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Abstract

The current state-of-the-art in automatic QRS detection methods show high robustness and almost negligible error rates. In
return, the methods are usually based on machine-learning approaches that require sufficient computational resources.
However, simple-fast methods can also achieve high detection rates. There is a need to develop numerically efficient
algorithms to accommodate the new trend towards battery-driven ECG devices and to analyze long-term recorded signals
in a time-efficient manner. A typical QRS detection method has been reduced to a basic approach consisting of two moving
averages that are calibrated by a knowledge base using only two parameters. In contrast to high-accuracy methods, the
proposed method can be easily implemented in a digital filter design.
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Introduction

According to the World Health Organization, cardiovascular

diseases are the number one cause of death worldwide [1]. An

estimated 17.3 million people died from cardiovascular diseases in

2008, representing 30% of all global deaths [1]. Thus, recently,

medical researchers have placed significant importance on cardiac

health research. This has produced a strong focus on preventative,

medicinal, and technological advances. One such research

pathway is leading researchers toward improving the conventional

cardiovascular-diagnosis technologies used in hospitals, clinics and

the home.

The most common clinical cardiac test is electrocardiogram

(ECG) analysis. It represents a useful screening tool for various

cardiac abnormalities because it is simple, risk-free, and

inexpensive [2]. Therefore, the analysis of ECG signals has

been extensively investigated over the past two decades. Many

attempts have been made to find a satisfying universal solution

for QRS complex detection, including the Pan and Tompkins

algorithm [3], which has been used extensively in the literature

for beat detection. The current advances in battery-driven

devices such as smartphones and tablet computers have made

these technologies invariably part of daily life, even in

developing countries [4]. The advances have also increased

the possibility of implementing more sophisticated algorithms

such as the Pan and Tompkins method [3] in smartphones.

However, there is a significant trade-off as there will always be a

power-consumption limitation in processing ECG signals on

battery-operated devices.

Analyzing real-time ECG signals collected by a battery-driven

device needs to be fast and feasible in real-time, despite the

existing limitations in terms of memory and processor capability.

The same holds for the ability to analyze large ECG recordings

collected over one or more days. Therefore, the main goal of this

study is to produce a fast robust QRS detector that suits battery-

driven applications and continuous 24/7 ECG monitoring, with

theoretical justification for its parameters choice, tested over 11

large-standard datasets with different sampling frequencies,

recording lengths, and noise. This study seeks to compare the

various QRS detection methods against the developed QRS

detection on standard databases. Furthermore, the theoretical

basis of the well-known Pan and Tompkins algorithm [3] will be

analyzed and evaluated against the proposed algorithm. The

failures will be discussed, and the processing time of the proposed

algorithm will be elaborated on.

Materials and Methods

Data Used
Several established ECG databases are available for evaluating

QRS detection algorithms for ECG signals. As a sufficiently broad

test scenario, 11 representative datasets published on PhysioNet

[18] served for analyzing and comparing the proposed algorithm.

These sets represent different subject groups and recording

conditions, such as sampling rates (between 128 Hz and 1 kHz)

and interferences. Lead I of every record is used without any

exclusion. The corresponding reference R markers provided in the

datasets acted as the benchmark.

Training Set
The MIT-BIH Arrhythmia Database [5] is widely used to

evaluate QRS detection algorithms. However, in this study, the

database used for training as it includes different shapes of

arrhythmic QRS complexes and noise. Most prominent were

power-line interferences (60 Hz and its harmonics, see Fig. 1 (a)),

which are known to be a major disturbance [6]. In addition, the
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design considered high-frequency noise, mostly originating from

muscle activation (see Fig. 1 (b)), as well as low-frequency baseline

fluctuations (see Fig. 1 (c, d, e)). Among the representative

physiological events present in the datasets, special attention was

paid to missing P waves (e.g., in junctional escape beats [7]; Fig. 1

(e)) and inverted (e.g., premature ventricular contractions, Fig. 1

(f)), notched (left bundle branch block, Fig. 1 (g)), as well as

biphasic QRS complexes (right bundle branch block, Fig. 1 (h)).

Finally, pacing-related phenomena were taken into account (see

Fig. 1 (i, j)).

Testing Set
Ten datasets were used for testing: the meta-dataset QT

Database with 111,301 beats [8]; the T-Wave Alternans

database with 19,003 beats, selected for its wide range of

pathological conditions [9]; the Intracardiac Atrial Fibrillation

database with 6,705 beats [10]; the ST Change database with

76,181 beats featuring stress ECGs [11]; the Supraventricular

Arrhythmia database with 184,744 beats [12]; the Atrial

Fibrillation Termination database with 7,618 beats [13]; the

Fantasia database with 278,996 beats from relaxed healthy

subjects [14]; the Noise Stress Test database with 26,370 beats

recorded under noise conditions typical for clinical environ-

ments [15]; the St. Petersburg Institute of Cardiological

Technics Arrhythmia database with 175,918 beats [7]; and

the Normal Sinus Rhythm database with 183,092 beats [7]. In

the Fantasia database, one record (‘f2y02’) was corrupted and

was accordingly excluded. These benchmark datasets were

selected for testing because of their representative character

regarding pathological and typical ECG artifacts. Consequently,

these were taken into account in testing the robustness of the

proposed method.

Methodology

In this section, a new, knowledge-based, numerically efficient,

and robust algorithm is proposed to detect QRS complexes in

ECG signals based on two event-related moving-average filters.

The structure of the proposed algorithm is shown in Figure 2. It is

clear that the knowledge base supports the decision making of both

stages: generating blocks of interest and thresholding. It is

expected that developing a detector that depends on prior

knowledge of the ECG features will improve the overall

performance and detection accuracy. Clifford et al. [16] provided

a mini knowledge-base of the normal limits for the main events

within the EGG, for a healthy male adult at 60 beats per minute

(bpm), shown in Table 1.

