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Abstract

We investigate the effects of adding periodic stimulation to a generic, conductance-based neuron model that includes ion
concentration dynamics of sodium and potassium. Under conditions of high extracellular potassium, the model exhibits
repeating, spontaneous, seizure-like bursting events associated with slow modulation of the ion concentrations local to the
neuron. We show that for a range of parameter values, depolarizing and hyperpolarizing periodic stimulation pulses
(including frequencies lower than 4 Hz) can stop the spontaneous bursting by interacting with the ion concentration
dynamics. Stimulation can also control the magnitude of evoked responses to modeled physiological inputs. We develop an
understanding of the nonlinear dynamics of this system by a timescale separation procedure that identifies effective
nullclines in the ion concentration parameter space. Our results suggest that the manipulation of ion concentration
dynamics via external or endogenous stimulation may play an important role in neuronal excitability, seizure dynamics, and
control.
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Introduction

Seizure control by periodic electrical stimulation is a promising

avenue for the treatment of refractory epilepsies [1,2]. Experi-

mental studies have investigated a variety of electrical stimulation

protocols, observing seizure suppression both in humans [3–6] and

in non-human animal or in vitro models of epilepsy [7,8]. However,

the mechanisms that underlie this type of control are not well

understood [9,10].

Here we propose a basic mechanism for seizure suppression that

is based on the perturbation of ion concentration dynamics by

electrical stimulation. The significance of ionic imbalance in

seizures is well established, and the various roles it plays in cellular

and network excitability are currently of significant interest [11].

Electric currents–whether they promote or suppress neuronal

activity–directly impact the ion concentrations within and

surrounding the affected cells, and therefore influence the

electrochemical drive of ions across the neuronal membrane.

The mathematical model we analyze is of a single neuron,

augmented to include dynamic intracellular sodium and (local)

extracellular potassium concentrations. Our model is simple and

generic, and excludes a number of the biological mechanisms

known to be at work. Although this simplicity somewhat weakens

the quantitative predictions of the model, we believe it leaves the

qualitative results intact, and indeed makes them more general. In

particular, our main qualitative results do not require finely-tuned

model parameters. Instead, they arise merely from gross features

of the ion dynamics.

We previously studied the role of ion concentration dynamics in

a similar model and identified bifurcations to stable limit cycles

which correspond to very slow (*10{100 s) modulation of the

ion concentrations. These modulations drive the neuron into, and

out of, the spiking state, and thus give rise to bursting/seizing

behavior. This behavior can be attained by a choice of parameters

similar to those seen in experiments (e.g., brain slice preparations

in elevated potassium [12,13]). Here we show how stimulation can

interact with this limit cycle and, under a wide range of

parameters, effectively stop it.

By framing stimulation in the context of the ionic dynamics of a

single neuron, our results may shed light upon the mechanism of

action of direct brain stimulation as a treatment for epilepsy. Our

model is also useful for investigating threshold behavior for seizure

generation that results from physiological inputs.

Methods

Our model is a modification of the Hodgkin-Huxley neuron to

include dynamic intra- and extracellular ion concentrations. This

model has been previously described and analyzed in [14] and in

[15]. It has also been extended (by others) to model and explain

phenomena observed in rat EEG traces under conditions of

oxygen and glucose deprivation [16].

The model consists of equations that describe spiking behavior,

C
dV

dt
~{INa{IK{ICl
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INa~gNam3
?h V{ENað ÞzgNaL V{ENað Þ

IK~gK n4 V{EKð ÞzgKL V{EKð Þ

ICl~gClL V{EClð Þ

plus two differential equations that model the time evolution of the

local extracellular potassium (½K �o) and the intracellular sodium

(½Na�i) concentrations:

t
d½K �o

dt
~cb(IK{2Ipump){~IIglia{~IIdiffusion

t
d½Na�i

dt
~{c(INaz3Ipump):

In these equations, C is the membrane capacitance, V is the

membrane potential, and the I s represent membrane ion current

densities. The ~II s are molar currents (millimolars per second). The

parameter c is a unit conversion factor, and b is the ratio of

intracellular to extracellular volume. These geometric parameters

are derived based on the assumption of a spherical cell [14,15],

and we neglect the electrogenic contribution of the pump to the

voltage equation. With the dimensionless parameter t set to 1000,

the units of time are set to milliseconds.

Two assumptions, introduced in [14], simplify the model and

permit analysis. We adopt these here as well:

½K �i~140:0 mMz 18:0 mM{½Na�i
� �

½Na�o~144:0 mM{b ½Na�i{18:0 mM
� �

:

Throughout the remainder of this report, we refer to ½K �o as

‘‘potassium’’ and ½Na�i as ‘‘sodium’’ where the context is clear. We

do not discuss ½K�i and ½Na�o explicitly.

The maximum membrane conductances for sodium, potassium,

and chloride are gNazgNaL, gKzgKL, and gClL, respectively,

where the subscript L indicates a leak conductance. The reader is

referred to [15] for the equations describing the time evolution of

the gating variables n and h; see also Table 1. ENa and EK are the

equilibrium potentials for sodium and potassium, respectively.

These depend on the ion concentrations outside and within the

neuron:

EK~26:64 ln
½K �o
½K�i

� �

ENa~26:64 ln
½Na�o
½Na�i

� �
:

Chloride dynamics are not modeled here, so we set ECl to the

constant value {81:94 mV.

Ipump and the molar currents ~IIglia and ~IIdiffusion depend on the ion

concentrations as follows:

Ipump~
r

c

1

1ze

25:0{½Na�i
3:0

� �
0
B@

1
CA 1

1ze 5:5{½K�oð Þ

 !

