

an increment G to its volume; when the cell reaches twice its initial

volume (through reiterative additions of G over time), it commits

to division into two cells that each contain the initial volume. If

Ttotal drops below the apoptosis threshold Ta, the cell commits to

apoptosis. Once a cell has committed to either fate, it waits a

further time te or ta and then instantaneously divides or vanishes,

respectively.

Increases in ECM stiffness in tissue result in an attachment

substrate that more effectively resists cell-generated traction forces

(i.e., rather than deforming), and associated mechanical signaling

enhances cell contractility [47]; this increases tensile forces exerted

on cells for a given geometry. Thus, increasing ECM stiffness

corresponds in the model to lowering the values of Te and Ta, in

that it increases cell tension and distortion, which is accompanied

by increased cell division and decreased apoptosis for a given

geometry [13,18,48,49].

We used the number of cell neighbors as a proxy for detailed

cell shape or geometry: a cell in a normal planar monolayer (one

cell high) will on average have 6 lateral neighbors, while one

particularly crowded or isolated may have significantly more or

fewer. When the number of cell neighbors changes in a persistent

way, the cell chooses a new value of Te and/or Ta from a

distribution whose mean is fixed but whose variance (taken to be

proportional to a constant se or sa, respectively) increases with

increasingly irregular neighbor counts (and hence variability of cell

shape). Thus, extrinsic factors associated with local neighborhood

geometry affect a cell’s entry into proliferation or apoptosis, both

through the forces exerted on the cell that trigger those behaviors

directly, and through modulation of the cell’s response to those

forces. Model details are described fully in the Materials and

Methods.

Model simulations revealed that with no population variance in

Te (se = 0), short-lived disturbances to tissue homeostasis self-heal

in that the tissue monolayer morphology returns over time. For

example, wounding the epithelium by removing cells within a

given area results in wound closure as surviving cells that contact

the unoccupied substrate experience forces that cause them to

spread out, move into the cleared area, and proliferate until the

monolayer is restored after which growth shuts off due to cell

compression (Fig. 1C). A hyperplastic epithelium (e.g., induced in

the model by adding cells on top of the monolayer) also reverts to a

normal monolayer when the abnormal growth stimulus is removed

as the overlying cells vanish over time because the tension they

experience from their neighbors is too low to support spreading or

growth, and both cell rounding and lack of contact with the

substrate increase the probability of apoptosis [50] (Fig. 1D). This

corresponds to homeostasis in normal living tissues, in which the

epithelium maintains its normal architecture when perturbed

during wound healing or a temporary increase in growth

stimulation through interplay between biomolecular signals and

mechanical regulatory cues that alter cell form.

Microenvironmental Irregularities Result in Increases in
Variance of Form Parameters
The computer simulations also revealed that when microenvi-

ronmental changes in cell packing result in increased variance

(se.0) in cell expansion behavior (Te), it is possible for an

otherwise short-lived growth perturbation to persist and spread.