The prior knowledge of the duration of the main events of

the ECG signals can assist the feature extraction and support

the decision making of the algorithm. For example, in this

work, knowing that the QRS duration in a normal healthy

subject varies from 29 to 43 samples, for a sampling frequency

(SF) of 360 Hz, determines W1 in generating blocks of interest

and thresholding (cf. Figure 2). Similarly, the average

heartbeat duration determines W2 in generating blocks of

interest. The average value for heartbeat duration is one

second in healthy subjects, which means 360 samples (for a

sampling frequency of 360 Hz). At this stage, W1 and W2 can

be initialized by the prior knowledge that has been mentioned

above. However, these durations vary from person to person.

Therefore, the exact value for W1 (QRS duration) and W2

(one beat duration) will be determined after a brute force

search, which will be discussed later in the parameter

optimization section.

Band-pass Filter
Morphologies of normal and abnormal QRS complexes differ

widely. The ECG signal is often corrupted by noise from many

sources, which has been discussed. Therefore, band-pass filtering is

an essential first step for nearly all QRS detection algorithms. The

purpose of band-pass filtering is to remove the baseline wander

and high frequencies that do not contribute to detecting QRS

complexes. A band-pass filter is used, typically a bidirectional

Butterworth implementation [17]. It offers good transition-band

characteristics at low coefficient orders, which makes it efficient to

implement [17]. Thakor et al. [18] and Chen and Chen [19]

scored high accuracy using a third-order Butterworth filter with a

passband of F1–F2 Hz to remove baseline wander and high

frequencies, and to suppress the P and T waves and maximize the

QRS area, where F1 is the starting frequency and F2 is the

stopping frequency. The effect of the Butterworth filter can be seen

in Figure 3 (b). However, rigorous optimization over the passband,

to find the optimal frequency band, will be discussed in the

parameter optimization section.

Squaring Function
The signal is squared point by point, to enhance large values

and boost high-frequency components, using the following

equation:

y½n�~(x½n�)2: ð1Þ

The impact of the squaring is shown in Figure 3 (c).

Generating Blocks of Interest
Blocks of interest are generated using two event-related moving

averages. The first moving average MAQRS is used to extract the

QRS features while the second-moving average MAbeat extracts

the QRSs beat. Then, an event-related threshold is applied to the

generated blocks to distinguish the blocks that contain R peaks

from the blocks that include noise. The purpose of the QRS

moving (MAQRS) average is to smooth out multiple peaks

corresponding to QRS complex intervals in order to emphasize

and extract the QRS area:

MAQRS½n�~
1

W1
(y½n{(W1{1)=2�z . . . zy½n�

z . . . zy½nz(W1{1)=2�),
ð2Þ

where W1 is the approximate duration of the QRS complex,

rounded to the nearest odd integer, and n is the number of data

points. Based on the knowledge-base analysis section, the QRS

duration W1 varies from 29 to 43 samples (for a sampling

frequency of 360 Hz). Therefore, rigorous optimization to find the

optimal W1 will be discussed in the parameter optimization

section.

The purpose of the one-beat moving average (MAbeat) is similar

to MAQRS but emphasizes the QRSs beat to be used as a

threshold for the first moving average (MAQRS):

MAbeat½n�~
1

W2

(y½n{(W2{1)=2�z . . . zy½n�

z . . . zy½nz(W2{1)=2�),
ð3Þ

where W2 is the approximate duration of a heartbeat, rounded to

the nearest odd integer, and n is the number of data points. Based

Fast QRS Detection Method
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Figure 1. Challenges in detecting QRS in ECG signals. (a) Mains electricity noise: the spectrum illustrates peaks at the fundamental frequency
of 60 Hz as well as the second and third harmonics at 120 Hz and 180 Hz, caused by stray magnetic fields causing the enclosure and accessories to
vibrate. (b) High frequency noise caused by coughing. (c) Large movement of the chest. (d) Isolated QRS-like artifacts. (e) Nodal (junctional) escape
beats affected by baseline wandering. (f) Premature ventricular contractions. (g) Left bundle branch block. (h) Right bundle branch block. (i) Paced
beat. (j) Fusion of paced and normal beat.
doi:10.1371/journal.pone.0073557.g001
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on the knowledge-base analysis section, heartbeat duration W2 is

about 360 samples (for a sampling frequency of 360 Hz); however,

it varies from person to person. Rigorous optimization to find the

optimal W1 will be discussed in the parameter optimization

section. The blocks of interest are generated based on the two

moving averages discussed. In other words, applying the second-

moving average MAbeat as a threshold to the first-moving average

MAQRS produces blocks of interest, as shown in Figure 3 (d).

However, the use of MAbeat without an added offset reduces the

detection accuracy because of its sensitivity to a low signal-to-noise

ratio (SNR). The SNR defined the ratio of the mean signal of a

region of interest to its standard deviation [20], which means if the

statistical mean of the signal increases, the SNR increases. This

leads to introducing an offset based on the statistical mean of the

signal as

a~b�zz, ð4Þ

where b is the fraction of the �zz signal that needs to be removed, �zz is

the statistical mean of the squared ECG signal z, as illustrated in

Figure 4, and a is an offset for the threshold MAbeat signal. Thus,

a refers to the offset, while b refers to the offset fraction.

In short, to increase the accuracy of detecting QRS complexes

in noisy ECG signals, the dynamic threshold value THR1 is

calculated by offsetting the MAbeat signal with a, as follows:

THR1~MAbeat½n�za: ð5Þ

The blocks of interest are then generated by comparing the

MAQRS signal with THR1. If a block is higher than THR1, it is

classified as a block of interest containing ECG features (P, QRS,

or T) and noise; otherwise, as shown in lines 10–16 in Figure 5. By

this stage, blocks of interest have been generated, Blocks½n�.
Therefore, the next step is to reject the blocks that result from

noise. The rejection should be related to the anticipated block

width.