~IIdiffusion~e ½K�o{½K �bath

� �

~IIglia~
Gglia

1:0ze

18:0{½K �o
2:5

� � :

The pump strength is r and the strength of glial buffering is

Gglia. The rate of diffusion is controlled by the parameter e. ½K �bath

corresponds to the concentration of potassium in the reservoir

surrounding the model neuron (i.e., the bathing solution in the

case of a slice preparation, or the vasculature in vivo).

Together, ~IIglia and ~IIdiffusion allow for the flow of potassium both

to and from the extracellular space.

Adding Stimulation
To model electrical stimulation, a term is simply added to the

voltage equation, in accordance with the sign convention in [17]:

C
dV

dt
~{INa{IK{IClzIstim

where Istim is a series of square pulses:

Istim~
s 0vt mod

1000

f
vL

0 otherwise:

8<
:

Here, s is the strength in mA=cm2, f is the frequency of the

stimulation in hertz, and L is the length of each pulse in

milliseconds. Throughout the rest of this paper, stimulation

protocols will be identified by the three numbers s, f , and L.

Where not specified, stimulation was done using s~1:0 mA=cm2

and L~10 ms. These values were chosen so that each stimulation

pulse elicits an action potential in the elevated ½K �bath condition in

which we seek to apply control. They are not the only values of s

and L that elicit action potentials (and therefore other parameter

choices give rise to results qualitatively similar to those we report).

Numerical simulations of the model were run in Wolfram

Mathematica and C.

Separation of Timescales
Throughout the paper we make reference to potassium and

sodium ‘‘nullclines’’ that arise for a given choice of model

parameters. Formally, these are the curves defined by
d½K �o

dt
~0

and
d½Na�i

dt
~0, which we plot in the ion concentration phase
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space. At first glance it seems that these curves must also depend

on the values of the other dynamical variables, V , n, and h–and

indeed the differential equations for the ion concentrations do, via

the currents IK and INa.

Fortunately, the behavior of the model can be divided sharply

by timescale. There is fast (*1 ms) spiking behavior governed by

V , n, and h, and slow (*10{100 s) ½K �o and ½Na�i dynamics.

Whenever we mention the sodium or potassium ‘‘nullclines’’, we

refer to curves across which the time-average of
d½K �o

dt
or

d½Na�o
dt

changes sign. These curves reflect the slow ion concentration

dynamics much as true nullclines would, e.g., equilibria are at

intersections of these curves, and trajectories cross the curves

approximately perpendicular to one axis or the other.

The time-averaged nullclines are generated point by point and

then connected to form the curves shown in the figures. For fixed

½K �o, a bisection algorithm is used to approximate the zero of

S
d½K �o

dt
T ½K �o,½Na�i
� �

or S
d½Na�i

dt
T ½K �o,½Na�i
� �

, where the angle

brackets denote time-averaging. Note that this method assumes

there is only one point on each such ‘‘nullcline’’ for each ½K �o
value. It is possible to check that this holds by looking at the ion

concentration dynamics and noting that each concentration

variable changes direction only once as ½Na�i is increased–that

is, the ‘‘nullclines’’ appear to be graphs (in the mathematical sense)

of functions from ½K �o to ½Na�i.
The separation of timescales described above is similar to the

model reduction performed in [14]. In that work, the timescale

separation was accomplished by manually fitting functions to

approximate the time-averaged current surfaces

S
d½K�o

dt
T ½K �o,½Na�i
� �

and S
d½Na�i

dt
T ½K �o,½Na�i
� �

–a method which

has difficulty achieving arbitrary accuracy, unlike the method used

here (for more accuracy, simply run more iterations of the

bisection algorithm).

Table 1. Variables and parameters.

Symbol Unit/Default Value Description

V mV Membrane potential

INa m A/cm2 Sodium current

IK m A/cm2 Potassium current

IL m A/cm2 Leak current

Ipump m A/cm2 Pump current

~IIdiffusion mM/s Potassium diffusion to the nearby reservoir

~IIglia mM/s Glial uptake

m? 1 Activating sodium gate

h 1 Inactivating sodium gate

n 1 Activating potassium gate

ENa mV Reversal potential of sodium current

EK mV Reversal potential of potassium current

ECl mV Reversal potential of chloride current

½Na�o mM Extracellular sodium concentration

½Na�i mM Intracellular sodium concentration

½K �o mM Extracellular potassium concentration

½K �i mM Intracellular potassium concentration

C 21 mF/cm Membrane capacitance

gNa
2100 mS/m Conductance of persistent sodium current

gK
240 mS/m Conductance of potassium current

gKL
20.05 mS/m Conductance of potassium leak current

gNaL
20.0175 mS/m Conductance of sodium leak current

gClL
20.05 mS/m Conductance of chloride leak current

w {13 s Time constant of gating variables

ECl 281.94 mV Reversal potential of chloride current

b 7.0 Ratio of intracellular to extracellular volume of the cell

r 1.25 mM/s Pump strength

Gglia 66 mM/s Strength of glial uptake

{11.33 s Diffusion constant

Kbath 4.0 mM Potassium concentration of extracellular reservoir

c 4:45|10{2 Conversion factor

doi:10.1371/journal.pone.0073820.t001
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Thresholds of the Model
We will describe a number of phenomena relating to our model

neuron’s response to inputs and changes in exogenous parameters.

Many of our explanations for these phenomena will appeal to the

notion of thresholds of the model. Because this term can be

interpreted in several ways, we clarify here what we mean.

If we choose fixed values of the ion concentrations at various

points in the ½K�o{½Na�i ion concentration phase space, it

becomes clear that there is a large region where our model neuron

exhibits tonic spiking if placed there. The boundaries of this region

were described in [15]. Of relevance here is the boundary defined

by the codimension-one SNIC (saddle-node on an invariant circle)

bifurcation curve, which separates the spiking region from a region

in which the neuron is attracted to a resting state equilibrium.

