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Abstract

Cognition arises from the transient integration and segregation of activity across functionally distinct brain areas. Autism
Spectrum Disorders (ASD), which encompass a wide range of developmental disabilities, have been presumed to be
associated with a problem in cortical and sub-cortical dynamics of coordinated activity, often involving enhanced local but
decreased long range coordination over areas of integration. In this paper we challenge this idea by presenting results from
a relatively large population of ASD children and age-matched controls during a face-processing task. Over most of the
explored domain, children with ASD exhibited enhanced synchronization, although finer detail reveals specific
enhancement/reduction of synchrony depending on time, frequency and brain site. Our results are derived from the use
of the imaginary part of coherency, a measure which is not susceptible to volume conduction artifacts and therefore
presents a credible picture of coordinated brain activity. We also present evidence that this measure is a good candidate to
provide features in building a classifier to be used as a potential biomarker for autism.
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Introduction

A significant challenge in the study of autism is to understand

how the integration of brain activity occurring at multiple levels –

cells and networks – results in the behaviors that are highly

characteristic of the disorder. While advances have been made in

our understanding of the genetic bases of autism and considerable

effort has focused on neuroimaging the brains of individuals with

Autism Spectrum Disorders (ASD), very little is known about the

dynamics of the brains of individuals with ASD. More specifically,

if we could associate particular brain coordination dynamics with

specific behaviors, this could result, not only in a basic

understanding of how characteristic behaviors of ASD result from

altered neurodynamics, but also in the development of specific

biomarkers that could help in the early diagnosis of ASD.

Furthermore, such a mapping would afford the possibility of

applying targeted interventions designed to enhance the integra-

tion of brain activity in young children with ASD.

In this study, we used dense-array scalp electroencephalograph-

ic (EEG) recordings to identify distinctive patterns of coherency in

children with autism during attention to faces as compared to age

matched controls. The characteristic behaviors of children with

ASD suggest that their brains may process information differently

from their typically developing age-matched peers. Some theoret-

ical models have been proposed to explain these differences. For

example, according to the weak central coherence theory [1],

individuals with autism tend to over focus on details and have

difficulty integrating contextual information. This problem was

later theorized to be caused by reduced integration between brain

networks [2], and more recently interpreted in terms of reduced

global and increased local connectivity/synchronization. Most

results from fMRI studies seem to support the thesis that reduced

intracortical connectivity results in a lower degree of integration of

information across certain cortical areas [3,4].

Few studies have addressed the problem of functional connec-

tivity in autism from the perspective of electrophisiological

recordings (EEG/MEG). In a recent study [5] coherence analysis

was applied to spontaneous EEG from a large population of

children with ASD and age matched controls, documenting

reduced short-distance and increased long-distance coherences in

ASD. However this study was limited to a reduced set of networks

after pruning the data using a principal component analysis.

Murias et al., 2007 [6] applied coherence to high density EEG

from an adult population, finding robust patterns of over- and

under-connectivity at distinct spatial and temporal scales in an

eyes-closed resting state. In another study using resting state EEG

in children, Coben et al (2008) [7], reported a general pattern of

under-connectivity (coherence) as well as some over-connectivity

over specific frequency bands and regions. Perez Velazquez et al

2009 [8] conducted a MEG study using phase synchronization

over a sliding temporal window and idenitfied a decrease of
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connectivity but also some over-connectivity, specifically over

parietal regions in subjects with ASD.

Modern theories of brain function propose that cognition is

based on the integration of information derived from diverse

modes of perception in different specialized brain areas. Informa-

tion processing consists of the coordinated integration of transient

activity between distinct brain regions. This integration is based on

neural synchronization, a phenomenon by which different areas of

the brain tune into each other at specific frequencies for short-lived

periods of time [2,9–11].

Understanding the essential mechanisms underlying functional

connectivity in brain circuits is crucial to a proper comprehension

of their role in adaptive and pathological processes. For this

reason, coordinated activity in widespread brain areas is being

studied in normal and pathological conditions. The disorders most

investigated are epilepsy, movement disorders, and schizophrenia

(reviewed in [12]).

A nonflat EEG can only arise from coordinated activity, in

phase, of a local neuronal population. Traditional event-related

potential analysis depends on this specific type of coordinated

activity. However, to study the extension of this phenomenon –

viz., long-range coordination -- one needs special tools since such

coordinated activity is mainly manifested by delayed communica-

tion (non null phase difference introduced by the neuronal

transmission time characteristics) at different frequency bands

[13]. Thus, for the study of such phenomena, analysis methods of

functional and effective connectivity in the frequency domain are

more insightful.

One intensive area of research in neuroscience is the

development of robust measures to characterize brain coordina-

tion dynamics from brainwaves. Many methodologies have been

proposed so far, exploring different aspects of coordinated activity.

These methodologies have different advantages and disadvantages

especially when applied to EEG and MEG recordings. The

problem of volume conduction, the superposition of many sources

over each single sensor along with the presence of secondary

currents, and the problem of EEG montage, militate against a

straightforward interpretation when the analysis is performed on

the sensor space [14–17].