For instance, the model predicts that if cell overgrowth occurs and

cell piling results for any reason, then persistent unregulated

growth can result if there is significant population variance in Te

due to creation of an irregular microenvironment that alters the

variability of cell shape in the monolayer. Specifically, the increase

in cell neighbors in regions of cell piling can lead some of those

cells to express abnormally low expansion thresholds, resulting in

deregulated growth and disorganization of normal epithelial

morphology that is reminiscent of early neoplastic lesions

(Fig. 1E). These simulations thus raise the possibility that the

emergence of increasing variation in cell-cell contacts, and closely

Figure 1. Simulation model demonstrates that behavioral
variability in response to microenvironmental irregularity can
result in deregulated growth instead of healing. (A) Two
representations of cells in the model during static equilibrium: (left)
space-filling angled view, (right) schematic representation with cells
smaller and showing connections between neighbors (black, tension;
red, compression). (B) The net tension Ttotal on a cell is treated as a
scalar value. If the cell is under enough tension that Ttotal exceeds the
expansion threshold Te, it will gain a volume increment G, dividing after
the volume reaches twice its initial value. If the cell is under enough
compression that Ttotal falls below the apoptosis threshold Ta, it will
enter apoptosis. (C–F) Snapshots of healing or deregulated growth
processes after perturbation. Numbers below snapshots identify the
time step. Animations can be found online as supporting videos. (C)
Without behavioral variability (se = 0), a wound in a monolayer heals
quickly as cells proliferate and fill the gap, then cease growth. (D)
Without variability (se = 0), mild initial overgrowth vanishes as cells not
in contact with the substrate enter apoptosis. (E) With variability
(se = 2), mild initial overgrowth persists and spreads over time. (F)
Overgrowth can be reversed and eliminated by applying compressive
force to the tissue. Starting at time step 600, cells in the simulation of
(E) have their value of Ttotal lowered by an amount 2.0. In all panels,
cells are tinted blue if they have committed to division (darker as they
get closer to the moment of division), red if they have committed to
apoptosis (darker as they approach the moment of death), yellow if
they have committed to neither fate.
doi:10.1371/journal.pone.0076122.g001
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related changes in cell shape parameters caused by any stimulus

for cell overgrowth, could feed back to further accelerate the

process of tissue disorganization, resulting in cancerous transfor-

mation and unregulated cell expansion.

Interestingly, a recent study demonstrated phenotypic reversion

of malignant breast epithelial cells to a more normal phenotype

when the tissue was subjected to a compressive force [11].

Importantly, our simulation model makes the same prediction:

increasing pressure on all cells will preferentially impact those

within a tumor-like growth, where cell packing density is higher

and pressure is already excessively high; thus increasing pressure

will first tend to push these cells away from their expansion

threshold, slowing and stopping proliferation. Moreover, still

greater pressure leads to the selective death of cells in the tumor as

the total pressure crosses their apoptosis threshold Ta. Remaining

cells in the population that retained normal expansion thresholds

then repopulate the space left behind, and the tissue remains

quiescent with a normal phenotype thereafter (Fig. 1F).

It is important to note that decreasing the population’s baseline

value of Te in the absence of any population variance (se = 0) will

increase the equilibrium cell packing density of the monolayer

[29], but it will not give rise to uncontrolled growth until Te

becomes sufficiently low (Fig. 2A). Increasing variance (se) enables

some cells to exhibit autonomous growth at higher baseline values

of Te (Fig. 2A), and thus, preferentially stimulates proliferation in

regions of irregular tissue morphology (or altered ECM mechan-

ics). In contrast, the apoptosis threshold Ta in the model affects the

amount of pressure cells are able to withstand before dying.

Microenvironment-related variability in Ta can rescue a cancerous

phenotype because some cells in anomalously crowded microen-

vironments express a correspondingly increased probability of

apoptosis. This can produce clearing out and normalization of the

crowded region, making it more difficult for crowding-linked

irregular growth to become established and spread (Fig. 2B).

However, variability in Ta alone does not give rise to anomalous

growth in irregular microenvironments. Thus, we focused on the

contribution of modulating the expansion threshold Te in this

analysis.

To determine directly whether increases in cell growth in living

tissues alter variance in cell shape parameters that are critical for

the relevance of our computer model, we analyzed changes in

these morphological features during early stages of hyperplasia

and formation of ductal carcinoma in situ (DCIS) during breast

cancer progression in transgenic C3(1)-SV40Tag mice. Transgenic

females spontaneously develop mammary tumors over a time

course of 8 to 20 weeks of age in a very robust manner [51,52].

Cancer progression in these mammary tissues occurs through

increased growth and loss of differentiation, as measured by

decreased expression of estrogen and progesterone receptors

(Figs. 3A–D). The regional heterogeneity of the tissue microen-

vironment during cancer progression is also clearly evident in this

model as individual 16 week mammary glands contain ducts that

display different stages of tumor formation (i.e., normal, hyper-

plastic and DCIS) separated by only small distances within the

same gland (Fig. 4A), despite the identical genetic background and

similar expression of SV40 large T transgene [51] (Fig. 3A). This

ductal heterogeneity was observed in all animals studied and at all

time points analyzed.