Thresholding
Here, the undesired blocks are rejected by using the new THR2

threshold to reject the blocks that contain P and T waves and

noise. By applying the THR2 threshold, the accepted blocks

contain only QRS complexes:

THR2~W1: ð6Þ

As discussed, the threshold THR2 equals W1, which corresponds

to the anticipated healthy QRS width. If the block width equals

the window size W1, then the block contains a QRS complex.

However, the QRS duration varies in arrhythmia ECG signal

durations. Therefore, the condition is set to capture both average

(healthy beats) and wide (arrhythmia beats) QRS complex

durations. Therefore, if a block width is greater than or equal to

W1, it is classified as a QRS complex. If not, the block is classified

as a P wave, T wave or noise.

Detecting R Peaks
The last stage is finding the maximum absolute value within

each block, the R peak.

Parameters Optimization
The function of the QRS detector, which is presented in

Figure 5, has five inputs: the frequency band (F1–F2), event-related

durations W1 and W2, and the offset fraction (b). Any change in

these parameters affects the overall performance of the proposed

algorithm. These parameters are interrelated and cannot be

optimized in isolation. A rigorous optimization, brute-force search

based on the knowledge-base information, over all parameters, is

conducted, as shown in Figure 6. It is time-consuming, as the

Figure 2. Flowchart of the knowledge-based QRS detection algorithm. The algorithm consists of three stages: pre-processing (bandpass
filter and squaring), feature extraction (generating blocks of interest based on prior knowledge), and thresholding (based on prior knowledge).
doi:10.1371/journal.pone.0073557.g002

Table 1. ECG features and their normal values in sinus rhythm.

Feature Normal Value Normal Limit Normal duration for sampling frequency of 360 Hz

P width 110 ms 620 ms 33–47 samples

PQ/PR interval 160 ms 640 ms 43–72 samples

QRS width 100 ms 620 ms 29–43 samples

The ECG features (P, QRS, and T waves) measured from a healthy male adult at a heart rate of 60 beats per minute (bpm). It is critical for the new developed algorithms
to have an estimate for the event duration before processing the ECG signal. These durations play a role in determining the window size of the moving averages and
threshold values.
doi:10.1371/journal.pone.0073557.t001
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complexity of the algorithm is ((MaxF1-F1) (MaxF2-F2) (MaxW1-

W1) (MaxW2-W2) Maxb), but it is required before making any

claims. The MIT-BIH Arrhythmia Database was used for training

and optimization.

Results

The QRS detection algorithm is typically run using two

statistical measures: sensitivity (SE) and positive predictivity (+P);

whereas SE~TP=(TPzFN) and zP~TP=(TPzFP). Here,

TP is the number of true positives (QRS complexes detected as

QRS complexes), FN is the number of false negatives (QRS

complexes have not been detected as QRS complexes), and FP is

the number of false positives (non-QRS complexes detected as

QRS complexes). The SE reports the percentage of true beats that

were correctly detected by the algorithm. The +P reports the

percentage of beat detections that were true beats.

Training Results
Figure 6 shows that the optimizations of the beat detector’s

spectral window for lower frequency varied from 1–10 Hz, with

the higher frequency up to 26 Hz. All combinations of the

frequency band 1–26 Hz have been explored to include all

frequency bands that have been recommended in the literature

such as 8–20 Hz [21], 5–15 Hz [18,19], and 5–11 Hz [3]. The

window size of the MAQRS (W1) ranged from 55 to 111 ms,

whereas the window size of the MAbeat (W2) changed from

555 ms to 694 ms as discussed in the knowledge-base analysis

section. However, the offset was tested over the range 0–10% of

the mean value of the squared filtered ECG signal. The database

used in the optimization process is the MIT-BIH Arrhythmia

Database because it contains abnormal rhythms, different QRS

morphologies, and low SNR signals, as described in the

Challenges in the ECG section. The total number of beats in

the MIT-BIH Arrhythmia Database is 109,984, and there are 48

records. As discussed, several publications have listed the use of all

files in the database, excluding just the paced patients, segments,

and certain beats. However, in the optimization process all records

have been used without excluding any beat. After the rigorous

optimization, all parameter combinations were sorted in descend-

ing order according to the overall accuracy, as shown in Table 2;

thus, the first combination provides the optimal solution. The

highest overall-accuracy score is 99.83% (cf. Table 2); therefore,

the optimal frequency range for QRS detection in the MIT-BIH

Arrhythmia Database is 8–20 Hz, as proposed by Benitez et al.

[21]. Moreover, the optimal values for the moving averages and

offset are W1 = 97 ms (35 samples for SF = 360 Hz) and

W2 = 611 ms (220 samples for SF = 360 Hz), and b~8. (Investi-

gators do not have to think about the optimization as it is already

done here for them; all they need to do is simply implement the

proposed algorithm with these optimal parameters.)

Testing Results
Now, an optimal QRS detector is accomplished over the MIT-

BIH Arrhythmia Database. Then, we can test this detector on

Figure 3. Demonstrating the effectiveness of using two moving
averages to detect the QRS complex. (a) One beat ECG signal, (b)
filtered one-beat ECG signal with Butterworth band-pass filter, (c)
squaring the filtered signal, and (d) generating a block of interest after
using two event-related moving averages: The dotted red line is the
MAQRS, and the solid green line is the MAbeat. The R peak within the
block of interest is then detected after the event-related threshold is
applied.
doi:10.1371/journal.pone.0073557.g003
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Figure 4. Demonstrating the statistical threshold. The squared one-beat ECG signal (Z), which is shown in Figure 3 (c), where the dashed line
represents the offset caused by a.
doi:10.1371/journal.pone.0073557.g004