Coherence is a measure that has been widely used to infer

synchrony between different areas at the sensor level. The main

weakness of coherence is that it is strongly affected by volume

conduction. Recently new methods have been proposed which

eliminate this problem. One of these new measures, the Imaginary

Part of Coherency (ICOH), proposed by Nolte in 2004 [18], is

aimed at eliminating all sources of extraneous coherence that are a

consequence of instantaneous activity. What is left, the Imaginary

Part, captures true source interactions at a given time lag. The

method has a 100% positive predictive value, which means that

whenever it produces significant values some coordinated activity

is taking place. In the author’s words, ‘‘non-interacting sources

cannot explain a nonvanishing imaginary coherency’’ [19].

While most of the conclusions regarding the functional

connectivity observed in brain activity of individuals with ASD

have been derived from metabolic measures such as PET or fMRI,

data from electrophysiological recordings (e.g., EEG or MEG) are

better suited to capture the transient and dynamic coordination

between neural networks because of the combination of high

temporal resolution and ability to conduct separate analyses at

different frequency bands. Moreover, the ICOH, a promising tool

for functional connectivity assessment, has not been used in the

exploration of ASD and brings a new lens to a field dominated by

neuroimaging, where most analyses are based on zero-lag

correlation.

Our study provides a new perspective on the current debate

regarding the "disconnected" autistic brain by assessing these

imaginary coherency patterns in order to explore functional

coordination of the brain in this group of children. We also

propose that imaginary coherency can be potentially used

diagnostically for the detection of phenotypes of autism early in

development.

Methods

This research has been reviewed and approved by the Human

Participants Review Sub-Committee, York University’s Ethics

Review Board and conforms to the standards of the Canadian Tri-

Council Research Ethics guidelines.

Thirty-one typically developing (age ranges 2 to 5 years) and

seventy-two children (age ranges 2 to 4 years 11 months)

diagnosed with autism participated in the study. All children with

ASD were previously diagnosed hovever, we confirmed the

diagnosis using the following diagnostic instruments: ADI (Autism

Diagnostic Inventory [20]) and the ADOS (Autism Diagnostic

Observation Schedule [21]). Typically developing subjects were

screened for a history of developmental, psychiatric or neurolog-

ical disorders. Typically developing and autistic subjects were age

matched. All parents signed consent forms prior to entry into the

experiment.

Stimuli consisted of fifty randomly presented pictures of female

faces displaying fearful and happy emotional expressions using

photos acquired from models and mothers of participants in the

study. Luminosity was controlled for all pictures. Pictures (3 by 5

inches) were presented using E-Prime and were randomly

displayed with a duarion between 1200 to 1500ms and a 500ms

ISI. A fixation point was presented prior to stimulus onset and was

displayed randomly between 750 and 1200ms. Emotion and

familiarity were not analyzed in the current study but were used in

a larger randomized control treatment outcome study assessing

treatment outcomes from therapy. Brain activity was monitored

using 128 channel EGI geodesic electrode caps (Electrical

Geodesics Inc., Eugene, USA). Children were trained for up to

four weeks using a mock 128 channel electrode cap in order to

desensitize them to the net. Children were also given up to six play

sessions in the lab to get comfortable with the lab and testing

equipment. During testing, children were seated in a comfortable

chair and mothers were able to sit next to the subjects during

testing. Eye-gaze activity was monitored using a Tobii eye-tracking

camera (X50). Eye gaze activity was recorded for each trial in the

EEG track and only those trials with fixation on the face for more

than 100 ms beginning at the stimulus onset were used for analysis.

Face stimuli were presented to participants until, at least, 50 trials

with this gaze criteria were acquired per condition. In some cases

we could afford more than that.

The data are contaminated with multiple artifacts including

different eye-induced, electrode, head movement and EMG-

induced artifacts. To deal with these sources of noise and the large

amount of data in a reasonable time, a supervised machine-

learning algorithm for automatic artifact rejection was designed.

Initially a catalogue of artifacts and non-artifacts was obtained

based on visual information from a number of trials within 20

subjects. The visual information consisted of the first 20 time

courses from a Principal Component decomposition, along with

their power spectrum and their projection over the scalp. In our

experience this spatio-temporal information makes most artifacts

easy to identify. Some components, examined within each trial,

are then labeled as ‘‘good’’ or ‘‘bad’’ and stored in a database (the

catalogue) along with a number of variables, or features, extracted
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from the corresponding component (standard deviation of the

score, kurtosis of the score, power spectrum, loadings, kurtosis of

the loadings, etc). Components that are not labeled are not stored.

Those unlabeled components correspond to situations in which we

were undecided. Thus, each entry in this catalogue corresponds to

a component from a specific trial for a specific subject. Having

obtained more than 5000 samples (of bad and good components),

we used the database to train a classification tree. Once the

optimal parameters of the tree are determined we used it to

automatically remove components from every trial from every

subject. No entire trial was removed. Only clearly artifactual

components within each trial were eliminated by deleting the

component and applying the inverse transformation. An evalua-

tion of the performance of the classifier on randomly sampled trials

from different subjects not in the catalogue showed an agreement

of around 93% with the human classification. This is well within

the margin of uncertainty about the nature of some components.