Importantly, these regional variations in phenotype were

accompanied by alterations in cell and nuclear shape (Fig. 4B),

as well as local increases in both epithelial and stromal stiffness

(Fig. 4C, D). Stiffness was measured using atomic force microscopy

(AFM) and both the distribution profile of the stiffnesses measured

(Fig. 4C) and the mean stiffness values increased significantly for

both epithelium and stroma when normal ducts were compared to

DCIS ducts within 16 week glands (Fig. 4D). Cell packing densities

increased as well: cells within the epithelial monolayer that lined

normal mammary ducts had an average of 2.961.1 epithelial cell

neighbors (Figs. 5A, B), when analyzed in histological sections

using computerized image analysis. Hyperplastic ducts, which are

characterized by increased cell proliferation and the presence of

cells within the luminal space, showed an increase in the mean

number of cell neighbors (3.761.2) and analysis of the shape of the

distribution also revealed a significant increase in the variance of

these data (p,0.05; one-tailed F-test; Figs. 5A,B). Cells within the

DCIS ducts, which are often enlarged and completely filled by

tightly packed cells, showed both the highest mean (5.5) and largest

variance (standard deviation= 1.9) in number of cell neighbors,

and this level of variance was significantly increased compared to

that exhibited by cells in both normal and hyperplastic ducts

(p,10224; one-tailed F-test). Thus, these results support a key

assumption of our simulation model, which is that increased cell

growth is associated with a rise in the variance of cell

morphological parameters, reflected by variation in the number

of cell neighbors, during cancer progression. Interestingly, the

increase in variance as the number of cell neighbors increases in

the murine model was very similar to that observed in our

computer simulation, and similarly the variance in the number of

neighbors increased with cancer progression in both the murine

and simulation models (Fig. 5).

Discussion

In this study, we described a simulation model in which

increased variability in phenotypic cell parameters, caused by

structural variations in tissue microenvironments that alter the

number of cell neighbors and cell shape, can lead to sustained

growth pathologies that are consistent with cancer progression. No

genetic change is necessary and transplanting a misbehaving cell

into a normal environment will restore its normal behavior in this

model, which is consistent with the observation that some

cancerous cells stop dividing and undergo normal histodifferen-

tiation when brought into contact with normal ECM

[4,19,20,32,53] or when physically compressed [11]. Although

gene mutations are not required to initiate this process, both

decreased genetic fidelity and increased cell proliferation will likely

lead to increases in gene mutation rates that could feed back to

further accelerate the neoplastic transformation process. This is

consistent with the observation that end-stage tumors that result

from altering ECM structure alone in vivo (e.g., by constitutively

expressing the ECM-degrading enzyme, stromelysin) actually

exhibit gene mutations and chromosomal abnormalities that are

classic hallmarks of malignancy [1].

Although our results were the product of a computer simulation,

histological and micromechanical analyses of mammary glands

from transgenic C3(1)-SV40Tag mice at 16 weeks of age

confirmed that local variations in breast cancer progression that

are observed in individual mammary ducts correlate with local

changes in mammary tissue mechanics, as well as increased

variability in cell shape and cell-cell neighbor relationships.

Importantly, these increases in structural variability that associate

with tumor progression in vivo corresponded closely to the

variations in neighbor relationships that we assumed to be

affecting behavior in our simulation model (Fig. 5).