Consider now our full dynamic model, in which the ion

concentrations are dynamic variables. For putatively normal

values of the ½K�bath parameter, the full model is attracted to the

resting equilibrium. As ½K�bath is increased beyond a critical value,

periodic bursting suddenly appears with the creation of a limit

cycle [15]. On this limit cycle, the ion concentration variables

oscillate in such a way as to repeatedly cross the SNIC bifurcation

boundary described above. That is, the neuron repeatedly

transitions from the resting region to the spiking region and back

again, and bursting behavior is seen. Thus, the SNIC bifurcation

curve can be thought of as a threshold for spiking. On the other

hand, the critical value of the parameter ½K �bath can also be

thought of as a threshold for the onset of periodic bursting.

Later in this paper we will consider transient bursts, in which

the full model, under conditions in which it is attracted to the

resting equilibrium, is perturbed so as to kick the neuron across the

SNIC boundary and into the spiking region. As the neuron then

relaxes back to a resting equilibrium, a transient burst of spikes is

observed. We will show below that the potassium nullcline

described above serves as another kind of threshold, one which

separates qualitatively different versions of these transient bursts.

Results

Previous work [14,15] has demonstrated that, in the absence of

stimulation, the model described above undergoes bifurcations to

various spontaneous bursting states as parameters such as ½K�bath

are altered from their default ‘‘normal’’ values (which we take to

be 4 mM for ½K �bath). For example, a transition from resting to

periodic bursting occurs at ½K �bath&7:615 mM.

The resulting behavior is shown in Figure 1 for ½K�bath~7:8
mM. For tv150 seconds, the model exhibits spontaneous,

periodic bursting. Two bursts are shown. In the voltage time

traces (top of each panel), the bursts appear as clusters of spikes,

and in the ion concentration time traces (the double Y plots at

bottom of each panel), they appear as long, slow modulations.

Note the large values of ½K �o during the bursts, and the slow decay

of ½Na�i during the quiet phases.

The main result of this work–the cessation of bursting in this

generic neuron model due to periodic stimulation–is also

illustrated in Figure 1. Spontaneous bursting in the model is

halted by the addition of periodic current injections starting at

t~150 seconds. In (A), the stimulation is inhibitory (s~{0:2

mA=cm2, L~10 ms, and f ~31:6 Hz), and spikes in voltage are

prevented from occurring. In (B), the stimulation is excitatory

(s~1:0 mA=cm2, L~10 ms, and f ~3:16 Hz), and the model

continues spiking, but only at the stimulation frequency–which can

be made much lower than the intrinsic firing rates seen in the

model. In both cases, the ion concentrations approach relatively

constant values under periodic stimulation.

Controlling Spontaneous Behavior
In this section we consider the interaction between periodic

stimulation and the spontaneous behavior of the model, particu-

larly the stable limit cycle that corresponds to bursting, which

appears at ½K �bath& 7.615 mM. We explore how stimulation can

interrupt the limit cycle, effectively terminating the bursting.

To illustrate these dynamics, it is useful to consider the

½K �o{½Na�i phase plane, on which the projection of a bursting

limit cycle appears as a ‘‘loop’’ [15]. See Figure 2. On this diagram

the black loop shows the trajectory of the ion concentrations with

no stimulation–this is another representation of the data in the

bottom panels of Figure 1 for tv150 seconds. The model follows

the loop in the counter-clockwise direction. During the quiet

phases between bursts, the trajectory of the ion concentrations

follows the left edge of the black loop as ½Na�i slowly decays.

During the spiking phase, the arc to the right is quickly traversed.

The apparent thickness in the right part of the arc is due to the

individual spikes that make up the burst. The model spikes

spontaneously in a large region of the ion concentration phase

space.

When periodic stimulation is applied, the ion concentrations

approach very small loops which are difficult to distinguish from

equilibria on the scale of the unperturbed limit cycle. We refer to

these as ‘‘pseudoequilibria’’. Examples are shown in Figure 2B

(excitatory stimulus) and 2C (inhibitory stimulus) (note the scale).

The locations of these small loop pseudoequilibria are indicated in

Figure 2A for various values of the stimulus frequency, with filled

Figure 1. Time traces showing the cessation of bursting
oscillations by periodic stimulation. In both panels, the top plots
show the transmembrane voltage, and the double Y plots below show
the evolution of ½Na�i (dashed line) and ½K�o (solid line). With
½K �bath~7:8 mM, the unperturbed model exhibits periodic bursting.
At t~150 seconds, (A) inhibitory (L~10 ms, f ~31:6 Hz, s~{0:2
mA=cm2) or (B) excitatory (L~10 ms, f ~3:16 Hz, s~1:0 mA=cm2)
periodic stimulation is turned on. In both cases the large oscillations in
the ion concentrations cease, but in the excitatory case, the neuron
spikes at the frequency of stimulation.
doi:10.1371/journal.pone.0073820.g001
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circles denoting points reached due to excitatory stimulation, and

open circles denoting the same in the inhibitory case. For

excitatory stimulation of increasing frequency, the pseudoequili-

bria occur in locations increasingly removed from the ½K �o
nullcline (orange), and higher in ½Na�i. For inhibitory stimulation,

faster stimulation sends the model neuron to lower ½Na�i values.

