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Abstract

Somatic mutation calling from next-generation sequencing data remains a challenge due to the difficulties of distinguishing
true somatic events from artifacts arising from PCR, sequencing errors or mis-mapping. Tumor cellularity or purity, sub-
clonality and copy number changes also confound the identification of true somatic events against a background of
germline variants. We have developed a heuristic strategy and software (http://www.qcmg.org/bioinformatics/qsnp/) for
somatic mutation calling in samples with low tumor content and we show the superior sensitivity and precision of our
approach using a previously sequenced cell line, a series of tumor/normal admixtures, and 3,253 putative somatic SNVs
verified on an orthogonal platform.
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Introduction

The declining cost of next-generation sequencing is enabling an

increasing number of tumor sequencing studies [1–3], providing

new insights into the mutations driving tumorigenesis. These large-

scale efforts are redefining the role of known oncogenes and tumor

suppressor genes, identifying new candidate driver genes and

providing insights into the mutational mechanisms at play in

different tumor types [4,5]. Accurate somatic mutation calling is

paramount in these studies.

Despite this growing demand for accurate somatic mutation

calls in cancer studies, mutation calling from next-generation

sequencing data remains challenging. Early cycle PCR-induced

errors, polymerase slippage [6] and the mis-mapping of reads due

to homology to multiple genomic regions are some of the most

common sources of false positive calls. Inadequate sequence depth

in the matched normal sample can also result in germline variants

being incorrectly identified as somatic mutations (false positives).

Finally, tumor heterogeneity and purity further confound accurate

somatic mutation calling as increased tumor heterogeneity and

decreased purity result in lower mutant allele ratios that can make

it difficult to distinguish true mutations from background (false

negative error). In solid tumors, purity varies widely with some

tumor samples having less than 10% tumor content. Many low

purity tumor samples have been excluded from somatic mutation

analysis to date due to the analytical challenges associated with

accurately calling mutations in these samples and the expected

high false negative rate. To keep the sensitivity of the analysis at

desired levels, there is a risk of calling an increasing number of

false positives.

Several software programs have been developed for variant and

somatic mutation calling, including GATK [7], Strelka [8],

diBayes (Applied Biosystems BioScopeTM software), SomaticSni-

per [9], VarScan 2 [10] and SNVMix [11]. For cancer genome

analysis and to identify somatic events, a tumor sample is

compared to its matched normal sample. Current software tools

differ in important ways by either performing single or joint

sample analysis of the tumor/matched normal sample pair, and by

either using Bayesian or heuristic approaches (Table 1). GATK

was initially developed in the context of the 1000 Genomes Project

[12] to enable variant discovery and genotyping from next-

generation sequencing data. GATK performs single sample

analysis only. A tumor and matched normal sample pair are thus

genotyped independently and somatic events are determined by

subtracting calls in the normal from those in the tumor sample. In

contrast, Strelka, SomaticSniper and VarScan 2 perform joint

sample analysis of a tumor/normal pair and either model tumor as

a mixture of normal sample with somatic variation (Strelka),

calculate joint diploid genotype likelihoods using the MAQ

genotype model (SomaticSniper) or compare read count distribu-

tions between the two samples using Fisher’s exact test (VarScan2).

Importantly, due to the different statistical models employed,
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current somatic mutation callers differ in the number of somatic

mutation calls and in their overlap. In addition, many somatic

mutation callers use a series of post-call filtering steps that further

affect the number and type of final mutation calls. Some of these

tools also allow analysis of small indels, germline variants and copy

number variations (Table 1).

There have not been, however, any detailed investigations of

the effects of reduced tumor cellularity or purity on the accuracy

and sensitivity of somatic mutation calling, although a recent

software, MuTect, has been designed especially with subclonal

mutations in mind [13]. A number of factors compromise somatic

mutation calling in low purity tumors. As sequence coverage and

tumor purity decrease, the effects of allele sampling confound the

accurate assessment of allele distributions and thus compromise

statistical models for determining potential variant sites of interest.

Secondly, depending on the statistic models used, low frequency

mutations may or may not trigger a variant call resulting in

differences in the number and type of mutations called between

different callers. Our interests in pancreatic adenocarcinomas

where over 70% of tumors are of less than 40% purity due to

desmoplastic stroma and despite enrichment by histology-guided

macrodissection [14] have motivated us to determine optimal

strategies for somatic point mutation calling in these tumors. To

this end, several mutation calling strategies were tested and

extensive verification was performed, in which true positive and

false positive mutation calls were inspected to identify common

error sources. A heuristics-based single nucleotide variant caller,

qSNP, was then implemented using these empirically determined

features. Its performance was directly assessed in samples of

varying purity that were generated by mixing a tumor cell line and

its matched normal sample at varying proportions and sequencing

each mixture. The decay in sensitivity as purity decreased in these

mixtures was assessed and the performance of our caller was

compared to that of two others. Finally, its performance was

benchmarked against the COLO-829 cell line, previously

sequenced and analyzed by Pleasance et al. [4].