In general we adopted the criteria of avoiding the removal of

components whose nature is not very clear. Even so, some

ambiguity is always present. The classifier showed a sensitivity of

almost 100%, that is, every clear artifact is always removed from

the data.

This cleaner dataset that was originally acquired in a reference

montage using channel Cz was then converted to a reference free

montage, using the Current Source Density (CSD) toolbox [22].

This technique was employed because previous results show that

the calculation of coherence and synchronization measures on

reference montages produces misleading results [15,16,23]. In the

next step the eighteen marginal channels were removed from the

original montage since these are more likely to contain a high

percentage of EMG power [24]. This also alleviates the

computational load of calculating coherency values for each pair

of channels.

To determine the degree of synchronization between two

brainwaves recorded at two specific sensors, the Imaginary Part of

Coherency [18] was calculated using an adaptation of the

EEGLAB function newcrossf() that computes the phase coherence

(ERPCOH) [25] as an event-related activity. The adaptation

consists in obtaining the imaginary part of the complex coherency

number instead of its absolute value.

ERPCOHa,b f ,tð Þ~ 1

N

XN

k~1

Fa
k f ,tð ÞFb

k f ,tð Þ�

Fa
k f ,tð ÞFb

k f ,tð Þ
�� ��

Here N is the number of trials and Fa
k f ,tð Þ is the fourier

coeficient for trial k at frequency f for a window centered at time t

at channel a. The term Fa
k f ,tð ÞFb

k f ,tð Þ� is the cross-spectrum

between two given time series from a and b and is normalized by

its absolute value in the formula. From this formula we are only

interested in the absolute value of the Imaginary part of the

resultant coherency vector (ICOH). The parameters supplied to

the newcrossf() function were the ones already implemented by

default.

The Fisher’s Z transformation was initially applied to the

coherency values in order to help stabilize its variance [18,26].

However the number of trials (N) for each subject was highly

variable and we found the values of ICOH were strongly

dependent on this parameter. Since we were interested mostly in

the absolute value of the imaginary coherency we determined that

these values were very influenced by N. While the average of the

signed ICOH fluctuates around zero its absolute value depends

linearly on the standard deviation. In order to remove these

dependencies we followed an empirical approach. The standard

deviation was found by regression to be consistent with the

following model (x*N)y, where y was found to be –1/2 and x very

close to 2. Thus, we applied the inverse transformation to each

data point (that is, multiplying them by 2N1/2). ). Using this

transformation the bias imposed by N was corrected, the variance

was effectively uncorrelated to the number of trials and so the

absolute value of the icoh. The exact value of x contributes only to

produce a standard deviation equal to 1, but does not have any

influence on the dependency over N. To simplify, in what follows,

the term ICOH is used to denote the absolute value of ICOH.

To summarize, a value of ICOH was obtained for: each pair of

channels (5995 pairs from 110 sensors), each of 26 frequency

values, equally spaced from 2 to 55 Hz, each time point (200

samples from –470 ms to 870 ms after stimulus), and for each of

the face categories for a total of 124, 696, 000 values per subject.

The total calculation across all subjects took approximately 4

days using Matlab (� 2011 The MathWorks, Inc.) capability of

parallel processing (Parallel Computing ToolboxTM) over between

16 to 32 cores distributed over SHARCNET, a consortium of

Canadian academic institutions who share a network of high

performance computers.

Results

Subject x Connection x Time x Frequency x Task
As explained earlier, all the results are derived from a single 5-

dimensional data matrix of ICOH values, whose dimensions ([103

5995 200 26 4]) correspond to number of subjects, pair of

channels, time points, frequencies, and face categories respectively.

Of the 103 subjects, 31 belonged to the Control group and the

remaining 72 to the ASD group. All data used for subsequent

statistical analysis are obtained from this basic matrix by

collapsing, averaging across some dimensions or segmentation in

sub-matrices.

Gross differences in ICOH between the ASD and Control

groups can readily be seen in a time-frequency plot (figure 1)

where all ICOH values, for all channels and face categories, are

averaged across participant in each group. As the time frequency

plot shows, a characteristic pattern of higher ICOH values occurs

during the post-stimulus time, specifically during the window 100–

350ms, and particularly notable in the ASD group at lower

frequencies, from 1 Hz to around 18 Hz, where there seems to be

a progression from lower beta to lower frequencies. At higher

frequencies there is also a generally enhanced ICOH for the ASD

group but no clear pattern associated to the stimulus. During the

pre-stimulus period around 10 Hz there seems to be lower

synchronization in the ASD group.

In order to test the effects of the factors ‘‘Task’’ and

‘‘Frequency’’ in their interaction with the data from the ASD

and control groups, we performed a number of 3-way analyses of

variance (ANOVA), each for a different time window. ICOH

values were averaged over a sliding time window in order to

pinpoint variations in the p-value in relation to the presentation of

the stimulus. This produced 181 ANOVA’s. Figure 2 depicts the

p-values for the terms Group, Task, and the interactions

Frequency x Task and Group x Task. The two dashed lines stand

for the two common significant alpha levels 0.05 and 0.01. The y-

axis to the left correspond to the Group factor only.