Figure 5. Pseudocode for the knowledge-based QRS detector function. The function has five inputs: F1 , F2, W1 , W2 , and b. The band-pass
filter will be determined by the frequency band F1–F2 Hz, while W1 and W2 are the window sizes of the two moving averages MAQRS and MAbeat,
respectively. However, b is used to calculate the statistical threshold a.
doi:10.1371/journal.pone.0073557.g005
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other datasets straight out of the box without any tuning. In

other words, the algorithm’s parameters (F1, F2, W1, W2, and b)

do not need to be trained in real-world application for every

subject. The parameters are optimized on a large training set

(MIT-BIH data set); thus, the robustness of the algorithm can be

examined against different databases with different sampling

frequencies and the ECG signals collected by different doctors in

dissimilar conditions. Table 3 shows the performance of the QRS

detection algorithm on 11 databases. In addition, the performanc-

es are summarized across these databases and compared to other

reported results. Because the algorithm has not been re-tuned over

any databases, the results are promising, and the algorithm can

detect R peaks over different databases, sampling frequencies,

types of arrhythmias, and types of noise. The number of beats used

Figure 6. Pseudocode for the brute-force optimizer. The optimizer is initialized with MaxF1 = 10 Hz, MaxF2 = 25 Hz, MaxW1 = 40 samples,
MaxW2 = 250 samples, and Maxb = 0.1. Systematically, this exhaustive search enumerates all possible combinations for the solution and checks
whether each combination provides an optimal detector based on SE and +P.
doi:10.1371/journal.pone.0073557.g006

Table 2. A rigorous optimization of all parameters of the algorithm: frequency band, W1, W2, and the offset fraction b.

Combination Frequency Band W1 (samples) W2 (samples) Offset (%) SE (%) +P (%) Overall Accuracy (%)

1 8–20 Hz 35 220 8 99.78 99.87 99.83

2 8–19 Hz 40 220 10 99.76 99.89 99.83

3 9–19 Hz 40 220 9 99.77 99.89 99.83

4 8–20 Hz 40 220 8 99.79 99.87 99.83

5 8–20 Hz 35 220 9 99.77 99.89 99.83

6 8–19 Hz 35 220 9 99.76 99.89 99.83

7 8–21 Hz 40 220 8 99.79 99.87 99.83

8 8–21 Hz 40 230 9 99.77 99.89 99.83

9 9–19 Hz 35 230 9 99.76 99.89 99.83

10 8–21 Hz 35 220 9 99.77 99.88 99.82

11 8–21 Hz 35 210 9 99.78 99.87 99.82

12 8–18 Hz 40 220 10 99.75 99.90 99.82

13 8–21 Hz 40 220 9 99.77 99.88 99.82

14 8–18 Hz 35 220 9 99.76 99.89 99.82

15 8–21 Hz 35 220 8 99.78 99.86 99.82

16 8–22 Hz 35 220 9 99.77 99.88 99.82

17 8–22 Hz 35 220 10 99.75 99.89 99.82

. . . . . . . .

. . . . . . . .

37947 1–26 Hz 20 200 7 33.713 93.869 63.791

37948 1–26 Hz 20 200 8 33.263 93.907 63.585

37949 1–26 Hz 20 200 9 32.803 93.962 63.383

37950 1–26 Hz 20 200 10 32.371 94.127 63.249

All possible combinations of parameters (37,950 iterations) have been investigated and sorted into descending order according to their overall accuracy. The database
used is the MIT-BIH Arrhythmia Database. The overall accuracy is the average value of SE and +P.
doi:10.1371/journal.pone.0073557.t002
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Table 3. QRS Detection performance comparison on 11 databases (Lead I).

Database No. of beats No. of beats SE (%) +P (%)

MITDB This work 109985 99.78 99.87

Pan and Tompkins 109985 90.95 99.56

Chouhan [22,23] 44677 87.90 97.60

Improved Chouhan [22,23] 44677 97.5 99.90

Adnane et al. [24] 109487 99.77 99.64

Ghaffari et al. [25] 109837 99.91 99.72

Benitez et al. [21] 109257 99.13 99.31

Modified Benitez et al. [21] 109517 99.29 99.24

Hamilton and Tompkins [21] 109504 99.68 99.63

Modified Hamilton-Tompkins [21] 109436 99.57 99.58

Second derivative of Hamilton-Tompkins [21] 108228 98.08 99.18

Zheng and Wu [26] N/R 98.68 99.59

Fard et al. (HCW) [27] 24000 99.79 99.89

Fard et al. (CFBSW) [27] 24000 99.29 99.89

Fard et al. (CNW) [27] 24000 99.49 99.29

Darrington [28] 109487 99.06 99.20

Chen et al. [29] 102654 99.55 99.49

Martinez et al. [30] 109428 99.80 99.86

Hamilton [31] N/R 99.80 99.80

Lee et al. [32] 109481 99.69 99.88

Afonso et al. [33] 90909 99.59 99.56

Li et al. [34] 104182 99.89 99.94

Hamilton and Tompkins [35] 109267 99.69 99.77

QTDB This work 111201 99.99 99.67

Pan and Tompkins 111201 97.99 99.05

Martinez et al. [30] 86892 99.92 99.88

Aristotle [30] 86892 97.20 99.46

NSTDB This work 26370 95.39 90.25

Pan and Tompkins 26370 74.46 93.67

Benitez et al. [36] N/A 93.48 90.60

TWADB This work 19003 98.88 99.12

Pan and Tompkins 19003 88.32 94.04

STDB This work 76181 99.92 99.70

Pan and Tompkins 76181 91.78 98.95

SVDB This work 184744 99.96 99.80

Pan and Tompkins 184744 99.27 98.34

IAFDB This work 6705 99.59 94.11

Pan and Tompkins 6705 64.21 99.01

NSRDB This work 183092 99.99 99.96

Pan and Tompkins 183092 99.91 99.97

AFTDB This work 7618 99.72 99.74

Pan and Tompkins 7618 96.62 99.4

FANTASIADB This work 278996 99.98 99.87

Pan and Tompkins 278996 89.16 99.89

INCARTDB This work 175918 99.03 97.09

Pan and Tompkins 175918 49.75 97.49

(N/R: NOT REPORTED).
doi:10.1371/journal.pone.0073557.t003
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to calculate these performance parameters is indicated in the

second column in Table 3. Hamilton and Tompkins implemented

their QRS detection algorithm in 1986. They scored 99.69% SE

and 99.77% +P over 109,267 beats from the MIT-BIH Database

(cf. Table 3). When Arzeno et al. [21] applied the Hamilton-

Tompkins algorithm over a slightly larger number of beats,

109,504 beats, the detector performance decreased slightly,

scoring a SE of 99.68% and a +P of 99.63%.