Results

Our somatic mutation calling strategy has been designed to

maximize sensitivity in light of low tumor purity. Iterative rounds

of verification using benchtop amplicon-based sequencing were

performed to develop and refine post-processing checks to control

the false discovery rate. The following considerations informed the

design of our mutation calling strategy and its software

implementation, qSNP.

Joint analysis of the tumor and matched normal sample
qSNP considers sequence data in Binary Sequence Alignment/

Map (BAM) format [15] from both tumor and matched normal

samples jointly. Classification into germline and somatic calls

follows a number of simple rules that were designed to

accommodate for the expected low mutant allele ratio in low

purity tumors (Table 2).

Maximize sensitivity of mutation calling
qSNP currently triggers a variant call if a minimum of 3 reads of

the same, non-reference allele are found. We found that this

minimum evidence requirement ensures that a variant call is

triggered even in regions where Poisson sampling of alleles may

have confounded the observed allele distributions. As sequence

depth increases, so does the minimum read requirement. At

coverage over 206a minimum of 4 mutant reads are required and

above 506 a minimum of 5% of mutant reads or a minimum of

2.5% mutant reads if reads are on both strands. In addition, the

base qualities of the variant reads must be at least 10% of the sum

of base qualities at the position or at least 5% of the sum of base

qualities if reads are found on both strands and coverage is over

506. To determine whether the position is homozygous or

heterozygous, the two most common alleles are determined. If

both alleles match the evidence criteria above, the position is

considered heterozygous, and if not, homozygous.

Post-processing checks to control the false discovery rate
Various factors influence the confidence in a somatic mutation

call, including sequence depth in tumor and matched normal, base

qualities of alleles, evidence for variant in matched normal sample,

number of mutant reads, and mutant allele ratio. The statistical

frameworks to encompass all of these factors into a single model

and metric are still being developed. Some single-sample SNP

callers give a p-value that purely reflects the likelihood for the

presence of a non-reference allele. Furthermore, most mutation

Table 1. Variant calling software tools.

Software
Tumor normal
joint analysis

Output germline
variants Indels Statistical method Reference

qSNP X X empirically determined set of heuristics optimized
for sensitivity in low purity tumors

present study

GATK n/a X Bayesian model for genotype likelihood, can take into
account multiple samples for calibration

[7]

Strelka X X Bayesian model of tumor as a mixture of normal sample
with somatic variation

[8]

SomaticSniper X X Bayesian comparison of genotype likelihoods based
on MAQ genotype model

[9]

diBayes n/a Bayesian model for presence of non-reference allele
(color-space data)

Applied Biosystems
BioScopeTM

VarScan2 X X X heuristics to determine genotypes and Fisher’s exact
test to examine read count differences, also outputs
CNV regions for exome data

[10]

SNVMix n/a probabilistic binomial mixture model accounting for
tumor ploidy and purity

[11]

doi:10.1371/journal.pone.0074380.t001

Novel Somatic Mutation Calling Strategy
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calling software is used in combination with a series of post-calling

filtering steps to remove likely false positives. This practice means

that the original p-values calculated by the mutation caller are

overridden by these further checks that ultimately decide whether

or not a mutation is considered high confidence. For low purity

tumors, Poisson sampling of alleles can confound estimates of their

true frequencies, further compromising the calculation of accurate

p-values or resulting in positions not exceeding a likelihood

threshold.

For these reasons we have not made an attempt to estimate a

p-value upfront but instead use flags to indicate that a putative

somatic mutation call does not meet certain quality criteria or

evidence thresholds (Table 3). For example, putative somatic

positions are checked for the presence of the variant in the

matched normal BAM. If a position has evidence in the normal,

the call is annotated as such. Somatic positions are further

checked for being a germline variant in another patient as this

can indicate under-sampling of alleles in the matched normal.

For this check, we use an in-house database of germline variants

and qSNP can be set up to output high quality germline calls to

this database with each iteration of qSNP. Positions that pass all

checks are considered to be of highest confidence and we expect

these to be true somatic events. They are annotated as PASS in

the qSNP output. Positions where the normal sample lacks

adequate sequencing coverage are potentially false positive

somatic calls and may return germline in verification. These are

annotated as COVN12 in qSNP output. All remaining somatic

mutations such as those where there is evidence of the variant

also in the normal sample or where only few mutant reads

support the variant call are considered lowest confidence and

are expected to include many false positives. These calls are

annotated as outlined in Table 3.

Output mutation calls in.vcf and DCC formats
Output in Variant Call Format (VCF) [16] was required as

VCF is becoming the standard format for mutation reporting and

annotation and allows integration with an ever-expanding set of

VCF tools. To enable easy integration with the International

Cancer Genome Consortium (ICGC) Data Coordination Centre

(DCC), output in DCC format was also implemented.