The p-value of the term Group is significant across all time

points but reaches its lower value around 200 ms. Task becomes

significant around 200 ms after the stimulus and reaches bottom

around 300 ms. The interaction terms also become significant

around 200 ms but their significance is not as solid as with the
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single terms. The terms Frequency and Group x Frequency are

not shown since their p-values are even lower than those of Group

across all time points.

Subject x Connection x Time x Frequency
Since the highest statistical significance is found for the factors

Group and Frequency, and their interaction, we decided to focus

on the general differences of face processing, collapsing the four

conditions or tasks into a single one. The analysis of the details of

the differential response to task will be the subject of a future study.

To produce a reliable estimation of single ICOH values derived

from the entire collection of face conditions, the estimation of such

values for the four tasks was added after weighting them by the

number of trials of each condition.

In order to offer a more detailed topographic view of the

coherent activity and its relation to time and frequency, two

different mappings are provided (Figures 3 and 4). In figure 3

averages by channels are shown. That is, the average of the ICOH

values between each channel (pivot channel) to all the others is

mapped to the corresponding electrode position for that pivot

channel. The top panel displays the average head for each group

under this specific mapping for different time points at a fixed

frequency (9.8 Hz). In the bottom panel the frequency is then

varied and the time is fixed (196ms), around the time group

differences are bigger according to figure 2. Note that in figure 2

the areas that are more synchronized in the alpha band are

occipital for both groups. However it appears that, for the ASD

group, this event related synchronization is much stronger and also

more widely spread in occipital areas. This spread is towards more

lateral occipital sites, which might include fusiform face areas and

superior temporal sulcus. In pre-stimulus time the Control group

appears to have higher central occipital alpha synchronization

compared to the ASD group.

Figure 1. Time-Frequency plots of ICOH values corresponding to control group (top panel), ASD (middle panel) and their difference
(bottom panel). Channels, Tasks and Participants have been pooled together and averaged within each group.
doi:10.1371/journal.pone.0075941.g001
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Figure 4 offers a more common, although more confusing,

representation of ICOH values over the same times and

frequencies as in figure 3. In order to avoid too much clutter,

only channels whose synchronization are 10 standard deviations

higher than the baseline of the control are shown. It is important

to note that although the ASD head seems to contain fewer ICOH

lines above the chosen threshold, the average coherence is bigger

in the ASD group Moreover the number of channels whose

coherence is bigger in the ASD group is in the majority (between

53 to 58%). In the top plot it can be seen that in the alpha band

the ASD group exhibits weak and mostly local synchrony in the

pre-stimulus time.

This local synchrony in alpha is significantly enhanced after

stimulus presentation with increased long-range connections

towards more anterior areas. For the Control group no pattern

is evident other than a lateral spreading of synchronization over

occipital channels. It is also notable that for both groups the mostly

local pre-stimulus activation over occipital channels is medial and

Figure 2. Curves are base-10 logarithms of Pvalues, from a number of 3-way ANOVA’s. ANOVA’s were repeated for 181 sliding time
windows. Within each single time window 20 ICOH values were averaged corresponding to a period of 128ms. The 3 factors in the analysis were, the
two Groups, Frequencies (considered here as a continuous factor) and Task. The y-axis on the left correspond to factors Task, Group x Task and
Frequency x Task. The one on the right is only for Group.
doi:10.1371/journal.pone.0075941.g002

Figure 3. Topographic view of ICOH values. The average of ICOH values of a single channel is mapped to the position of the channel. Values are
interpolated for areas between electrodes. Top panel displays the average head of each group for different time points at a fixed frequency (9.8 Hz).
Bottom panel the frequency is then varied and the time fixed (196ms).
doi:10.1371/journal.pone.0075941.g003
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slightly left. In the lower panel it can be observed that the pattern

of synchronization in both groups at time 196ms is similar for delta

and theta frequencies and becomes more long range and anterior

for the Control group at alpha and Beta frequencies. These two

mappings (figures 3 and 4) show an apparently different spatial

organization of ICOH values during both the baseline and the

post-stimulus period.

Are these event-related imaginary coherency patterns correlated

to event-related potentials (ERP) in the temporal and spatial

domain? Figure 5 depicts the raw average EEG amplitude across

groups for each scalp location for the same frequencies and

windows as shown in figure 3. A direct comparison between

figures 3 and 5 should be done cautiously since, in figure 3, the

values that correspond to each channel are average values across

all its connections. Figure 5 shows that the main source of activity

is also located across the occipital area, however the differences

between groups seem not to be as prominent as in figure 3. In

figure 6 we present a closer look at the temporal course of two

ERP traces generated at two occipital regions, central (blue) and

lateral (green). Clearly, the period of maximum activity extends

roughly from 70 to 400 ms. This corresponds to the period of the

highest values of ICOH as depicted in figure 1.