Li et al. [34] scored higher performance, a sensitivity of 99.89%

and a specificity of 99.94%, than the proposed algorithm. This is

because Li et al. excluded files 214 and 215 from the MIT-BIH

Database, and therefore, the algorithm is not superior in terms of

performance. However, their algorithm was based on wavelets

feature extraction and singularity for classification, which is

considered numerically inefficient. Moreover, the algorithm

developed by Ghaffari et al. [25] scored a sensitivity of 99.91%

and a specificity of 99.72% over 109,837 beats (not all beats); their

algorithm was based on wavelets feature extraction and thresholds

for classification, which is also considered numerically inefficient.

Conversely, the proposed knowledge-based algorithm presents a

clear advantage over the previously reported algorithms in terms

of performance (large number of databases) and numerical

efficiency. This was clear with the MIT-BIH Arrhythmia

Database, as discussed above. In addition, the QTDB where the

detector scored an SE of 99.67% and a +P of 100%, over 111,193

beats, without excluding any beats as Martinez et al. [30] and

Aristotle [30] did. Furthermore, the overall performance of the

detector on the NSTDB was higher than Benitez et al. [36], with

clear mentioning of the number of beats used, specifically 26,370

beats.

Discussion

After the description of the detector and its results on

different datasets, perhaps further elaboration on the detectors

performance is required. However, comparing the performance

of the proposed algorithm with previously published algorithms

is difficult. This is because the algorithms are not tested on the

same data, in particular the same beats. By excluding the

number of beats and/or certain records, the performance of any

detector will score higher detection rates. Here are a few

examples to clarify the idea:

N Xue et al. [37] reported sensitivities of 99.84% and 99.09%

and positive predictivity of 99.61% and 98.59% based on just

two records, 105 and 108 from the MIT-BIH Arrhythmia

Database.

N Wavelet transforms were used for QRS detection by Li et al.

[34]. They reported 0.15% false detections based on 46 files

from the MIT-BIH Arrhythmia Database, excluding files 214

and 215.

N Moraes et al. [38] logically combined two different algorithms

working in parallel, the first adopted from the work of Englese

and Zeelenberg [39], the second based on Pan and Tompkins

[3] and Ligtenberg and Kunt [40]. Moraes et al. reported

sensitivity of 99.22% and specificity of 99.73% after having

excluded records of patients with pacemakers. However, they

also excluded recordings 108, 200, 201, and 203, from the

MIT-BIH Arrhythmia Database.

N Continuous spline wavelet transform using local maxima of the

continuous wavelet transform at different scales have been

used by Alvarado et al. [41]. They reported sensitivity of

99.87% and positive predictivity of 99.82% after using just

nine files out of 48 files from MIT-BIH Arrhythmia Database.

N Zhang et al. [42] used the continuous wavelet transform,

followed by fixed thresholds. They reported accuracy of 99.5%

after using just eight files out of 48 files from MIT-BIH

Arrhythmia Database.

Most of the proposed algorithms were tested on one dataset, the

MIT-BIH Arrhythmia Database. The authors exclude some

records from the database to improve the overall accuracy. Here

is an example based on the proposed detector: If records 108 and

207 are excluded from this study, the proposed detector scores SE

of 99.9% and +P of 99.95%, which does not reflect the real

performance of the algorithm. Therefore, the author urges

readers, researchers, and biomedical-signal-analysis community

of using the standard databases with excluding any record or beat.

Now, after the misleading conclusions based on data elimination

have been discussed, the performance of the proposed detector can

be discussed technically. The main technical aspects of any QRS

detector are frequency-band choice, window-size and threshold

choices, failure, and processing time.

Implementation Steps
In general, the Pan and Tompkins algorithm is more complex

compared to the proposed algorithm, and thus has more

implementation steps, as shown in Table 4. The Pan and

Tompkins algorithm requires a resampling step for any ECG

signal not sampled at 200 Hz. Its filters are designed for 200 Hz,

so performance will be degraded at other sampling frequencies.

Moreover, as the Pan and Tompkins algorithm is amplitude

dependent, subtraction of the statistical mean of the ECG signals is

also required. It also imposes a differentiation step to emphasize

the QRS complex slope information. Furthermore, the threshold-

ing step is complicated (really this word, not just a phrase that

contains it) compared to that of the proposed algorithm. The

thresholding code of the Pan and Tompkins algorithm is taken

from DigiScope software [43].

Frequency-Band Choice
In the literature, the QRS frequency band has been used

without actually identifying the optimum QRS frequency range

for the detection of the QRS complexes. Different researchers used

different passbands; for example, Thakor et al. [18] proposed an

estimate of QRS complex spectra and suggested that the passband

that maximizes the QRS energy is approximately 5–15 Hz. Pan

and Tompkins [3] used cascaded low-pass and high-pass filters to

achieve a passband of about 5–11 Hz. Li et al. [34] used a

quadratic spline wavelet with compact support and one vanishing

moment. They concluded that most QRS complex energies are at

the scale of 24; that is, the Fourier transform frequency range lies

between 4 and the 13.5 Hz. Sahambi et al. [44] used the first

derivative of a Gaussian smoothing wavelet and found that most

QRS complex energies are at the scales of 23 and 24, with

corresponding frequency ranges between 4.1 Hz and 33.1 Hz.