Fast, easy to run and operating-system independent
Given the continuously increasing throughput of next-genera-

tion sequencing platforms, qSNP needed to be efficient in its use of

compute resources. To achieve this, qSNP is implemented in

JAVA using the Picard library (version 1.62). qSNP is driven by a

single plain-text configuration file in the ‘‘Windows INI-file’’ style

and takes as its primary inputs, a pair of tumor and normal BAM

files that have been duplicate-marked and coordinate-sorted.

qSNP implements a fast and flexible read-filtering system and if

filters such as minimum mapping quality or alignment length are

specified, qSNP will filter out failing reads prior to analysis. qSNP

creates a pileup of bases in tumor and normal to look for evidence

of a variant. qSNP has been specifically designed to make use of a

compute cluster. It is thus multi-threaded, requiring 5 cores and

20 GB of memory to run efficiently.

Tuning using verification data
To identify common error sources and to refine qSNP,

extensive verification of 3,253 putative somatic mutation calls

was performed across 65 tumors of 6 to 83% purity (mean 38%

purity), including 60 tumors reported in Biankin et al. [14]

(Table 4, Table S1). In total, 717 mutations were confirmed as

true somatic events, of which 704 had been classified as PASS

by qSNP (Table 4). Miscalled somatic mutations were most

commonly associated with one of three features: position in

regions of sequence homology, support only by non-indepen-

dent reads or support by low evidence. By designing strategies

to eliminate false positives associated with these common error

sources, we were able to maintain an accuracy of 57% at a

sensitivity of 98% across these tumors of mean purity of 38%

(Table 4). This sensitivity is likely an overestimate of the true

sensitivity as only known, verified mutations called by qSNP at

any evidence threshold were chosen for verification; it is

possible that there were additional somatic events that were

never called. Nevertheless, our strategy is successful in

retaining the vast majority of known true positive events

(98%), while eliminating false positive calls associated with

common error sources.

Sequence homology regions
Regions of sequence homology can cause problems in mapping

and reads may be erroneously mapped to the wrong homologue.

This is not always apparent from the mapping quality values that

can remain high especially if these values reflect pairing quality

values that consider the mapping qualities of both reads in a read

pair. Nevertheless, these regions can often be identified on the

basis of having an excess of putative sequence variants. To

Table 2. Classification of germline and somatic events.

Normal genotype Tumor genotype Details* Classification

Hom Het Variant is reference allele; G/G.A/G Germline1

Hom Het Variant novel; A/A.A/G Somatic1

Het Hom Tumor allele same; A/G.G/G Germline2

Het Hom Tumor allele different; A/G.T/T Somatic

Hom Hom Same; G/G.G/G Germline

Hom Hom Different; A/A.G/G Somatic

Het Het Same; A/G.A/G Germline

Het Het Different; A/G.T/G Somatic

*All examples assume ‘A’ as the reference allele, ‘G’ as the variant, and ‘Hom’ and ‘Het’ denote homozygous and heterozygous respectively.
1check coverage in normal to exclude under-calling.
2could indicate LOH in tumor.
doi:10.1371/journal.pone.0074380.t002

Novel Somatic Mutation Calling Strategy

PLOS ONE | www.plosone.org 3 November 2013 | Volume 8 | Issue 11 | e74380



overcome this challenge, qSNP has a user-defined BAM filtering

option so that only high quality reads will trigger a mutation call.

For SOLiD v4 data, mapped with Bioscope 2.1 we find the

following filters useful:

1) min. 35 bp alignment length or (second of read pair and

mapped as a proper pair);

2) min. SM.15 (single mapping quality);

3) no more than 2 base-space mismatches to the reference;

4) not a PCR duplicate (Picard MarkDuplicates).

For Illumina 100 bp paired-end data mapped with BWA, we

use the following filters:

1) min. SM.10 (single mapping quality);

2) no more than 3 mismatches to the reference;

3) not a PCR duplicate (Picard MarkDuplicates).

These read filters can be specified in the qSNP configuration file

using a domain-specific language (DSL). Once a somatic mutation

call has been made, the unfiltered non-duplicate pileup from the

normal BAM is checked to see if there is any evidence of the

variant. These steps help eliminate many of the false positives

associated with this common error source.

Non-independent reads
Picard MarkDuplicates (http://picard.sourceforge.net.) has

become the standard tool for identifying PCR duplicates in

next-generation sequencing data. Given that PCR is commonly

used to amplify DNA for sequencing, likely PCR duplicates

need to be identified so they don’t inflate allele counts during

mutation calling. To identify duplicates Picard MarkDuplicates

uses the start coordinates and orientations of both reads of a

read pair. Within a set of duplicate read pairs, the read pair with

the highest base qualities is retained with the others marked as

PCR duplicates. Picard MarkDuplicates does not consider the

sequence of the reads, only the alignment start coordinates and

orientations.

This strategy of marking PCR duplicates has one drawback.

Read pairs where one read maps to a region of sequence

homology sometimes fail to pass the Picard test for being PCR

duplicates because these reads often map to different copies of

the region of sequence homology, thus disguising the fact that

they are indeed all derived from the same PCR molecule. These

reads can be easily identified upon visual inspection in

Integrative Genomics Viewer (IGV) [17,18] on the basis of

shared start coordinates of one read partner with different

chromosome map positions of the other read in the pair

(Figure 1). To overcome this challenge, all putative somatic

Table 3. Post-processing checks performed by qSNP.