Thus, periodic stimulation achieves control by creating new,

much smaller limit cycles in the sodium and potassium concen-

trations that effectively freeze the large scale dynamics–stopping

the model neuron from bursting. These small limit cycles appear

because each stimulation pulse forces the ion concentrations to

values that then quickly relax back under the intrinsic dynamics in

between stimulation pulses. This effect is best understood in terms

of the flow field (gray) in the background of Figure 2A. Excitatory

stimulation results in the increase of both ½K �o and ½Na�i;
stabilization can therefore occur if the stimulation kicks the system

to a region where the intrinsic sodium and potassium flow is

negative. Releasing the system from control here leads to a return

to the limit cycle (taking longer for higher frequencies) by way of

the potassium nullcline. In contrast to excitatory stimulation,

inhibition decreases ½K �o and ½Na�i, and therefore inhibitory

stimulation can only be balanced in a region where the intrinsic

flows are positive (e.g. sodium into the cell, potassium out).

Abruptly releasing the system from control in this region of phase

space leads to a seizure-like response even larger than the intrinsic

bursts.

In our model, seizure control via electrical stimulation is robust

to variations in the stimulation rate. This is because during the

recovery of the ion concentrations after a burst of spikes, the rate

of descent in ½Na�i slows smoothly as the neuron approaches the

cusp of the potassium nullcline. If this slowing did not occur,

periodic excitatory stimulation would need to be finely tuned to

freeze the dynamics.

Robustness of control. For a given choice of ½K �bath, what

range of stimulation frequencies can stop bursting? Conversely, for

a given choice of stimulation frequency, how high can ½K �bath be

pushed before the model bursts in spite of the stimulation?

These natural questions can be answered by mapping out the

major behavioral transitions in the frequency-½K �bath parameter

space. The results of this are shown in Figure 3. The bursting

threshold value for ½K�bath is plotted versus the frequency of (A)

excitatory or (B) inhibitory stimulation. In both charts, the solid

black horizontal line at ½K �bath~7:615 mM is the bursting

threshold with no stimulation. Above this is a region in which

our control protocol is effective. The main finding is that the upper

boundary of this control region shifts to higher values of ½K �bath for

higher stimulation frequencies, thus expanding the parameter

range in which bursting can be stopped. This implies that control

using higher frequencies is more robust to changes in the

potassium bath concentration.

Excitatory stimulation that fails to stop bursts can nevertheless

reduce their amplitude. When the model neuron is subjected to

excitatory stimulation, the recovery of ½Na�i after a burst occurs at

elevated ½K �o. As a result, the next burst is elicited prematurely–

before ½Na�i has recovered to normal pre-burst levels–and is

therefore stunted in size. This is because, as can be seen in

Figure 2, the dynamics are such that the ionic flows reverse

direction at higher ½Na�i when ½K�o is elevated (e.g. the nullclines

slope upwards in the relevant region of the phase plane).

When ½K �bath is very close to the 7.615 mM threshold but just

below it, periodic stimulation sometimes causes transient bursts to

occur before the model settles down to a controlled pseudoequili-

brium. We examine the behavior of such transient bursts in the

next section.

Transient behavior. As long as ½K�bath remains below

5.955 mM (approximately), and the system starts at its equilibrium

point, stimulation pulses with L~10 ms and s~1:0 mA=cm2 do

Figure 2. Model dynamics visualized in the ½K �o{½Na�i phase plane. In these panels, the unperturbed behavior of the model is compared to
the controlled behavior at ½K �bath~7:8 mM. (A) The model’s unperturbed behavior is the large black limit cycle. ½K �o and ½Na�i nullclines are drawn in
orange and (dashed) green, respectively. With excitatory periodic stimulation (L~10 ms, s~1:0 mA=cm2), the neuron moves to the
‘‘pseudoequilibria’’ denoted by solid circles. The pseudoequilibria move higher in ½Na�i for increasing frequency, ranging from 3.16 Hz to 31.6 Hz

in even logarithmic increments. Open circles denote pseudoequilibria for inhibitory stimulation (L~10 ms, s~{1:0 mA=cm2), moving down in ½Na�i
as frequency increases from 15.8 Hz to 25.1 Hz. The pseudoequilibria denoted by circles in panel (A) are in fact very small limit cycles, shown in panels
(B) and (C) in the excitatory and inhibitory case, respectively. Note the scales in (B) and (C) compared to (A).
doi:10.1371/journal.pone.0073820.g002
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not elicit an action potential, and therefore have only a tiny effect

on the ion concentrations. That is, depolarizing stimulation of this

amplitude can be applied to the model with ½K �bath~ 5.955 mM

with virtually no consequence.

As ½K�bath rises, however, this stimulation begins to have an

effect, and the system is driven to an increasingly displaced

pseudoequilibrium. In Figure 4 we show transients elicited by

excitatory periodic stimulation at subthreshold values of ½K �bath,

either 6:4 mM or 6:8 mM in panels (A) and (B), respectively. The

frequencies used in both panels are consistent with the stimulation

rates required to stop bursts as reported above and range from

3.16 Hz to 31.6 Hz. As expected following the results in Figure 2

(½K �bath~7:8 mM, above the bursting threshold), faster stimulation

eventually leads to pseudoequilibria higher in ½Na�i. The

pseudoequilibria attained with the slowest stimulation (3.16 Hz)

are reached after waiting (at most) just slightly longer than one

minute. Note also that the locations of the pseudoequilibria do not

vary drastically with ½K �bath.

What is revealed here is that the faster stimulation protocols (the

trajectories shown further on the right in each panel) send the

model neuron on large excursions towards the right in the

½K �o{½Na�i phase space before settling down. This effect is more

pronounced in panel (B), where ½K�bath is closer to the onset-of-

periodic-bursting threshold. Note that two of the stimulation

frequencies that cause large ‘‘seizure-like’’ transients at

½K �bath = 6.8 mM do not do so at ½K �bath = 6.4 mM. Note also

that the displayed nullclines reflect only intrinsic dynamics–

stimulation is applied ‘‘on top’’ of these dynamics and can force

the trajectories to cross nullclines at the wrong angle (i.e., not

perpendicular to either axis), and to settle at points where

nullclines do not intersect.