Benitez et al. [36] developed a QRS detection algorithm using the

properties of the Hilbert transform with band stop frequencies at 8

and 20 Hz in order to remove muscular noise and maximize the

QRS complex, respectively. Moraes et al. [38] combined two

improved QRS detectors using a band-pass filter between 9 and

30 Hz. Chen and Chen [19] introduced a QRS detection

algorithm based on real-time moving averages and assumed the

QRS frequencies were concentrated at approximately 5–15 Hz.

Mahmoodabadi et al. [45] used Daubechies2 to detect QRS

complex using scales of 23–25, which covers the frequency range

2.2–33.3 Hz.
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Most of these authors evaluated their algorithms using the MIT-

BIH Arrhythmia Database and determined the frequency bands

experimentally, without justifying their choice. Thus, an optimal

frequency band for detecting QRS complexes is proposed based

on rigorous brute-force optimization, which is 8–20 Hz, as

elaborated in the parameter optimization section. This result

confirms the findings of Elgendi et al. [46] that 8–20 Hz optimizes

the QRS detection. Moreover, Figure 7 shows the influence of a

certain frequency band on the overall accuracy. It is clear that F1

scores consistent results above 5 Hz, as shown in Figure 7(a). Thus,

in designing a band-pass filter, the starting frequency should lie

within 5–10 Hz. Regarding the stopping frequency, F2, perhaps

the optimal choice is 20 Hz, which has the highest average and

lowest standard deviation; 19 and 21 Hz can still provide relatively

high accuracy.

Window-Size and Threshold Choices
The window size is an important factor in detection; it should

reflect the duration of the QRS complex, which is an individual

characteristic that further depends on the heart rate, and thus is

hard to predict. Researchers generally use a fixed window size for

the moving average that demarcates the QRS complex; for

example, Pan and Tompkins [3] used a fixed window size of 30

(which is 150 ms). However, their adaptive thresholds were based

on the eight most recent beats [3]. The disadvantages of their

algorithm are the window size is determined empirically and

thresholds depend on the accuracy of the heart rate determined in

the previous segment. A domino effect of errors will occur.

Therefore, a new solution is needed that does not depend on the

recent heart rate. The proposed method uses a predefined but on

average perfect constant window size by searching for the

optimized window sizes for the QRS and heartbeat durations.

However, the algorithm shares some steps with Pan and Tompkins

algorithm. A comparison is presented in Table 4 to show the main

differences and the novelty of the proposed methodology, which is

the optimized knowledge-base consideration. In addition to

efficiency, the author aimed at reducing the complexity of

detection methods. Therefore, the proposed method uses a

predefined but on average optimal constant window size (see

Table 4) to demarcate the QRS complex. The second moving

average filter was implemented to eliminate the multiple static

thresholds by demarcating each heartbeat, which works as a data-

driven threshold for the first moving average MAQRS. Thus, the

proposed detector overcomes the unjustified parameters value and

the use of fixed thresholds. Figure 8 shows the influence of the

window sizes of the moving averages and offset on the overall

Table 4. Comparison between the proposed QRS detector and the Pan and Tompkins algorithm.

Step Proposed Detector Pan and Tompkins [3]

Resampling N/A Resample ECG to 200 Hz

Mean Subtraction N/A ECG~ECG{mean(ECG)

Frequency Band x = bandpass(ECG, 8–20 Hz) x = bandpass(ECG, 5–15 Hz)

Differentiation N/A q½n�~ 1
8

({x½n{2�{2x½n{1�

z2x½nz1�zx½nz2�)
Squaring y½n�~(x½n�)2 y½n�~(q½n�)2

Integration MAQRS½n�~ 1
W1

(y½n{(W1{1)=2�z . . . MA½n�~ 1
W

(y½n{(W{1)�zy½n�z . . .

zy½nz(W1{1)=2�), zy½n{(W{2)�z . . . zy½n�),
where W1 = 97 ms where W = 150 ms

MAbeat½n�~ 1
W2

(y½n{(W2{1)=2�z . . . SPKI~0:125 PEAKIz0:875 SPKI

zy½nz(W2{1)=2�), NPKI~0:125 PEAKIz0:875 NPKI

where W2 = 611 ms THR I1~NPKIz0:25 (SPKI{NPKI)

THR1~MAbeatza THR I2~0:5 THRESHOLD I1

Thresholds THR2~W1 SPKI~0:25 PEAKIz0:75 SPKI

SPKF~0:125 PEAKFz0:875 SPKF

NPKF~0:125 PEAKFz0:875 NPKF

THR F1~NPKFz0:25 (SPKF{NPKF )

THR F2~0:5 THR F1

SPKF~0:25 PEAKFz0:75 SPKF

THR I1/0:5 THR I1

THR F1/0:5 THR F1

RRAVG1~0:125 (RRn{7zRRn{6z . . . zRRn)

RRAVG2~0:125 (RR
0
n{7zRR

0

n{6z . . . zRR
0
n)

Adjusting thresholds N/A RRLowLimit~0:92 (RRAVG1)

RRHighLimit~1:16 (RRAVG2)

RRMissedLimit~1:66 (RRAVG2)

RRAVG2/RRAVG1

Here, N/A means NOT APPLIED.
doi:10.1371/journal.pone.0073557.t004
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accuracy. It is clear that the optimal window size W1 for detecting

QRS can be 30, 35, or 40 samples (for SF = 360 Hz). The optimal

window size W2 for demarcating a heartbeat was hard to

determine, as it perhaps can be 220, 230, 240, or 250 samples

(for SF = 360 Hz). The optimal offset fraction b varies from 2 to

10% (cf. Figure 8 (c)). However, the optimal combination based on

the brute-force search was W1 = 35 samples 97 ms, W2 = 220

samples 611 ms, and the offset fraction was b = 0.8, as shown in

Table 2. Combinations 2 to 17, in Table 2, provide relatively high

accuracy as well.