Annotation Variant type Description

PASS Somatic, Germline (Passed all post-processing checks) AND (min 5 mutant reads) AND (min 4
novel starts not considering read pair)

COVN12 Somatic Less than 12 reads coverage in matched normal sample

COVN8 Germline Less than 8 reads coverage in matched normal sample

SAN3 Germline Less than 3 reads of same allele in normal

COVT8 Germline Less than 8 reads coverage in tumor

SAT3 Germline Less than 3 reads of same allele in tumor

GERM Somatic Mutation is a germline variant in another patient

MIN Somatic Mutation also found in pileup of normal BAM

MIUN Somatic Mutation also found in pileup of unfiltered normal BAM

NNS Somatic, Germline Less than 4 novel starts not considering read pair

MR Somatic, Germline Less than 5 variant reads

MER Somatic Mutation same as reference

SBIAS Somatic Strand bias (Illumina only)

doi:10.1371/journal.pone.0074380.t003

Table 4. Details of verification using amplicon-based sequencing on the Ion Torrent.

Verification across65primary pancreatic adenocarcinomas with mean
tumor purity 38% (range 6 to 83%)

Total verified somatic (TP) 717

qSNP pass calls

Verified somatic 704

Verified germline 28

Verified wild type 506

Precision TP/(TP+FP) 57%

Sensitivity TP/(TP+FN) 98%

doi:10.1371/journal.pone.0074380.t004

Novel Somatic Mutation Calling Strategy
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mutation calls are annotated in qSNP with the number of novel

read starts not considering the read pair (NNS in the VCF output files).

Based on our extensive verification data, we find that a

minimum of 4 novel starts using this criterion is a useful lower

limit for somatic mutation detection.

Low evidence calls
Finally, mutation calls that are only supported by a few mutant

reads are also common false positives. However, as tumor purity

decreases, so does the expected mutant allele ratio, making it

difficult to distinguish true somatic events from sequencing

artifacts. We investigated a number of criteria to improve signal

to noise for calls with low evidence. Strand bias proved not to be a

useful discriminating feature for SOLiD v4 data as many true

somatic mutations were only supported by reads on one strand.

Using results from amplicon-based verification, 363 FP were only

on one strand, 171 FP were on both strands, 94 TP were only on

one strand, and 610 TP were on both strands. Filtering somatic

mutation calls by requiring the mutant allele being represented by

reads on both strands will thus severely impact sensitivity of

detection. Mutant allele ratio, i.e. proportion of mutant reads, also

had poor discriminating power with many true positive calls

having very low mutant allele ratios: 112 FP had a mutant allele

ratio ,10%, 422 FP had a mutant allele ratio .10%, 130 TP had

a mutant allele ratio ,10% and 574 had a mutant allele ratio

.10%.

In contrast, there was a strong positive relationship between the

likelihood of being a true somatic event and the number of reads with

novel starts not considering the read pair supporting the mutation. The

higher the number of mutant reads supporting the call, the higher

the accuracy. There is a trade-off between sensitivity and

accuracy, however. At 5 mutant reads with a minimum of 4

novel starts not considering read pair, we obtain an average

accuracy of 57% and sensitivity of 98% (Table 4), which we found

useful thresholds for mutation detection and follow-up verification

in primary pancreatic adenocarcinomas. By requiring a minimum

of 10 mutant reads, our accuracy increases to 94%, but at the cost

of reduced sensitivity (53%). These criteria were determined using

exome samples that had been sequenced to a depth where 80% of

targeted bases had at least 206 coverage (average targeted base

coverage of approximately 656).

Benchmarking variant calling in a controlled mixture
experiment

We previously modeled the performance of qSNP in a panel of

mixtures where a pancreatic adenocarcinoma cell line and its

matched normal were mixed at the following proportions: 0, 10,

20, 40, 60, 80 and 100% cell line DNA [14]. These mixtures were

sequenced to an average depth of approximately 656 using the

SureSelect exon capture method and SOLiD v4 sequencing. Here,

we compare the decay in sensitivity across these mixtures using

variant calls from qSNP and GATK (Table 5). All somatic qSNP

calls made in the 100% cell line sample were selected for

verification by amplicon-based sequencing on the Ion Torrent

PGM. The remaining mutation calls were assessed for evidence on

an alternate sequencing platform - HiSeq 2000 for calls made on

the SOLiD v4 platform and vice versa. A position was considered

verified if read depth was at least 206and the mutation occurred

at a frequency of at least 5% with a minimum of 3 variant reads on

the alternate sequencing platform. In all following comparisons,

GATK and Strelka were run in default mode with no changes to

default parameters. qSNP was run in standard mode, requiring a

minimum of 3 mutant alleles of the same type to make a variant

call prior to applying standard read annotations and post-calling

filters as described in the text.