Figure 6 also indicates that there is a first component peaking

around 80ms, which seems to be in-phase (zero phase difference)

for each group and in anti-phase (pi-phase difference) for different

sites. This type of response, which seems to have the same phase

profile for both sites, should correspond to a unique source, most

likely C1, which is an early visual evoke response thought to be

localized in Brodmann’s Area 19. From this moment, the ERPs of

both groups seem to deviate in their phase course. In particular the

green dashed line (ASD-Lateral) peaks around 8ms ahead of the

same site in the Control group. Since there is also a non-zero lag

respect to the peak at the other site in the same group, this could

translate into an elevated ICOH value for some of the frequency

components between these two areas. Also, since both groups

show a different phase profile at this component, it is expected that

their ICOH values should also differ for some frequencies when

this lateral occipital electrode is compared to other electrodes. It is

also noteworthy that the instantaneous frequency of the ERPs

seems to move from higher to lower frequencies in time,

Figure 4. ICOH values are mapped to a line connecting the involved channels, the darker the line the higher the ICOH value.
Frequencies and times are the same as in figure 4. For clarity, only channels whose ICOH are more than ten standard deviations than the control
baseline are shown.
doi:10.1371/journal.pone.0075941.g004

Figure 5. ERP averages across groups (Control and ASD) for each scalp site. Values are interpolated for areas between electrodes.
Frequencies and times are the same as in figure 3.
doi:10.1371/journal.pone.0075941.g005
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concomitant with the pattern of maximal ICOH in the time-

frequency plot of figure 1.

Subject x COI x Time x Frequency
In order to facilitate the interpretation of the results by further

aggregating information into selected types of connections, the

5995 connectivity values were averaged into 48 groups denoting

Connections of Interest (COI) (Table 1). By corresponding the

definitions of COI in the table, an ICOH value between two given

electrodes can participate in the average of more than one COI.

Broadly speaking, when collapsing across all other dimensions

ICOH is more elevated across all frequencies for the ASD group.

Differences in ICOH are notable around the post-stimulus period

in most COI, particularly in occipital areas and in areas connected

to occipital channels (figure 7). A decreased coherent activity

during the baseline period relative to control is also detected for

the occipital channels at alpha frequencies. This effect can also

been seen in figure 3, top panel. Although most COI display an

increased ICOH in the ASD group during the post-stimulus

period some exceptions also occur, all of them in connections with

parietal channels participation (see the panels labeled RFP and

RPT).

Notation and definition of these groups in terms of sensor areas

is shown in the table.

As shown in figure 2, the terms in the anova analysis dropped

their p-value around the post-stimulus period. In order to address

statistically differences in spatial patterns, a second ANOVA was

also carried on using the 48 regions of connectivity (COI) as a

factor. Figure 8 shows the interaction effects of Groups and COI

and the 3 factor interaction effect with Frequency. It can be clearly

observed that even though these lines are always below the

p = 0.05, COI interacts strongly with groups reaching a minimum

at approximately 180ms. This may be a further indication of a

different processing style for the ASD group.

In figure 9 we present a graph derived from an analysis that

more clearly summarizes the differences between both groups by

frequency, time and COI. The data was averaged into 5 putative

EEG frequency bands, the 48 COI and also 20 disjoint time

windows of 64ms each. On this new set a total of 5*48*20 = 4800

Mann–Whitney U test were completed. In this figure white areas

correspond to significant differences between groups where ICOH

of ASD group is higher and black correspond to areas where

ICOH of Control group is higher. Gray areas correspond to non-

significant differences. As figure 9 shows, the black areas are

relatively rare compared to the white ones. Some specific areas are

emphasized in red and labeled for an easy reference.

We will now summarize some the most notable characteristics

of this graph:

A: Increased left occipital ICOH for ASD for Delta and Theta

frequencies. In general ASD.Control seems to be particularly

true for Alpha and Theta bands over the left hemisphere.

B: ASD.Control over short connections over the left side for

Delta, Theta and Alpha.

C: ASD.Control over occipital connections for Delta and

Theta frequencies.

D: ASD,Control during the pre-stimulus time for occipital

channels. This is a strong effect that can be observed also in

figures 3 and 7.

E: ASD.Control for long connections for Delta and Theta

frequencies.

F: ASD.Control for short connections for Delta and Theta

frequencies.

Figure 6. Raw ERP with all subjects pooled together. Green traces correspond to the occipital lateral location displayed with a green circle in
the inset while blue correspond to the central occipital location. Solid line correspond to the Control group and the dashed one to the ASD group.
The red arrows show an 8ms delay between the minimum of the solid line to the minimum of the dashed one.
doi:10.1371/journal.pone.0075941.g006

The Imaginary Part of Coherency in Autism

PLOS ONE | www.plosone.org 7 October 2013 | Volume 8 | Issue 10 | e75941



Table 1. Connections of Interest (COI). Connectivity values (ICOH) are averaged into 48 groups of interest.