These observations suggest that by temporarily lowering ½K�bath

at the beginning of the stimulation, one can avoid the seizure-like

excursion through the high ½K �o regions of the phase plane. The

same effect can be achieved by gradually ramping up the

frequency. For instance, at fixed ½K�bath~6:8 mM, stimulating

at 8 Hz for one minute and then increasing the frequency to

12.5 Hz does not elicit a large transient (not shown), whereas

stimulating immediately at 12.5 Hz (with the model starting at the

equilibrium point) does.

In the low ½K �bath case, panel (A), the fastest stimulation

trajectory shown sends the model to a large (roughly rectangular)

limit cycle–a stimulus-induced loop. The cycle occurs because the

model reaches a region in the phase space where the stimulation

pulse cannot initiate a spike in voltage (and therefore has a tiny

effect on the ion concentrations). This causes the trajectory to

descend along the potassium nullcline (under intrinsic dynamics)

until the concentrations are such that the stimulation can elicit

spikes again, at which point the trajectory is pushed in the

direction of increasing ½K �o and the cycle repeats. Note that the

firing rate along the spiking portion of this limit cycle is the same as

the stimulation frequency.

The numerical experiments we conducted to generate Figure 4

were devoted to understanding how our control mechanism might

interact with transient changes in ½K �bath that sometimes occur

pathophysiologically in conditions such as epilepsy [18]. We found

that as long as ½K �bath and/or the stimulation frequency are

changed slowly, on the order of seconds, large transients are not

evoked by the control stimulation.

Controlling Evoked Behavior
In this section, we consider our model’s response to inputs that

might be supplied endogenously at synapses. In particular, we

focus on how these inputs can elicit different types of transients,

including seizure-like discharges, and how periodic stimulation at

the slow controlling frequencies we report above can have a

mitigating effect.

Large potassium efflux. Figure 5 illustrates how the

response of the model to a large, instantaneous potassium ion

efflux depends on the location of the nullclines. Both panels show

the phase plane for subthreshold values of ½K�bath (i.e., no

spontaneous bursting). The model is first allowed to settle down

under the intrinsic dynamics, which send the ion concentrations to

the stable equilibrium at the intersection of the potassium (orange)

and sodium (dashed green) nullclines (marked by a red dot). Then

we examine the effects of an instantaneous increase in the

extracellular potassium concentration, i.e., abruptly shifting

rightward along the horizontal dotted line.

In panel (A), ½K�bath~6:0 mM and no large response is seen. In

particular, the positioning of the nullclines is such that it is not

possible to cross the potassium nullcline by moving rightward from

the equilibrium point. Following a small shift in ½K �o, the neuron

simply relaxes back to the resting equilibrium, as shown in panel

(C), which shows the corresponding voltage time trace. A more

significant response is elicited by crossing the SNIC curve (the

boundary for the onset of spiking, shown here as a short-dashed,

approximately vertical line), which is roughly coincident with a

portion of the sodium nullcline. Still, only a few spikes occur; see

panel (D).

This stands in stark contrast to the behavior shown in panel (B),

where ½K �bath~6:4 mM and a sufficiently large abrupt increase in

½K �o from equilibrium causes the model to cross the potassium

nullcline (orange). This is because the increased value of ½K �bath

has raised the ‘‘knee’’ of the potassium nullcline, both in absolute

terms (e.g. with respect to ½Na�i) and relative to the location of the

equilibrium (where the nullclines cross). The response here is more

severe, consisting of a prolonged burst, as illustrated in panel (E).

The purpose of exploring the response to a discontinuous shift

in ½K�o is to establish that the potassium nullcline is effectively a

threshold for the occurrence of prolonged seizure-like bursts

arising from transient perturbations of the model. The variety of

Figure 3. Control with higher simulation frequency is more
robust. With no stimulation, spontaneous periodic bursting appears at
½K �bath~7:615 mM. This behavior can be controlled with periodic
stimulation. The upper boundary of this controllable region shifts
higher in ½K�bath for higher stimulus frequency with both (A) excitatory

stimulation (L~10 ms, s~1:0 mA=cm2), and (B) inhibitory stimulation
(L~10 ms, s~{1:0 mA=cm2).
doi:10.1371/journal.pone.0073820.g003
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ways the ion concentrations can recover from such shocks is the

primary mechanism that controls the length and nature of the

transient response. If large inputs move the ion concentrations to a

point in the phase space where the sodium and potassium flows are

negative (out of and into the cell, respectively), the neuron will

recover relatively quickly and will not spike spontaneously. On the

other hand, if an input sends the concentrations across one or both

nullclines into regions where the ionic flows reverse, the response is

significantly more pronounced.

Fast periodic stimulation. We now examine the effects of

more realistic excitatory inputs. In particular, we use a transient

tetanic stimulation consisting of a 50 Hz spike train of various

durations, with s = 0.75 mA=cm2 and L = 10 ms. This is meant to

simulate synaptic barrages which can cause significant increases in

the local extracellular potassium concentration. In contrast to the

discontinuous shifts in ½K �o used in the previous section, this

tetanic stimulation results in a curved displacement towards higher

values of both ½K�o and ½Na�i in the ion concentration space,

depending on duration.

We plot in Figure 6A the number of spikes elicited after the

tetanus versus the tetanus duration, for different values of ½K �bath.

As the tetanus duration is increased, there is essentially no

response until a critical duration is reached. This is because the

extracellular potassium must accumulate sufficiently so as to cross

the spiking threshold (SNIC curve) as in Figure 5. Note that this

critical duration is significantly longer for ½K �bath~6:0 mM due to

the fact that the resting equilibrium is farther from the spiking

boundary.