Instances of Failure
After the training phase, which is discussed in the parameters

optimization section, the parameters of the developed QRS

algorithm were optimized over the MIT-BIH Arrhythmia

Database. The optimized algorithm will be tested on all other

databases without any tuning. The algorithm has been used

straight out of the box and has not been re-tuned over any

databases. In the testing phase, usually algorithms fail at specific

instances within the ECG recordings, which are considered either

false positives (FPs) or false negatives (FNs). These instances of

Figure 7. Influence of frequency bands on the overall accuracy based on brute-force optimization. (a) Frequency band starts at value
within 1–10 Hz. (b) Frequency band stops at value within 11–25 Hz, where the circle is the statistical mean, and the bar is the standard deviation.
doi:10.1371/journal.pone.0073557.g007
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failure will be discussed over all databases, including the database

used in training. The proposed algorithm incurred a total of 124

FPs and a total of 247 FNs over the MIT-BIH Arrhythmia

Database. The noisy reversed QRS polarities caused the highest

number of FPs in Record 108, as shown in Figure 9, while Record

207 scored the highest number of FNs, precisely 198 FNs, because

of the ventricular flutters (cf. Figure 10). In Figure 9, the two

moving averages succeeded in generating blocks of interest that

demarcated all QRS complexes, but also demarcated the wide P

waves, causing FPs before B1, B4, and B5 shown in Figure 9; and

threshold THR2 could not help in rejecting them. On the other

hand, the moving averages could not generate blocks of interest

due to the fast rhythm as B3, B5 and B7 show in Figure 10.

For the INCART database, the algorithm incurred a total of

5197 FPs and 1995 FNs. Because of the very noisy signals, Record

53 had 428 FPs and 104 FNs (cf. Figure 11). The annotations of

this database may need revision as the position of the R peaks is

very hard to determine, as shown in Figure 11. However, the

algorithm runs over the database without any adjustments to the

annotated R peaks. FPs and FNs were 315 and 50 when the

algorithm was applied on the Fantasia database. The highest FP

values were in record f1o09, where the ECG signals contain wide

U waves, as shown in Figure 12. Likewise, Record 16272 (in the

NSR database) had the most number of FPs, 49 instances out of 63

FPs, because of the existence of U waves. The algorithm incurred

a total of 5197 FPs and 1995 FNs on INCART database. Because

of the very noisy signals, Record 53 had 428 FPs, and 104 FNs (cf.

Figure 11). The annotations of this database perhaps needs

revision as the position of the R peaks is very hard to determine, as

shown in Figure 11. However, the algorithm runs over the

database without any adjustments to the annotated R peaks.

Using the AFTDB database, the detector achieved a low

number of FPs, and FNs, 17 and 34, correspondingly. Due to the

fast rhythm of the atrial fibrillation, the number of FNs was higher

than that of the FPs, which is similar to the detectors performance

on the MIT-BIH Arrhythmia Database; Figure 10 may clarify the

idea of the occurrence of FNs in a fast rhythm. It was expected

that SVDBs performance would have more FNs than FPs, as it

contains supraventricular arrhythmias. However, the highest

number of FNs was registered from Record 848-SVDB due to

the rapid heart rhythm. The number of FPs also increased because

of the noisy reversed-polarity QRS beats, as in Record 886, which

had the highest number of FPs, exactly 99 of a total of 356.

Figure 13 shows how the isolated QRS-like artifacts caused FNs in

Record iaf7_afw from the IAF database, scoring the highest

number of FNs, 80 FNs out of a total of 83. On the other hand, the

number of FPs was the highest, 250 out of a total 419 FPs, in

Record iaf5_afw, which contains wide U waves similar to the

example presented in Figure 12.

It can be seen in Figure 14, because of the T wave alternans and

low-amplitude QRS complexes, that detecting R peaks is

challenging. The performance of the detector on the TWA

database incurred 156 FPs and 230 FNs. The first FN (at left)

occurred because the moving average could not generate blocks of

interest; however, the second FN (at right) happened since it has

been demarcated (cf. Figure 14). The duration of the block (second

FN at right) is below the optimized duration of QRS complex W1,

and is thus rejected causing FN, while the FP arises due to the

existence of noisy T wave alternans.

Analyzing the performance of NSTDB is quite confusing,

perhaps because the annotations are not completely correct and

certainly need modification. However, the detector ran over the

dataset as it is and incurred 2,844 FPs and 1,199 FNs overall.

Regarding the ST database, the FPs and FNs were 131 and 33 in

total, respectively. The highest number of FPs occurred in Record

305-STDB due to large T waves, while the inverted polarity of

QRS complexes caused the large number of FNs. On the other

hand, the detectors obtained a total of 305 FPs and 3 FNs over the

Figure 8. Influence of window sizes and offset on the overall
accuracy based on brute-force optimization. (a) The window size
of the MAQRS varies from 20 to 40 samples, for SF = 360 Hz. (b) The
window size of the MAbeat varies from 200 to 250 samples for
SF = 360 Hz. (c) The offset fraction b varies from 0 to 10%, where the
circle is the statistical mean, and the bar is the standard deviation.
doi:10.1371/journal.pone.0073557.g008
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Figure 9. Noisy reversed-polarity QRS complexes in Record 108. The dotted line is the first moving average MAQRS, and the solid line is the
second moving average MAbeat. The green arrows point to successful detection, while the pink arrows point to failures. Here, the black plus sign
represents successful detection produced by the proposed algorithm, where the red circle represents FP.
doi:10.1371/journal.pone.0073557.g009