Abbreviation Name Description

b Bilateral Symmetric Only conn. between each channel and their equivalent channel on the contralateral side

bf Bilateral Symmetric Frontal Bilateral Symmetric > Frontal

bo Bilateral Symmetric Occipital Bilateral Symmetric > Occipital

bp Bilateral Symmetric Parietal Bilateral Symmetric > Parieral

bt Bilateral Symmetric Temporal Bilateral Symmetric > Temporal

lr Bilateral All contralateral connections (no necesarily symmetric)

ff Bilateral Frontal Bilateral > Frontal

oo Bilateral Occipital Bilateral > Occipital

pp Bilateral Parietal Bilateral > Parietal

tt Bilateral Temporal Bilateral > Temporal

f Frontal All conn. between Frontal channels

o Occipital All conn. between Occipital channels

p Parietal All conn. between Parietal channels

t Temporal All conn. between Temporal channels

l Left All conn. between left lobe channels

r Right All conn. between left right channels

lf Left Frontal Left > Frontal

lo Left Occipital Left > Occipital

lp Left Parietal Left > Parietal

lt Left Temporal Left > Temporal

rf Right Frontal Right > Frontal

ro Right Occipital Right > Occipital

rp Right Parietal Right > Parietal

rt Right Temporal Right > Temporal

sh Short All conn. between channels separated by less than 4 cm

ln Long All conn. between channels separated by more than 10 cm

ot Occipital-Temporal All conn between the mentioned areas on the same lobe

op Occipital-Parietal All conn between the mentioned areas on the same lobe

of Occipital-Frontal All conn between the mentioned areas on the same lobe

tp Temporal-Parietal All conn between the mentioned areas on the same lobe

tf Temporal-Frontal All conn between the mentioned areas on the same lobe

pf Parietal-Frontal All conn between the mentioned areas on the same lobe

lot Left Occipital-Temporal Left > Occipital-Temporal

lop Left Occipital-Parietal Left > Occipital-Parietal

lof Left Occipital-Frontal Left > Occipital-Frontal

ltp Left Temporal-Parietal Left > Temporal-Parietal

ltf Left Temporal-Frontal Left > Temporal-Frontal

lpf Left Parietal-Frontal Left > Parietal-Frontal

rot Right Occipital-Temporal Right > Occipital-Temporal

rop Right Occipital-Parietal Right > Occipital-Parietal

rof Right Occipital-Frontal Right > Occipital-Frontal

rtp Right Temporal-Parietal Right > Temporal-Parietal

rtf Right Temporal-Frontal Right > Temporal-Frontal

rpf Right Parietal-Frontal Right > Parietal-Frontal

rsh Right Short Right > Short

lsh Left Short Left > Short

rln Right Long Right > Long

lln Left Long Left > Long

doi:10.1371/journal.pone.0075941.t001
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Golland et al., (2008) [27] proposed a useful and flexible single

test to address group differences based on a collection of features.

The test is non-parametric and is based on classification

performance. More specifically, the test is based on comparing

the classification error for the original groups to the population of

errors obtained by applying the same classifier to new groups

resulting from a randomization of labels. A measure of accuracy

and an F-score was obtained for each randomization of labels to

account for classification performance. This randomization was

carried out 2000 times. This test provides a measure of the

statistical significance of the classifier performance as well as

general group differences. In our study a feature vector for each

subject is made using all frequencies averaged over 13 non-

overlapping windows (2 frequencies in each), all COI and also all

time points averaged in 4 non-overlapping windows. A total of

13*48*4 = 2,496 feature vector for each participant was fed into

the classifier. A support vector machine with a linear kernel was

used, and the classification error was determined by 200 rounds of

crossvalidation. Since the number of members in each class is

slightly unbalanced (31 vs 72), to avoid dropping information from

the ASD class to balance the training sets, we applied the SMOTE

algorithm [28] in which the minority set is complemented with

synthetic feature vectors produced from the training data by

interpolation over random vectors within each specific neighbor-

hood. In each crossvalidation round both training sets had the

same number of members.

As mentioned, the F-score, a measure that combines precision

and recall, was used along with the classifier accuracy to measure

the classifier performance. The original F-score was 0.88, which

was bigger than 99.5% of the respective values from the

randomized classes. The original accuracy was 0.80 bigger than

the 99.5% of the respective values from the randomized classes.

Both represent statistical significant values (alpha , 0.01), which

confirms that the two classes are significantly different for the set of

features chosen.

Discussion

The analysis we have presented here presents an account of

differences in cortical synchronization patterns in the autistic

population via a methodology that offers a credible perspective on

functional connectivity, although not necessarily a complete one.

We have presented evidence of solid group differences which

provide support for the adequacy of this measure, in particular,

differences associated with the post-stimulus period. These results

challenge the idea of functional under-connectivity in individuals

with autism. We also showed that relatively high classification

accuracies can be obtained from measures of the imaginary part of

coherence alone.