The most obvious result is that the model neuron is generally

more excitable for larger values of ½K �bath–for the same tetanus

duration, higher ½K�bath means more elicited spikes. As before, the

post-stimulus response depends strongly on the placement of the

potassium nullcline. For ½K�bath~6:4, the potassium nullcline is

located such that the tetanus can drive the neuron across it, thus

leading to a prolonged transient response (see Figure 5). For

½K �bath~6:0, this is not the case, and the increase in the number of

elicited spikes is more gradual.

For ½K�bath~6:4 and 6:2 mM, the number of elicited spikes first

increases, and then decreases for longer tetanus durations. This is

due to the accumulation of intracellular sodium during the tetanic

stimulation. As described above, the tetanus quickly drives the

neuron along a curved path towards higher ½K �0 and ½Na�i. For

sufficiently long tetanus durations, the neuron is driven to positions

above (not within) the knee, where, once the tetanus ends, the

intrinsic dynamics favors a very rapid decrease in ½K �o and hence a

fast termination of the burst. Thus, the number of elicited spikes

decreases.

Next we show that a slow background periodic stimulation can

modulate the response to the fast tetanic input described above.

We repeated the numerical experiment in Figure 6A for

½K �bath = 6.4 mM in the presence of an ongoing background

stimulation at 1, 2, and 4 Hz (L = 10 ms, s = 1.0 mA=cm2). The

background stimulation was in effect before, during, and after the

tetanus was applied. Results are shown in Figure 6B. A decrease in

the number of elicited spikes is seen as the background stimulation

frequency increases. This can be understood by recalling the

position of the controlled pseudoequilibria shown in Figures 2A

and 4A. With increasing background stimulation frequency, the

pseudoequilibria occur at higher sodium concentrations, are

increasingly farther from the potassium nullcline, and eventually

move higher than its knee. The subsequent response to the tetanic

stimulation is therefore diminished.

Response skipping. To conclude, we return to very low-

frequency stimulation (v1 Hz), and examine the phenomenon of

response skipping. Figure 7 shows the response of the model to

successive four-minute epochs of stimulation in which the

frequency increases in steps for each stimulation epoch. We set

Kbath~7:5 mM (i.e., no spontaneous bursting). Panel (A) shows

½K �o versus time. In the first epoch, labeled B, the stimulation

consists of one stimulation pulse every 31:65 seconds (approx-

imately), and a large response is observed on every other

stimulation. Panel (B) shows this behavior in the ion concentration

Figure 4. Transients from equilibrium to new steady states due
to periodic stimulation at subthreshold ½K�bath. In both panels,
trajectories shift from left to right as the frequency of excitatory
stimulation (L~10 ms, s~1:0 mA=cm2) increases from 3.16 Hz to

31.6 Hz, in even logarithmic increments of 101=5 . ½K�o and ½Na�i
nullclines are drawn in orange and (dashed) green, respectively. ½K�bath

is either (A) 6:4 mM or (B) 6:8 mM.
doi:10.1371/journal.pone.0073820.g004
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space. The large loop is the large transient response, and the short

horizontal line segment emanating from the left edge of the loop is

the attenuated response. Here, a large response did not occur

because the ion concentrations had not yet recovered sufficiently

from the previous burst. In particular, internal sodium remained

high (and the external potassium was low) at the time the

stimulation arrived, and it did not shift the system across the

spiking and bursting thresholds described above. By the time the

next stimulation arrives, however, the system has reached the

lowest corner of the loop, and the stimulation does indeed evoke a

large response.

In epochs C–F, stimulations arrive more frequently, and more

small responses accumulate along the left edge of the ion

concentration loops. This continues until, in panel (E), a

stimulation deforms the upper part of the loop. In panel (F), the

stimulation occurs sufficiently frequently so as to drive the system

to the pseudoequilibrium in the lower-left corner, and no further

large transient responses occur.

The simulations summarized in Figure 7 reveal that faster

stimulation does not elicit more frequent burst-like responses.

Instead, one sees ‘‘skipped responses’’. Similar behavior has been

observed in experimental seizure models [19].

Discussion

In this paper, we have investigated the effects of periodic

stimulation on a computational model of a single, Hodgkin-

Huxley type neuron, extended to include the local intra- and

extracellular ion concentration dynamics. Without stimulation,

this model exhibits periodic bursting, which comes about as a

Figure 5. Response of the model to an instantaneous increase in ½K�o–the K nullcline as a bursting threshold. The position of the
nullclines changes with ½K�bath, and so too the response of the model to an instantaneous increase in ½K�o . In the phase planes (A) and (B), the
equilibrium point is denoted by a red dot. From this equilibrium, we perturb the model by sliding out along the horizontal dashed line. The black
curves show the trajectories of the model recovering from stimuli of different sizes. Potassium (orange) and sodium (dashed green) nullclines are
drawn in each case. Also shown is the SNIC curve that marks the onset of spontaneous spiking (short-dashed line running approximately vertically).
(C) shows a voltage time trace of the small response from (A), (D) shows the larger of the transients shown in (A), and (E) shows the largest transient
in (B). The perturbation from equilibrium occurs at the arrows (t~500 ms).
doi:10.1371/journal.pone.0073820.g005
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result of the model’s intrinsic nonlinear dynamics. For appropri-

ately-chosen parameter values, the ion concentrations oscillate

periodically, driving the transmembrane voltage into and out of

resting and spiking regimes. We have proposed this as a possible

mechanism that may underlie seizures and/or seizure-like events

in brain tissue.