As expected, as purity decreased, so did the sensitivity of

detecting true positive somatic mutations. In total, 84 mutations

were verified as true somatic events. At 40% tumor purity, qSNP

successfully called 57 of 84 (68%) verified somatic mutations with

only 1 false positive call (Table 5). At tumor purities of 20% and

10% the sensitivity of detection dropped to 42% and 15%,

respectively. By increasing sequencing depth to .1506, the

sensitivity of detection in the 20% and 10% samples was

improved, but not to a level comparable to that observed in the

higher mixtures (Table 5). In comparison, the GATK pipeline

called only 50 of 84 (60%) of verified somatic events in the 100%

sample and decayed more rapidly as tumor purity decreased with

no successful mutation calls in the 10% mixture (Table 5).

In addition, we re-sequenced 5 of these mixtures to an average

depth of 486 on HiSeq 2000 and called mutations using qSNP,

GATK and Strelka (Table 6). qSNP detected a greater number of

verified somatic events than GATK or Strelka in all mixtures

(Table 6). Here, a total of 92 mutations were verified as true

Figure 1. Non-independent reads confounding mutation calls. Read pairs are colored by the chromosome map position of the second read
in the pair. MarkDuplicates fails to correctly identify these non-independent read pairs as PCR duplicates due to the different map locations of the
second read.
doi:10.1371/journal.pone.0074380.g001

Novel Somatic Mutation Calling Strategy
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somatic events. At 40% tumor purity, qSNP successfully called 60

of 92 (65%) of verified somatic mutations, compared to GATK

that called 55 (60%), and Strelka that called 56 (61%) verified

somatic mutations (Table 6). There was substantial overlap in true

positive somatic calls between the three callers; 68 of a total of 90

(76%) verified somatic mutations were called by all three software

tools (Figure 2). These positions had an average of 32 mutant reads

with an average mutant allele fraction of 0.52 (range 0.12 to 0.93).

As tumor purity decreased, so did the number of mutations called

by all three software tools (Figure 2). There were no mutations

unique to GATK and Strelka that were not also called by qSNP

and for all mixtures qSNP missed the fewest number of true

somatic events compared to the other two callers. qSNP and

GATK further called 1 private somatic mutation each that was not

detected by the other callers, while Strelka called 7 private somatic

mutations undetected by the other callers (Figure 2).

COLO-829 whole-genome benchmarking study
The melanoma cell line COLO-829 [4] has been used

previously for benchmarking new cancer analysis tools [8,9]. An

aliquot of cell line and matched normal DNA were received and

whole-genome sequencing was performed on both SOLiD v4 (avg.

coverage 326) and HiSeq 2000 (avg. coverage 756). The

performance of qSNP was benchmarked against calls previously

published by the Wellcome Trust Sanger Institute (WTSI) that

included 454 verified somatic mutations, 43 mutations previously

reported in COSMIC and 32,842 untested calls [4]. On the

SOLiD v4 platform qSNP called 85% of the 454 previously

verified somatic mutations as well as 25 novel mutations that were

verified using amplicon-based sequencing on the Ion Torrent

platform (Table 7, Table S2). For untested calls there was

considerable overlap between those reported by Pleasance et al. [4]

and this study. For all variants called and verified by WTSI but not

called by qSNP, a detailed breakdown is provided showing why

the call was not made. For example, positions with insufficient

coverage in the matched normal and which thus did not pass the

qSNP PASS criterion are tabulated as well as positions where we

observed evidence in the matched normal sample. The majority of

positions where qSNP failed to make a call (5,735 or 62% of

positions only called by WTSI) had less than 3 reads evidence in

our SOLiD v4 sequence data.

Using the HiSeq 2000 sequence data, qSNP called 85% of 454

previously reported verified somatic mutations and 26 novel

mutations that were verified by Ion Torrent amplicon sequencing

(Table 7). Of the positions initially reported by Pleasance et al. [4],

the two re-sequencing efforts on SOLiD v4 and HiSeq 2000

identified 3531 positions that had less than 3 reads evidence for a

mutant allele on both platforms (Table 7). On both platforms

qSNP called a significant number of private mutations, 6486 on

SOLiD v4 and 13098 on HiSeq 2000 of which 2674 were called

on both platforms.

Germline variants
While qSNP was designed primarily to identify somatic

mutations, a comparison of resulting germline calls was made

using the COLO-829 sample and calls made by the Illumina

Human 1M OmniQuad arrays, selecting all positions from the

arrays that showed evidence of a non-reference allele and had a

GenCall (GC) score of .0.7. The average genotype concordance

Table 5. Controlled mixture experiment to assess the effect of reducing tumor purity on somatic mutation detection using the
SOLiD v4 platform.