By looking through the lens of a functional connectivity tool, the

Imaginary Part of Coherency, we presented clear differences

between the brains of autistic and control children at a wide range

of frequencies, locations and times. This measure avoids volume

conduction effects, which are instantaneous and which greatly

affect the traditional coherence analysis, by focusing on the

synchronized activity that occurs at a certain delay. The method is

Figure 7. Time-frequency plots of ICOH for 9 different COI. Frequencies span only from 0 to 20 Hz to focus on the main area of activity. Left
column: Control, right: ASD. Each row corresponds to a different COI, from top to bottom: bilateral (b), frontal-occipital (fo), left (l), right (r), ln (long), o
(occipital), occipital temporal (ot), right frontal-parietal (rfp), right parietal-temporal (rpt). See each site description on table 1.
doi:10.1371/journal.pone.0075941.g007
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essentially artifact-free, that is, significant differences in activity are

real and cannot be produced by artifacts [18], However the

method will fail to see any real synchronized activity occurring

instantaneously (at phase 0u).
It is also important to keep in mind, when comparing our results

to others on scalp EEG, that the specific montage in which the

data was studied can greatly misrepresent values of coherency/

synchronization [16,23]. Well-designed experiments and poten-

tially excellent data can be easily destroyed by failing to modify the

original referential montage before the functional connectivity

analysis is carried out. We took special care in transforming the

original referential montage to a reference-free one in which the

phase of each channel is not distorted by the phase and amplitude

of the reference channel. Having overcome these technical

difficulties, we captured an interesting transient spatio-temporal

structure, which agrees with previous studies on face and emotion

processing in many aspects, offering some extra validation to the

relevance of the methodology. In particular, the specific pattern

we have described of bigger ICOH values for different latencies at

different frequency bands, where latencies increase moving from

alpha to lower frequencies (figure 1 and 7), has been reported

before [29,30] in the context of Event Related Desynchronization

due to the emotional content of a face. In these previous studies

researchers also noted the role of the delta band in recognizing the

emotional content of the face. This peaks around 320ms and

continues for a few hundred milliseconds, while an earlier

component related to an arousing facial stimuli (not neutral)

peaks around 200ms. That is, these peak modulations were

attributed respectively to the emotional discrimination and to the

attentional significance of face. These events coincide with the

local minima in the p-value curve for Task and Group in figure 2

as well as the local minima of the interaction Group x Task.

Another interesting feature, the wide area of synchronization over

occipital channels in figure 3 towards the left and right (but

predominantly right), may be produced by abnormal synchroni-

zation of the fusiform face area and Superior Temporal Sulcus, see

also the right dominance to face perception [29–31].

The ANOVA analyses (figure 2 and 8) were carried over a

sliding window to show its profile in the time domain and the

particular timing at which it drops significantly. In both cases,

based on the interaction terms with Groups, this analysis seems to

show a different mechanism of processing the stimulus. While

some initial studies reported a weak or non-existent activation in

the hemodynamic response in areas associated to face perception,

including the amygdala [32,33] a latter study [31] found no such

deficit in activity when the eye fixation was controlled. In another

study it was found that the activation in these areas was strongly

and positively correlated with the time the autistic group spent

fixating the eyes [34]. Since the ASD group has typically

diminished gaze fixation in relation to the control group, this

explains the presumed lower activation reported before. In our

setting, eye fixation is monitored and only trials whose gaze has

been maintained for more than 100ms on the face were accepted

for further processing. Thus, we should not expect a reduced

activity in these areas associated with face processing. Moreover

we found a generally increased connectivity in most areas, with

some exceptions in connection to parietal channels.

As with any other result derived from measures of connectivity,

ours have to be interpreted carefully and critically. Similar to the

term ‘‘complexity,’’ as applied to brain dynamics, ‘‘functional

connectivity’’ has many meanings according to the specific

mathematical formulation. In fact most of these formulations

incorporate artifacts thereby capturing more than the intended

purpose, and some produce only partial accomplishment by failing

to capture some real connectivity. Therefore, results derived from

different recording modalities and mathematical methods for

Figure 8. Curves are base-10 logarithms of Pvalues from a number of 3-way ANOVA’s. ANOVA’s were repeated for 181 sliding time
windows. Within each single time window 20 ICOH values were averaged corresponding to a period of 128ms. The 3 factors in the analysis were, the
two Groups, Frequencies (considered here as a continuous factor) and COI. Only interaction effects with Groups are shown.
doi:10.1371/journal.pone.0075941.g008
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connectivity are not directly comparable. For example, when an

fMRI study claims poor synchronization, as in [4], it may refer to

correlation between voxels or entire ROI’s. Consider that while

the correlation between two signals dominated by a single

frequency is maximal when there is a shift of phase zero or p
between them, the ICOH would have the opposite behavior,

minimal at those values and maximal at p/2 or 3p/2. Therefore,

we are not in a position to claim we have completely disproven any

hypothesis formulated in terms of ‘‘functional connectivity’’ as a

physiologist would understand it, nor can we make claims of

anatomical nature derived from our findings. However we can

positively say that there are notable differences in functional

connectivity patterns, specifically, that functional connectivity that

occurs at some non-vanishing time lags. Since non-interacting

sources cannot produce a non-vanishing imaginary part, they

cannot produce significant differences between groups other than

by chance. The ANOVA’s we have presented, the resampling test

for classification accuracies and the Mann–Whitney U test analysis

by brain areas and frequency bands, all produce different

confirmation of these notable differences.