Virtually all past work on carcinogenesis has focused on the

genetic basis of the disease; however, it is also crucial to

understand how non-genetic factors contribute to cancer forma-

tion because it is now clear that microenvironmental cues,

Non-Genetic Control of Cancer

PLOS ONE | www.plosone.org 4 October 2013 | Volume 8 | Issue 10 | e76122



including local changes in ECM, angiogenesis and the surround-

ing stroma, can play an equally important role in cancer formation

and progression [19,34,54,55]. Most previous computer models of

tumorigenesis primarily focused on genetic mutation [43,56] or on

angiogenesis and vascularization [39,40,41,45], often with the goal

of making detailed quantitative predictions of growth [38,43,46].

In contrast, we considered the impact of physical forces as a

growth trigger, and of gene expression variability among

genetically identical cells as an enhancer of cancer progression,

which to our knowledge has not been explored previously. One of

the most important new insights from this analysis is that gene

expression variability alone can enable autonomous cell prolifer-

ation in an otherwise highly regulated growth environment. Cell

shape-dependent growth control of normal tissues, and its

progressive loss during neoplastic transformation [29], have been

long recognized. However, it has not been possible to explain how

autonomous growth might result from these changes in mechan-

ical regulation of cell metabolism because progressive loss of shape

sensitivity would generally result in generation of stable cell layers

with higher steady-state packing densities, rather than uncon-

strained proliferation (until complete loss of shape sensitivity is

obtained). Our results show that adding environmental variability

in the context of the importance of gene expression variation for

fate switching provides one explanation for how this switch to

autonomy can occur.

The simulation model we considered is considerably simplified,

due to our focus on qualitative behavior rather than quantitative

precision, with the goal of investigating the feasibility of a

previously unexplored mechanism that could contribute to cancer

progression. The model includes the elements relevant to the

process of interest, and omits or simplifies many biological details,

a general necessity for such models. For instance, in common with

various past cancer simulations, there is no explicit representation

of ECM [36,39,44], vasculature [37,44], angiogenesis [42,43,44],

or oxygen/nutrient availability [36,40,41]; similarly, forces

between cells are modeled as springs rather than using represen-

tations of more complex deformations of cell shape and cell-cell

adhesions [36,37,38]. Nevertheless, our results show a general

mechanism that does not depend on these detailed elements, and

that will likely play an equally important role in more complex

models that represent them with greater fidelity.

Our qualitative simulation results were robust across a wide

range of parameter values and variation in the details of the model

structure. This property is key to the model’s results being of

general applicability, and their biological relevance. The specific

mean value for Te we used for experiments is close to values for

which runaway growth can occur even without variability (Fig. 2).

This value was chosen so that the behaviors of interest would

reliably occur in the very small section of tissue modeled. We

would expect the corresponding value in real cells to be much

further from unrestricted growth, given the rarity of such events in

tissues composed of billions of cells.

We constructed the simulation model such that a cell placed in a

given microenvironment chooses fixed values of Te and Ta that do

not change until its environment changes; that is, the population

variance for the set of cells with a given number of neighbors will

be greater for irregular environments than for regular ones, but

individual cells do not show stochastic variation while in a fixed

Figure 2. Increasing gene expression variability increases the potential for autonomous growth. For different values of (A) Te and se or
(B) Ta and sa, pixels show what fraction of ten independent simulation experiments maintain controlled morphology for 2000 time steps, starting
from overgrowth (time step 0 in Fig. 1D, 1E): white indicates all runs maintained control, black indicates all resulted in uncontrolled growth, with
intermediate pixel values for mixed results. For purposes of these experiments, ‘‘controlled morphology’’ is defined as fewer than 100 cells pushed up
out of the monolayer. (A) Decreasing Te increases growth and at low enough values can result in continuous growth with no variability (se = 0).
Increasing variability enables autonomous growth at higher values of Te. Ta =23.0, sa = 0. (B) Increasing the value of Ta directly or by increasing
variability sa increases cell death in crowded environments, and can prevent unregulated growth due to environmental irregularity from establishing
a foothold under conditions where autonomous growth would otherwise occur. Te = 0.3, se = 2.0.
doi:10.1371/journal.pone.0076122.g002