Mixture (%tumor) Cov. 80% Mean cov. qSNP GATK*

VS‘ FP‘ U‘ VS‘ FP‘ U‘

100 176 62.16 84 17 2 50 7 1

80 196 72.13 73 5 10 49 1 2

60 186 67.49 66 6 6 45 0 4

40 196 67.67 57 1 8 38 0 3

20 236 81.96 35 3 2 15 0 1

10 226 79.35 13 5 5 0 0 1

20 496 161.11 48 5 6 18 0 8

10 476 152.11 15 4 5 0 0 8

*raw.vcf files were passed through qSNP post-processing checks outlined in Table 3 to remove likely false positives such as positions with evidence in the matched
normal.
‘VS verified somatic; FP false positive; U untested.
doi:10.1371/journal.pone.0074380.t005

Figure 2. Overlap in somatic mutation calls. Verified somatic
mutation calls were compared across three callers in 5 different tumor
purity mixtures. Values are number of calls in 100%, 80%, 60%, 40% and
20% tumor content mixture, from top to bottom.
doi:10.1371/journal.pone.0074380.g002

Novel Somatic Mutation Calling Strategy
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at positions with at least 8 reads coverage was 95% (same genotype

call), while the variant call concordance was 99% (Table S3). As

sequence depth increased so did accuracy in making the correct

genotype call. Positions with .706 sequence coverage had a

genotype concordance of 99% and a variant call concordance of

100% (Table S3). The array data has been submitted to Gene

Expression Omnibus (GEO), accession number GSE47904.

Discussion

The development of cancer genome analysis tools and somatic

mutation calling software is an active area of research, but the

effects of reduced tumor purity on somatic mutation calling still

remain largely unexplored. Here, we present a strategy for somatic

point mutation calling in low purity tumors. We have used

extensive verification in primary pancreatic adenocarcinoma

samples to determine a variant calling strategy that controls the

false positive rate while maximizing sensitivity. When directly

assessing the accuracy and sensitivity of our approach in a

controlled mixture experiment where samples of varying purity

were generated and sequenced, we demonstrate superior perfor-

mance compared to other commonly used somatic mutation

callers, for both SOLiD v4 and HiSeq 2000 data. Finally, we have

benchmarked our caller against the COLO-829 sample and show

substantial overlap with previously published calls and calls made

by either the SOLiD v4 or HiSeq2000 platforms as well as a small

number of previously undetected protein-coding somatic muta-

tions.

In the controlled mixture experiment the single sample

approach used by GATK had reduced overall sensitivity and a

faster decay curve across samples of decreasing tumor purity than

the joint sample callers, qSNP and Strelka, consistent with

previous reports that joint sample analyses perform better for

cancer analysis [9]. Using SOLiD v4 sequence data, qSNP and

GATK both achieved a low false positive rate, although GATK

called only 60% of known true positives in the 100% purity

mixture. Using the HiSeq 2000 platform, the sensitivity of GATK

was improved, but at the cost of a high total number of calls likely

due to a high false positive rate that was only improved by

applying the same post-processing checks as in the qSNP pipeline,

such as excluding positions that had evidence of the mutation in

the matched normal sample (Table 3).

The controlled mixture experiment further compared our

heuristic caller to a Bayesian approach (Strelka), demonstrating a

marginal advantage in sensitivity and false positive rate for qSNP.

We believe that the success of our heuristic caller is due to its

ability to use minimum evidence to trigger a somatic mutation call

and the use of powerful post-processing checks that control the

Table 6. Controlled mixture experiment to assess the effect of reducing tumor purity on somatic mutation detection using the
HiSeq2000 platform.

Mixture (%tumor) Cov. 80% Mean cov. qSNP GATK* Strelka**

VS‘ FP‘ U‘ VS‘ FP‘ U‘ VS‘ FP‘ U‘

100 266 61.43 82 1 72 80 1 72 77 1 66

80 196 43.05 77 0 60 76 0 57 75 2 57

60 176 40.57 65 1 45 62 1 39 60 2 44

40 186 43.36 60 0 45 55 0 30 56 1 45

20 226 51.83 47 0 22 37 0 14 48 1 26

*.vcf files were passed through qSNP post-processing checks outlined in Table 3 to remove likely false positives such as positions with evidence in the matched normal.
**calls from ‘pass’ category.
‘VS verified somatic; FP false positive; U untested.
doi:10.1371/journal.pone.0074380.t006

Table 7. Benchmarking qSNP on sequencing data from the SOLiD v4 and HiSeq 2000 platforms using COLO-829 variants verified
by either WTSI (WTSI only, qSNP+WTSI) or QCMG (qSNP only).

Caller Details SOLiD v4 HiSeq 2000 SOLiD v4 and HiSeq 2000

VS‘ C‘ U‘ VS‘ C‘ U‘ VS‘ C‘ U‘

qSNP+WTSI 381 33 23,544 385 39 23,660 333 30 19,276

WTSI only ,126 coverage in normal 18 5 1,329 0 0 104 0 0 26

mutation also in normal 8 0 455 19 2 1,105 0 0 19

germline in another patient 0 0 7 1 0 6 0 0 5

did not pass post-filters 16 1 1,548 24 0 1,623 1 0 86

qSNP germline call 0 0 24 0 0 63 0 0 10

no call - ,3 reads evidence 0 0 5,735 22 2 5,945 0 0 3,531

no call - other 31 4 200 3 0 336 2 0 0

qSNP only* 25 0 6,486 26 0 13,098 22 0 2,674

*min 5 mutant reads and 4 novel starts not considering pair.
‘VS verified somatic; C cosmic; U untested.
doi:10.1371/journal.pone.0074380.t007
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false positive rate. Machine learning approaches such as the

classifier of Ding et al. [6] can be a powerful strategy for identifying

features discriminating true positive from false positive mutation

calls, provided availability of orthogonal verification data for

training of the classifier. Discriminant features can then be

incorporated in the set of heuristics for informing mutation calls.