We have shown that periodic stimulation interacts with and

perturbs the ion concentration dynamics in such a way that

bursting can be effectively controlled. The stimulation drives the

system to steady states, which we call pseudoequilibria, in which

the ion concentrations remain essentially constant, while the

voltage either exhibits tonic spiking at the rate of stimulation

(under excitatory stimulation), or quiescence (under inhibitory

stimulation). We understand this behavior based on nonlinear

dynamical analysis; the pseudoequilibria are actually very small

limit cycles that occur in regions of the state space where the

model’s intrinsic dynamics and the effects of stimulation balance

each other out. We find that the stimulated neuron settles to this

balanced state naturally for a wide range of parameters. That is,

control is achieved without having to precisely tune the

stimulation.

Further nonlinear dynamical analysis led to the notion of time-

averaged ‘‘effective nullclines’’. These are not true nullclines,

which for our high-dimensional system would be (correspondingly)

high-dimensional objects. However, because our system exhibits

sufficient timescale separation, it is possible to identify curves in the

space of ion concentrations where the average rate of change of ½K �o
or ½Na�i is zero. These effective nullclines are useful for describing

the behavior of the slow ion concentration dynamics. In particular,

we showed that the potassium nullcline acts as a threshold that

clarifies the occurrence of a neuron’s short, attenuated response to

an abrupt perturbation, or the occurrence of an explosive, seizure-

like event, as illustrated in Figure 5.

Our model has several shortcomings. We do not model calcium,

chloride, bicarbonate, pH, osmolarity, immobile anions, neuronal

morphology, aerobic metabolism, or any but the most rudimen-

tary ion channels and cotransporters. Furthermore, we have

neglected the electrogenic contribution of the Na/K pump in the

equation for the transmembrane voltage (although the inclusion of

this term leaves the qualitative aspects of the model’s dynamical

behavior and structure intact). Despite these abstractions, our

model appears to successfully capture a portion of the gross

dynamical behavior of real neuronal systems, suggests a minimal

model that exhibits these interesting behaviors, and may have

qualitative predictive and/or explanatory power.

Since the present work deals exclusively with a single neuron

model, we neglect synaptic mechanisms. Extending our model to

networks would require modeling transmitters including AMPA

and GABA (and, therefore, the associated chloride dynamics). It

would also vastly increase the parameter space to explore–for

instance, there are many possible choices of network topology.

Empirical Evidence
Despite the many obvious limitations of our model, there are a

number of phenomena seen in experimental studies that might be

at least partially understood in terms of the mechanisms that we

have investigated here.

We showed that in our model, periodic stimulation stops

bursting/seizing (Figure 1). This effect has been seen in vitro (slice

preparation) and in cultured neurons, e.g. [19–22]. In these

experimental studies, stimulation was found to disrupt pharmaco-

logically- and genetically-induced seizures over particular frequen-

cy ranges. In the in vitro studies, seizures were successfully

suppressed. In the cell culture work, even though stimulation did

not completely halt seizure-like discharges at the frequencies

investigated, it did significantly reduce their duration and

frequency.

It may be that periodic stimulation is naturally employed in the

brain as a control mechanism. There is evidence that interictal

bursting in the CA3 region of the hippocampus exerts control on

the CA1 region in this way. Work by Avoli et al. using in vitro

models of epilepsy found that the frequency of these interictal

bursts is anticorrelated with the occurrence of seizures [23].

Removing these intrinsic inputs by severing the Schaffer collaterals

in mouse hippocampal-entorhinal slice preparations results in

increased seizure activity in the entorhinal cortex in 4-aminopyr-

idine and low magnesium models of epilepsy. Applying low

frequency electrical stimulation (0.25–1.5 Hz) to the CA1 region,

so as to mimic lost CA3 output (which previously consisted of

interictal activity), restores control in the entorhinal cortex [24,25].

These results closely parallel the mechanism we discuss, particu-

larly insofar as it is possible to substitute synaptic signalling (along

the Schaffer collaterals) with artificial stimulation, thus underlining

the generality of the control mechanisms at work.

Tetanic stimulation is commonly used to generate seizure

discharges experimentally. As in our model, the properties of the

discharges elicited in this way depend on the stimulation

parameters as well as the pre-stimulation state. For example, most

in vitro models rely on some form of pharmacological manipulation

or kindling in order to render the target cells susceptible to seizure

generation by stimulation.

It has been observed that significant time, on the order of

minutes, must elapse between stimulations in order for each to

produce a maximal response. One study employing tetanic

stimulation to evoke seizures in slice preparations found that

Figure 6. Number of spikes elicited by tetanic stimulation
under various conditions. The number of spikes that occur
spontaneously after a 50 Hz input spike train (L~10 ms, s~0:75

mA=cm2) depends on stimulus duration. In panel (A), this dependence is
shown for ½K�bath = 6.4 mM, 6.2 mM, and 6.0 mM. If the spike train
occurs concurrently with a slow background periodic stimulation
(L~10 ms, s~1:0 mA=cm2), the response is diminished according to
the frequency of the slow stimulation–shown in (B) for 1 Hz, 2 Hz, and
4 Hz. In (B), ½K�bath is fixed at 6.4 mM throughout, and the response
with no background stimulation is shown in black for comparison.
doi:10.1371/journal.pone.0073820.g006
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seizure-inducing stimulations were optimally effective when they

were applied at least ten minutes apart [26]. Stimulation at higher

frequencies produced seizures of diminished strength. Work in cell

culture has demonstrated reduction in seizure output with

increasing stimulation frequency as well as with spontaneous

inter-burst frequency [22]. As we have shown, similar behavior

seen in our model can be explained by the model neuron’s location

in the ion concentration space, in particular its sodium concen-

tration, as it recovers from a sustained discharge. This result is

consistent with [27], in which the role of sodium accumulation in

burst termination and postictal depression was studied computa-

tionally.