Non-Genetic Control of Cancer
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Figure 3. Heterogeneous tumor formation in 16-week-old mammary glands of FVB C3(1)-SV40Tag transgenic mice that contained
ducts displaying the morphology of normal epithelium, hyperplastic epithelium, and DCIS lesions. (A) Tumor cell proliferation (PCNA)
and differentiation (ERa and PR) were altered in hyperplastic and DCIS ducts compared to normal ducts whereas the transgene expression remained
similar (SV40). Scale bar: 20 mm. (B–D) Morphometric analysis of ductal heterogeneity (N, normal; H, hyperplastic; D, DCIS). (B) Epithelial cell growth

Non-Genetic Control of Cancer
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environmental condition. An alternate choice would be to increase

individual stochasticity in irregular environments, such that cells

with an irregular number of neighbors dynamically choose new

values of Te and Ta over time even without the environment

changing. The effect can be the same in a tissue since both choices

increase the range of variation in cell properties at any time.

Additionally, in a dynamic tissue, the environment changes

frequently, so that individual cells in the model as we have

constructed it exhibit temporal stochasticity due to environmental

fluctuations.

Alternate mechanisms allowing an increased tendency toward

growth in irregular microenvironments could produce the same

kinds of qualitative results we have demonstrated. For instance,

progressively increasing the cell’s tendency for growth (lowering

the mean of Te rather than increasing its variance) in response to

this disordered microenvironment could similarly lead to uncon-

strained growth. We focus on variability here, however, because of

the evidence for the significance of gene expression variation in

clonal populations, and because this could enhance the likelihood

for neoplastic transformation even within cells that retain some

degree of cell shape sensitivity, as is observed in many transformed

cells [29].

The theoretical possibility that altered tissue mechanics could

promote cancer progression by altering cell shape and thereby

increasing gene expression variability can help to explain multiple

clinical observations. For example, it has long been recognized

that certain tumors can be triggered by wounding or mechanical

trauma, and this is thought to be due to changes in the

microenvironment, such as altered ECM dynamics and immune

surveillance [57,58,59,60]. But the mechanism by which auton-

omous growth results in such situations remains unknown. Our

simulation shows that cell overgrowth due to wounding or

repeated stimulation (e.g., irritants in cigarette smoke, environ-

mental carcinogens, mechanical trauma) can persist and spread, if

some cells in the irregular microenvironment respond by

enhancing their tendency to grow even when compressed due to

gene expression variability.

In summary, our results demonstrate the potential for physical

changes in the tissue microenvironment to induce a cancerous

phenotype or accelerate cancer progression in a clonal population

through local changes in geometry and increased phenotypic

variability alone, even in the absence of gene mutations.

(% PCNA-positive cells) increased slightly, but significantly in DCIS ducts compared to normal ducts whereas the percentage of cells expressing (C)
ERa and (D) PR decreased significantly in DCIS ducts compared to normal (*, p,0.05).
doi:10.1371/journal.pone.0076122.g003

Figure 4. Cell shape and mechanical changes accompany cancer progression in FVB C3(1)-SV40Tag transgenic mice. (A) Regional
variations in mammary cancer progression observed in the same mammary gland isolated from a 16-week-old transgenic mouse. Note that normal
ducts (N), hyperplastic ducts (H) and DCIS-resembling ducts (D) can be found in close proximity in the same gland (scale bar: 100 mm). (B) High
magnification H&E stainings of normal, hyperplastic and DCIS ducts in 16-week-old transgenic females highlighting epithelial cell shape changes that
accompany cancer progression when cells become increasingly pleiomorphic. (C) Histograms showing the Young’s moduli of epithelium and
periductal stroma of different normal and DCIS ducts measured within the same 16-week-old transgenic mammary glands using AFM. (D) Average
stiffnesses measured in the epithelial and stromal compartments of normal versus DCIS ducts within the same 16-week-old glands (*, p,0.05).
doi:10.1371/journal.pone.0076122.g004
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Materials and Methods