In addition, automated pipelines for amplicon-based verification

can be set up using smaller scale sequencers such as the Ion

Torrent or MiSeq platform. We have found this a successful

strategy in pancreatic adenocarcinomas that vary widely in tumor

purity. On the other hand, Bayesian approaches may be more

readily transferrable across datasets and provide some form of

quantitative measure of the confidence for a given mutation call,

although as discussed above these will be most useful for high

coverage regions and tumors of high purity where allele

distributions can be accurately estimated and are not confounded

by Poisson sampling effects.

Finally, the controlled mixture experiment demonstrated that

no single variant calling strategy is optimal in all aspects. While

there was good overlap between callers and the majority of calls

were made by at least 2 callers, each caller also identified private

mutations not called by the others and which were verified as

somatic. Different callers thus have unique benefits, although

qSNP missed the fewest number of true somatic events. These

comparisons show that there is further scope for refinement of

either mutation calling strategy to improve accuracy and

sensitivity. Where high-density SNP array data are available, we

recommend use of a genomic tool for estimating tumor purity

prior to variant calling, such as the qPure software [19].

Determining the purity of a tumor will help identify the most

useful thresholds for variant calling. For example, samples of high

purity are expected to have a lower false negative rate and thus the

stringency of variant calling may be increased to lower the false

positive rate. Given that the qSNP analysis of a whole-exome

dataset of tumor/matched normal takes only 30 minutes, multiple

different parameters can be easily trialled to assess their effect on

the total number of calls.

We used the COLO-829 sample for benchmarking both

germline and somatic mutation calls. Germline calls from qSNP

were compared to those made on the Illumina 1M OmniQuad

chip, showing that the variant call concordance was over 99%

even for positions with only 8 reads coverage. As sequencing depth

increased, so did our accuracy to make the correct genotype call.

Detailed comparisons of the qSNP somatic mutation calls against

the original GAIIx calls of Pleasance et al. [4] showed considerable

overlap for re-sequencing data from both the SOLiD v4 and

HiSeq 2000 platforms, although there were also some important

differences. For example, our re-sequencing efforts identified 3,531

positions that had less than 3 reads evidence for a mutation in both

the SOLiD v4 and HiSeq 2000 data, suggesting that these original

calls are false positives and may reflect differences in read

sampling, mapping or bias of the original sequencing platform.

Similarly, calls private to the qSNP pipeline on either the SOLiD

v4 or HiSeq 2000 platform likely included a large number of false

positive calls as evidenced by the fact that only 2,674of these

positions unique to our datasets were called on both sequencing

platforms. Our calls on the HiSeq 2000 platform appear noisier

judging by the total number of private calls on this platform

(13,098) compared to calls on the SOLiD v4 platform (6,486). This

is likely due to the increased coverage in the HiSeq runs (756
average base coverage compared to 326 in the SOLiD v4 data),

which is expected to result in more variant calls when using the

same evidence thresholds. We are currently implementing and

refining post-processing checks for use with HiSeq whole-genome

datasets that are adjusted for coverage and exclude common error

sources, such as calls made in repeat regions, low complexity

sequence or near indels. These post-filters are becoming increas-

ingly important as analyses are moving from exon-capture to

whole-genome sequencing datasets. Nevertheless, the large overlap

in calls between the original and the two re-sequencing datasets

suggests that the overall sensitivity of detection of qSNP was good,

and that the remaining challenge lies in controlling platform- and

software-specific error sources.

Conclusions

Accurate and sensitive somatic mutation in low purity tumors

remains a formidable challenge, but one of great interest to the

study of many solid tumors. Here, we have discussed some of the

key challenges in this field and strategies we have devised to handle

these. Continuous refinement of existing strategies be they

heuristics or Bayesian, as well as comparative analyses and

benchmarking on a defined set of samples will be critical to further

improve performance of current somatic mutation callers.

Materials and Methods

Samples
Primary pancreatic adenocarcinoma samples discussed in this

study were accrued as part of the Australian Pancreatic Genome

Initiative (APGI) (http://www/pancreaticcancer.net.au) using an

institutional approved process for consent. COLO-829 sample

aliquots for the melanoma cell line and matched normal were

obtained from WTSI. Sample extraction and processing followed

those outlined in Biankin et al. [14].