In general we found increased ICOH in the ASD group

compared to controls (see the relative larger white area in figure 9

in comparison to the black one for an easy confirmation of this).

This seems to be in disagreement with the most accepted theory of

underconnectivity in autism, which, in some results, tends to

associate structural to functional connectivity or, more important-

ly, a lack of integration of information between specialized areas,

with a decrease in functional connectivity. We think, however, in

terms of metastability [11], where more essential, for proper

information processing, is the flexibility in forming and dissolving

synchronized activity among different cell populations. Since there

are both excitatory and inhibitory connections a decrease (or

increase) in physical connectivity per se does not guarantee a given

tendency towards synchronization. The balance between inhibi-

tion and excitation and other network parameters is required to

affect network dynamics toward synchronization. More in

agreement with our findings is [35], where it is proposed that

the balance between excitation/inhibition leans in favor of

excitation, which accounts for the relatively large proportion of

seizure and spike activity documented in the brains of children

Figure 9. Results from a Mann–Whitney U test over 5 putative EEG frequency bands, 48 COI and 20 disjoint time windows of 64 ms
each. There is one panel for each frequency band. Within each panel y-axis denotes time and x-axis COI. White corresponds to regions in which there
is a significant difference between both groups where ASD is bigger in ICOH values than Control group. Black denotes significant differences where
control is higher. Gray means there are not significant differences. Blue rectangles are shown only to organize the spatial information into 3 distinct
anatomical, bilateral, left and right COI. Red rectangles are labeled with red uppercase letters and are used to highlight regions and frequencies that
seem to contain a high frequency of significant values.
doi:10.1371/journal.pone.0075941.g009
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with ASD. A large proportion of significant values for short

connections at theta and delta frequencies is evident in In figure 9

(F). This agrees with most studies that find enhanced local

synchronization in ASD. However we failed to see decreased

bilateral (9 second column) and long range synchronization 9 (E).

Recent attempts have been made towards finding biomarkers

for autism in EEG [5,36,37]. Tsiaras et al. [36] present an

interesting solution to managing the cumbersome information

derived from connectivity analysis by collapsing information in a

number of graph connectivity parameters. These parameters,

derived from three different connectivity measures, were used as

features in building a biomarker. Bosl et al. [37] used Modified

Multiscale Entropy, a statistic that is computed for each single

channel, giving some measure of the complexity of the time

course. Although both approaches are interesting, the classes used

for testing and training the classifiers are rather small, with not

much room left for a validation of the accuracies presented.

Further, while the accuracies reported result from valid rounds of

crossvalidation, the fact that many tests are presented in these

papers, would definitely contribute to increase the accuracies of

the setting or group with the best performance [38]. A more recent

result [5] reports a very high classification accuracy on a large

number of ASD and Control cases. In particular for the group

ages 2 to 4, which is comparable to our range, the Control group

contained 85 subjects while the ASD group 216. Using the

traditional coherence measure on a segment of spontaneous EEG,

the reported total accuracy was bigger than 97%. This impressive

performance was achieved by using the traditional coherence

analysis on 24 channels and 16 frequency bands in the 1–32 Hz

range. The number of variables used in this classification was

reduced by applying PCA to the original set of 4416 variables.

Interestingly, a single coherence value per pair of channels and

frequency was calculated for each subject by using a time window

2 seconds wide over a segment 8 to 20 minutes long. Taking into

account the aforementioned limitations of the coherence measure,

plus the fact that the EEG is highly non-stationary over these

scales (8–20min), the analysis produced impressive results. These

facts could lead to further progress through research that

investigates why these brains can be differentiated on averages

over such relatively large scales and why volume conduction seems

to sharpen rather than attenuate group differences. Are these high

accuracies resulting from real processes of functional connectivity

only? Even if they are not, there is no doubt from a practical

standpoint the authors have produced a very useful and simple

biomarker for the autism phenotype in childhood.

In our study, in comparison to Tsiaras et al. [36] and Bosl et al.

[37], the classification accuracy of 80% seems already good

enough for a single attempt with a vector containing all features.

The result could be improved, through careful selection of features

but in the absence of a third hold-out final validation set, it would

not be legitimate to do so. We did not follow this approach since

we considered that there were not enough data left for a solid

performance of the classifier. On the other hand we believe that

the findings of Duffy & Als [5], based on spontaneous, 24-channel

EEG, offer a more practical solution to the biomarker problem.

However, its relevance should be further investigated from a

physiological standpoint by comparing it to results like ours which

are theoretically more reliable measures of functional connectivity.

Finding a reliable biomarker for ASD in a relatively inexpensive

recording modality such as scalp EEG will greatly help in the

timely diagnosis of this syndrome and may also enhance the ability

to test the effectiveness of different treatments.

Since only a few studies on autism have, so far, used measures of

functional connectivity from scalp EEG/MEG, our results should

provide further motivation to look more deeply into the possibility

of different processing styles from the perspective of electrophys-

iological recordings, since this approach appears to be very well

suited to capturing fast transient activity, using different experi-

mental cognitive paradigms. A similar idea has recently been

proposed to use MEG to study executive functions [8].
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