Computational Simulation Model
1. Determining neighbors. The model keeps track of the

position in 3D space of each cell’s center and its associated volume,

but not its detailed geometry. Instead, a probabilistic cellular

automaton (CA) is used to determine which cells are physical

neighbors. (Note the distinction between cells in the model and

lattice sites in the CA: each cell corresponds to many sites (with the

number of sites depending on the cell volume); each site is

associated with a single cell, or none at all. The CA is discretized,

while cell positions and volumes are real-valued. The CA is used as

an auxiliary tool solely to determine neighbor relations.) This

approach allows us to find neighbor relations without many of the

potential problems of other approaches (e.g., choosing neighbors

based solely on distance can link cells that should be physically

separated by others; representing cells as Voronoi regions makes

volume control difficult; keeping track of cell shape in detail is

computationally expensive). The CA discretizes the space into a

grid of nCA lattice sites per unit distance. For each cell, the site

nearest to its center is designated as belonging to that cell, with

other sites initially empty. Empty sites with nonempty sites among

their six neighbors are then updated with the identity of one of

those nonempty neighbors, chosen at random. This update is

performed repeatedly and synchronously (i.e., for all sites at once)

until the CA stops changing. Cell size control is handled by

limiting the number of sites that can be assigned the identity of

each cell, according to the cell’s (discretized) volume. Once the CA

has reached a steady state, for any pairs of neighboring sites

corresponding to different cells, the two cells in question are

designated as neighbors. Similarly, any cells with associated sites

that border on the substrate are designated as being in contact

with the substrate.

2. Calculating forces. Forces on a cell can have contribu-

tions from (1) other cells and (2) the substrate.

(1) For each neighboring cell, a force of magnitude kDr is applied
along the line connecting the two, where k is a spring constant

and Dr is the difference between the sum of the two cell radii

and the distance between their centers. The radius is

calculated assuming a spherical cell, r = (3V/4p)1/3 for a cell

of volume V. In addition to recording the net force Fx, Fy, Fz
on each cell along the three coordinate axes, the net tension/

compression T along each axis is recorded as the sum of all

component forces directed away from the cell center (e.g., a

rightward tensile force due to a neighbor to the right, and a

leftward tensile force from a neighbor to the left, both

contribute to increased tension along the x-axis; a leftward

Figure 5. Successive stages in tumor formation are associated with increased mean and variability in cell neighbor count (#). (A)
Neighbor count frequency for normal (square), hyperplastic (circle), and DCIS (triangle) ducts. (B) Mean and standard deviation for neighbor count for
each duct class. (C) Variance in neighbor count increases with tumor progression, both in histological slices (left, progression measured by duct area
filled) and in corresponding slices from simulation model (right, progression measured by time from simulation start). (D) Relation between mean and
variance in neighbor count in histological slices (left) and corresponding slices from simulation model (right). Te = 0.125, se = 0.667.
doi:10.1371/journal.pone.0076122.g005
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compressive force due to a close neighbor on the right, and a

rightward compressive force from one on the left, both reduce

tension along that axis). A single value for each axis records

this quantity, which may be designated as either tension or

compression according to its sign (positive values are

interpreted as tension, and negative as compression).

(2) The substrate (taken to be non-movable and non-deformable)

exerts a vertical force kDz on cells in contact with it, where Dz
is the cell’s z-coordinate subtracted from its radius. Addition-

ally, the substrate can exert horizontal forces, to model the

way that an isolated cell tends to flatten and spread on a

substrate. Any lattice sites in the CA with z= 0, that border on

empty sites with z = 0, increase both the force and the tension

on the associated cell in the direction of the empty site by an

amount B.

3. Determining cell behaviors. Each cell’s position at each

time step is updated by an amount proportional to the net force on

it (with an identity multiplier of 1 distance unit per force unit), up

to a maximum distance dmax.