Verification of somatic mutations
Verification of somatic mutation calls was performed by

targeted Ion Torrent sequencing using PCR primers to amplify

70–150 bp amplicons overlapping the somatic mutation. Tumor

and normal DNA was whole-genome amplified prior to PCR

using the Illustra GenomiPhi V2 DNA Amplification Kit (GE; 25-

6600-30). PCR reactions and sequencing was performed as

outlined in Biankin et al. (2012). Briefly, PCR reactions were set

up using 10 ng of amplified gDNA and 5 uM of primers mix. Ion

Spheres were generated using the Ion Xpress Template Kit (Life

Technologies; 4469001) with approximately 260 million amplicon

molecules per emulsion PCR, effectively yielding an emulsion

containing 1 amplicon molecule per Ion Sphere. Samples were

sequenced using the Ion Sequencing Kit (Life technologies;

4468997) and the Ion Chip 316 Kit (Life Technologies; 4469496).

Verification of somatic mutations was performed by sequence

pileup at each mutant position and a position was considered

verified if it has a minimum depth of 100 reads coverage in the

tumor and normal, a mutant allele frequency of at least 10% in

tumor and less than 0.5% in normal.

Controlled mixture experiment
SOLiD exon capture data for the mixture experiment was taken

from Biankin et al. [14].

Illumina exon capture was performed using the TargetSeq

Exome Enrichment System (Life Technologies; A14060 and

A138230) according to the manufacturer’s instructions, however

some modifications were made to the protocol to make the kit

compatible with Illumina libraries. SOLiD blocking and PCR

oligos were replaced with Illumina TruSeq blocking and PCR

oligos derived from the NimbleGen SeqCap EZ Library SR User’s

Guide v3.0 (Roche; 06588786001). The captured libraries were

Novel Somatic Mutation Calling Strategy

PLOS ONE | www.plosone.org 8 November 2013 | Volume 8 | Issue 11 | e74380



washed on the Life Techologies Library Builder using an

unreleased protocol (Life Technologies), and the final post-

capture PCR used the protocol in the NimbleGen SeqCap EZ

Library SR User’s Guide v3.0 (Roche; 06588786001). The final

captured libraries were run on the Agilent BioAnalyser 2100

using the DNA High Sensitivity Kit (Agilent; 5067-4626) to

calculate the molarity and assess the size distribution. Cluster

generation of the libraries was performed using the TruSeq PE

Cluster Kit v3-cBot-HS (Illumina; PE-401-3001), and sequenc-

ing carried out. The SOLiD and HiSeq.BAM files have been

submitted to the European Genome Archive, as part of project

EGAS00000000078.

COLO-829 whole-genome benchmarking study
Whole-genome sequencing of the COLO-829 tumor and

matched normal sample were performed using the SOLiD v4

and Illumina HiSeq 2000 sequencing platforms. For preparation

of SOLiD v4 long mate-pair libraries, 13 mg of gDNA was

sheared to a mean size of 2.5 kb using the Covaris S2 system.

Shearing was completed using the Blue miniTUBEs (Covaris p/

n: 520065) using the standard settings for 3 kb as described in

Covaris protocol 400069 (http://http//covarisinc.com/wp-

content/uploads/pn_400069.pdf). Following shearing, 1 uL of

sheared sample was run on the Agilent BioAnalyser2100 using

the DNA High Sensitivity Kit (Agilent p/n: 5067-4626) to assess

the shearing size and distribution. The entire sheared DNA

sample was then converted into a SOLiDH compatible Long

Mate Pair (LMP) library using Life Technologies 5500SOLiDH
Mate-Paired Library Kit (Invitrogen p/n: 4464418) following

the standard protocol (http://tools.invitrogen.com/content/sfs/

manuals/cms_093442.pdf) with 10 minutes nick translation and

a total of 12 cycles of amplification for the final library. After

PCR amplification the libraries were assessed for molarity and

size distribution using the Agilent BioAnalyser 2100 using the

DNA High Sensitivity Kit. Libraries that passed this QC were

prepared for SOLiDH sequencing.

For the preparation of Illumina DNA libraries, 1 mg of

gDNA was sheared to a mean size of 300 bp in a 130 mL

volume using a Covaris microTUBE and the Covaris S2 system

according to the standard protocol (Covaris; 010158 Rev C).

The sheared sample was prepared into a library using the

NEBNext DNA Library Prep Master Mix Set for Illumina

(NEB; E6040S) according to the manufacturer’s instructions

with modifications. Size selection was done using an agarose

gel (3% agarose) instead of the AMPure XP Beads size

selection. The final libraries were run on the Agilent

BioAnalyser 2100 using the DNA High Sensitivity Kit (Agilent;

5067-4626) to calculate the molarity and assess the size

distribution. Libraries were then prepared for Illumina cluster

generation and sequencing.

Of the qSNP unique calls, 61 protein-coding positions were

selected for verification on the Ion Torrent platform using the

same verification criteria as outlined above; 30 were confirmed as

true somatic events and 31 as false positives (Table S2). In

addition, 3 somatic mutations originally identified by WTSI could

not be confirmed as somatic events in our verification efforts

(Table S2).
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