In addition to a reduction in response strength, our model also

predicts that the system’s location relative to the potassium

nullcline determines whether a given input will produce a small or

a sustained response. In our model, the trajectory of the system

after recovery from a burst approaches this nullcline, suggesting

that some stimulation protocols should give rise to alternating

large and small responses. This phenomenon, seen in our model

(see Figure 7), has been observed both in cell culture and in vitro

[19,22].

Gluckman et al. observed seizures in slice preparation imme-

diately after a controlling, hyperpolarizing electric field was turned

off [28]. They used a closed loop controller, i.e. simultaneous

extracellular recordings were fed into an algorithm which

adaptively controlled the applied electric field. A similar phenom-

enon is seen in our model–inhibitory stimulation sends the model

to a low sodium region of the phase space where releasing control

suddenly elicits a large burst.

Recent clinical studies have investigated the effectiveness of

electrical stimulation for seizure control. This motivates the desire

to better understand the mechanisms underlying this effect. For a

number of recent reviews on therapeutic stimulation for epilepsy,

see [29–32], and for an extensive list of clinical studies see [33].

Notable among recent studies is the large, double blind SANTE

trial, which studied electrical stimulation of the anterior nuclei of

the thalamus. Despite many reported side effects, the study

observed seizure frequency reduction described as significant [3].

Some studies have seen effects at frequencies as low as or even

lower than those our model predicts [4,5,34].

As we have mentioned before, our results do not require that

control stimulation be supplied artificially. The control mechanism

we describe is based on ionic dynamics–any kind of stimulation

that perturbs the ion concentrations will have similar effects. The

mechanism we describe, therefore, may also have bearing upon

‘‘remote’’ methods of controlling seizures, such as vagus nerve

stimulation [35], which are currently thought to work by triggering

inhibitory or excitatory neuronal pathways.

Predictions
Several of our results have not been observed in experiment, as

far as we know. These constitute testable predictions of our model.

In our model, we found that control achieved using periodic

stimulation becomes more robust to increases in external

potassium concentration with increasing frequency (Figure 3). In

our model, this can be understood in terms of the locations of the

SNIC curve and the potassium nullcline. It is, of course, important

to remember that although high-frequency stimulation is more

robust in this sense, it is potentially more invasive, for both

energetic and information-related reasons. Higher spike rates lead

to higher steady-state internal sodium concentrations that in turn

cause pump rates and ATP consumption to increase. And each

stimulation-induced spike will interfere with normal cellular

signalling–an effect that only grows more disruptive with

frequency. Physiologically, high frequency stimulation can lead

to branch point conduction failure and synaptic plasticity effects

[36–38].

We also showed that, in our model, qualitatively different

transients occur in response to abrupt changes in ½K �o of different

magnitudes (Figure 5). As above, this effect is explained in our

model by reference to the locations of the various thresholds in the

ion concentration phase space. Similar behavior in response to

more realistic inputs can be understood in the same way (Figure 6).

To the best of our knowledge, no experimental studies have

directly investigated the precise relationships between seizure

Figure 7. Stimulating at varying rates to trigger bursts: response skipping. At subthreshold ½K�bath (~7:5 mM) it is possible to elicit bursts
using large current injections. In this figure, all stimuli are L~50 ms, s~1:0 mA=cm2 . The model neuron cannot burst more quickly than a certain
intrinsic frequency, even if the stimulation is applied more frequently. Panel (A) shows the potassium ion concentration over 20 minutes as the

stimulation frequency is increased. Every 4 minutes the frequency is increased by a factor of 101=4 , starting at 0.0316 Hz when t~0. The evolution of
the system at each individual frequency is shown in phase planes (B–F), which correspond to the identically labeled epochs of the voltage time trace
above.
doi:10.1371/journal.pone.0073820.g007
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discharges, stimulation parameters, and the composition of the

bath solution.

Finally, we found that seizure-like transients can occur when

periodic stimulation is turned on, but that these can be mitigated

by adjusting ½K�bath or the stimulation frequency slowly (Figure 4).

When these parameters are increased slowly, on the order of

seconds, the system can settle into a pseudoequilibrium without a

large (potentially harmful) excursion in the phase space.

The careful experimental exploration of the stimulation

parameter space to find optimal strategies for seizure control is a

crucial prerequisite to deploying stimulation-based therapies.

Unfortunately, this parameter space is very large [39], particularly

if we consider that the optimality of a stimulation protocol may

depend on the type of epilepsy being tackled or neuroanatomical

structure being targeted. Nevertheless, mathematical models can

be useful in guiding the search, as they can generate hypotheses to

be refined in experiment [1].

Conclusion
The trafficking of ions across the neuronal membrane–carefully

orchestrated by voltage-gated ion channels and other transport-

ers–gives rise to the electrophysiological characteristics of the

neuron on which its function crucially depends. Unsurprisingly

therefore, the failure of systems which control a neuron’s ionic

environment have been strongly implicated in seizures and

epilepsies.

We computationally analyzed a simple mathematical neuron

model which exhibits seizure-like oscillations driven by abnormal

ion concentration dynamics. Periodically perturbing the model, as

if to mimic electrical stimulation of the neuron, can stop these

oscillations. It is also possible to use stimulation to make the model

neuron less excitable.

Electrical stimulation is well established as a treatment for

movement disorders, and now, backed by many studies, is gaining

momentum as a potential therapy for individuals with otherwise

intractable epilepsies. However, the large space of possible

stimulation parameters and lack of consensus regarding the

mechanism of action make rational therapy design challenging.

We believe our results, which place therapeutic stimulation for

epilepsy in the context of ion concentrations, add an important

layer to the story.
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