The probability that a cell undergoes expansion during a time

step, or commits to a path ending in apoptosis, depends on the

total tension/compression Ttotal =Tx+Ty+Tz, the cell’s expansion

and apoptosis thresholds Te and Ta, and whether the cell is in

contact with the substrate.

For growth, we define

re~ 1z
Te

’

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1z Te

’
� �2q

0
B@

1
CA=2

where T9e = (Ttotal-Te)/se; re(T9e) is an increasing sigmoid function

whose range runs from 0 to 1, with the constant se affecting the

sharpness of the curve (small values correspond to a sharp

threshold, while larger values increase the probability of growth

under weak tension or lack of growth under strong tension). The

probability of growth during a time step is equal to

pe~reS

where S= 1 for cells in contact with the substrate and S=Se
otherwise. If growth occurs, the cell’s volume increases by an

amount G. If the volume reaches twice its initial value, the cell

enters a state which will end in division at the end of te time steps,

during which time further growth or apoptosis will not occur.

Apoptosis is handled analogously. We define

ra~ 1{
Ta

’

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1z Ta

’
� �2q

0
B@

1
CA=2

where T9a = (Ttotal-Ta)/sa and ra(T9a) is a decreasing sigmoid

function with range from 1 to 0. With probability

pa~1{(1{ra)S

(where S= 1 for cells in contact with the substrate and S=Sa,1

otherwise–hence a penalty to the probability of survival for cells

that lose contact with the substrate (anoikis)), the cell enters a state

which will end in apoptosis at the end of ta time steps, during

which time further growth will not occur.

When a cell divides, a new cell is instantaneously created with

position equal to that of the mother plus a uniform random value

in [20.05, 0.05] added to each coordinate. The volume of both

cells is set to half that of the mother. All other daughter cell

parameters are equal to those of the mother.

When a cell undergoes apoptosis, it instantaneously vanishes.

4. Changing cell properties based on

neighborhood. When a cell’s microenvironment (in particular,

its number of neighbors) changes, it may change its properties such

as growth and apoptosis thresholds. Because the probabilistic CA

may not produce the same neighborhood relationships at every

time step, some form of time averaging is required to prevent

changes from occurring due to fluctuations from one time step to

the next. Each cell maintains a value nn corresponding to its

‘‘true’’ number of neighbors. If the CA reported the cell as having

nn neighbors at fewer than a fraction fn of the last tn time steps,

then the true number of neighbors is considered to have changed:

nn is set to the number of neighbors reported most frequently in

the last tn steps.

When the number of neighbors changes in this way, new values

of Te and Ta are chosen at random from normal distributions with

standard deviations seDn, saDn where se and sa are constants

and Dn is the absolute value of the difference between the number

of neighbors and the ‘‘normal’’ range of 5 to 8 neighbors. For

instance, a cell with 3 or 10 neighbors would choose a new value

from a distribution with standard deviation 2s, while cells with 5

to 8 neighbors will exhibit no variability.

5. Parameter values. As the model is constructed in order to

investigate a qualitative phenomenon, rather than to precisely

reproduce physiological details with quantitative accuracy, it is

important that the qualitative results it produces not depend

sensitively on choices of parameter values or on details of the

model structure. Varying parameter values changes quantitative

results of the model (see, e.g., Fig. 2), but a wide region of

parameter space gives intuitively correct qualitative behavior.

Parameter values outside this space produce behaviors that are not

physiologically relevant in intuitively reasonable ways (e.g.,

lowering Te enough gives unrestricted growth).

In the experiments reported, unless otherwise specified, we use

Ta=23.0, Te = 0.3, se = 0.667, sa = 0, nCA=5, k = 1.0, B= 0.2,

dmax = 0.3, se = sa = 1025, Se = 1.0, Sa = 0.99, G= 0.2, te = ta = 30,

tn = 71, fn = 1/4, with initial cell radius of r0 = 0.7 units and a

25625-unit square substrate. These values were chosen based on

the qualitative behavior they corresponded to.

Animals
All animal experimental protocols were approved by the

Institutional Animal Care and Use Committee of Children’s

Hospital Boston. Experiments presented here utilized a FVB/

C3(1)/SV40 T-antigen transgenic mouse model (founder mice

were obtained from The Jackson Laboratory, Bar Harbor, ME)

and wild type FVB/N mice (Charles River, Wilmington, MA) that

were used for breeding and as a control.

Morphological Studies
Mammary tissues of 16 week old transgenic females were fixed

for 16–24 hours in 10% phosphate-buffered formalin (Fisher

Scientific, Atlanta, GA), processed and embedded in paraffin. Five

micrometer sections were stained with H&E and consecutive

sections were used for immunohistochemical analyses. Mouse

antibodies to PCNA and PR were obtained from Dako and mouse

antibody to ER was purchased from Abcam. An antigen-retrieval
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method using microwave pretreatment and 0.01 M sodium citrate

buffer (pH 6) was used for all antibodies. Images were captured

using an AxioCam HR color digital camera attached to a Zeiss

Axioscope 2 plus microscope (Carl Zeiss MicroImaging Inc,

Thornwood, NY).

For morphometric analysis, 3 to 5 experiments for each

condition were analyzed and for each experiment, three arbitrarily

chosen fields (206 magnification) were examined per section.

Images were captured using a Zeiss Axioscope 2 plus and analyzed

with Zeiss Axiovision version 4.8 software. Proliferating epithelial

cells were expressed as percent PCNA-positive cells per total

epithelial cell number. Computerized quantification using inForm

software was used for the measurements of percentage of PCNA

(CRi and Caliper Life Sciences, Hopkinton, MA). For all ductal

measurements, ducts near the nipple were excluded due to their

increased sizes and all ducts measured had cross sectional

diameters between 30 and 120 mm. The thickness of periductal

stroma and the cross-sectional diameter of ducts were measured

using H&E-stained sections. For each ductal phenotype, 8–10

different thickness or diameter measurements were obtained for at

least 10–20 different ducts each from at least 3 different animals.

Atomic Force Microscopy
Mouse mammary glands were embedded in Tissue-Tek O.C.T.

freezing medium (Sakura Finetek, Torrance, CA) and sectioned

using a cryostat (Leica Microsystems Inc, Buffalo Grove, Il). The

40 mm thick sections were collected on superfrost/plus microscope

slides (Fisher Scientific, Atlanta, GA), washed several times in PBS

to remove O.C.T. and sections were hydrated in PBS. The

stiffness was measured using an MFP-3D-Bio atomic force

microscope (Asylum Research, Santa Barbara, CA). Silicon nitride

AFM cantilevers with a 60 pN/nm spring constant with either a

5 mm or a 10 mm borosilicate spherical bead on the tip (Novascan)

were calibrated thermally according to the Sader method. The

tissues were imaged following immunohistochemical staining for

laminin 5 and DAPI. The AFM applied a maximum prescribed

force of 5–10 nN with an indenter velocity of 2 mm/s. The elastic

modulus was determined using the Hertz and the Johnson,

Kendall, Roberts (JKR) Model and the Hertz Model was found to

be appropriate for this study. To compare average stiffness, several

measurements (20–50) of epithelial and stromal stiffness from each

gland were averaged and then an average from at least three

different animals was calculated and compared.

Statistical Analysis
SPSS software package 19.0 (SPSS Inc., Chicago, IL) or

Microsoft Excel was used for all statistical analyses of mammary

gland stainings. ANOVA with a Bonferroni correction were used

to compare morphological parameters between the three different

ductal phenotypes. Fisher exact probability test was used to

compare % proliferating cells using PCNA staining. Independent

t-test was used to compare staining intensity and the Young’s

Modulus. For all statistical tests, results were considered significant

at p,0.05. Statistical analyses of PCNA, ER and PR staining are

presented as mean 6SEM.
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