Figure 10. Ventricular flutters in Record 207-MITDB. The dotted line is the first moving average MAQRS , and the solid line is the second
moving average MAbeat. The green arrows point to successful detection, while the pink arrows point to failures. Here, the black plus sign represents
successful detection produced by the proposed algorithm, where the red circle represents FN.
doi:10.1371/journal.pone.0073557.g010
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Figure 11. Noisy ECG signals in Record 53-INCARTDB. The dotted line is the first moving average, MAQRS, and the solid line is the second
moving average MAbeat. The arrows point to FNs and FPs. Here, the black plus sign represents successful detection produced by the proposed
algorithm, where the red circle represents FP, and the green star represents FN.
doi:10.1371/journal.pone.0073557.g011

Figure 12. Wide U waves in Record f1o09-FANTASIADB. The dotted line is the first moving average MAQRS, and the solid line is the second
moving average MAbeat. The arrows point to FPs. Here, the black plus sign represents successful detection produced by the proposed algorithm,
where the red circle represents FP.
doi:10.1371/journal.pone.0073557.g012
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Figure 13. Isolated QRS-like artifacts in Record iaf7_afw-IAFDB. The dotted line is the first moving average MAQRS, and the solid line is the
second moving average MAbeat. The arrows point to FNs. Here, the black plus sign represents successful detection produced by the proposed
algorithm, where the green star represents FN.
doi:10.1371/journal.pone.0073557.g013

Figure 14. Low-amplitude QRS complexes lie between T wave alternans in Record twa89-TWADB. The dotted line is the first moving
average MAQRS, and the solid line is the second moving average MAbeat. The arrows point to FNs and FP. Here, the black plus sign represents
successful detection produced by the proposed algorithm, and the red circle represents FP, while the green star represents FN.
doi:10.1371/journal.pone.0073557.g014
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QT database. The FPs are mainly caused by the steeply upward-

sloping T waves (cf. Figure 15).

Processing Time
In this study, the proposed detector was implemented in

MATLAB 2010b (The MathWorks, Inc., Natick, MA, USA) on

IntelTM i5 CPU 2.27 GHz. Perhaps it is misleading to suggest that

mentioning the average speed of the proposed detector, over a

certain time length of ECG signal, would provide a comparative

result. This is because the processing time depends on the number

of beats within each ECG recording, not on the record length. As

the 11 databases contain different recording lengths, a categori-

zation by recording length is needed to evaluate the speed of the

Pan and Tompkins algorithm and the proposed detector fairly on

the same computer. It can be seen in Figure 16 that the proposed

algorithm was faster and steadier across all recoding-length

categories compared to Pan and Tompkins algorithm. The speed

measured in seconds, while the recording-length category was in

minutes. The number of beats of the 30-minute recordings

category was relatively consistent—with a mean 6 SD, number of

beats 22916448—over all records of this category. The same

holds for 1-minute and 15-minute recording categories. On the

contrary, the 130-minute beat average was 10,171 with an SD of

2,600 beats; thus, the processing time depends on the number of

beats rather than the recording length. For example, Record

16272-NSRDB contains 7,988 beats, and the proposed detector

took 1.5 seconds to process it, while it took 3.5 seconds to process

14,875 beats in Record 19830-NSRDB. In general, without taking

the number of beats into consideration, the speed of the proposed

detector is fast. The suggested detector handles 15-minute

recordings in about 0.15 seconds, while it takes about 2.2 seconds

to handle 130-minute ECG recordings.

Limitations of Study and Future Work

One of the next steps regarding the result of this study is to

detect arrhythmic ECG beats, using the RR interval as the main

Figure 15. Steeply upward-sloping T waves in Record sele0111-QTDB. The dotted line is the first moving average MAQRS, and the solid line
is the second moving average MAbeat. The arrows point to FPs. Here, the black plus sign represents successful detection produced by the proposed
algorithm, and the red circle represents FP.
doi:10.1371/journal.pone.0073557.g015

Figure 16. Processing time for ECG recordings. The average
speed of the Pan and Tompkins algorithm is represented with a solid
black line, while the dotted blue line represents the average speed of
the proposed detector. The proposed detector processes the one-
minute ECG record in 8.9 milliseconds and the 130-minute recording in
2.2 seconds. This result shows the superiority of the proposed detector
over the Pan and Tompkins algorithm in terms of processing time.
doi:10.1371/journal.pone.0073557.g016
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feature. In addition, the detection of P and T waves based on the

accurate detection of R peaks need to be examined.

Optimization was performed over the MIT-BIH Arrhythmia

Database as a whole. For better comparability, the whole data set

could have been separated into a training and a test set in which

the training set is used for optimizing and the test set for evaluating

the performance. Perhaps the leave-one-out cross validation suits

this optimization step.

In this investigation, the processing time of the Pan and

Tompkins algorithm and the proposed algorithm is carried out

using MATLAB for batch processing of ECG files. MATLAB does

only high precision floating point arithmetic. Perhaps, the

implementation of the proposed algorithm in C-language is

required to compare the performance over fixed point integer

arithmetic (i.e., it doesn’t need a high performance computer with

a multi-precision floating point processor to run).

It is important to note that the largest ECG recording used in

this study is 130 minutes. Larger recordings (e.g., 24 hours) with

different noise levels are needed in order to generalize the findings

of this study.

Technically, exploring the event-related moving average

methodology for detecting events in ECG signals is promising in

terms of computational complexity and efficiency. This can be

further improved by investigating other band-pass filters, with

different orders, and also by developing fast-moving average

techniques for real-time analysis and mobile phone applications.

Conclusion

A new approach for detecting QRS in ECG signals is presented.

It contains two parts: the optimization, which was more complex,

and the algorithm itself, which is tuned now and can be

implemented and used with relative easiness. The performance

of the optimized knowledge-based detector is promising. It has

been tested on different databases that contain unusual noise,

QRS, T, and U waves morphologies. The extensive use of the

MIT-BIH Database as a testing database can hide overtuning

of the detector parameters to fit this particular database.

Consequently, the validation of the same detector on a second

dataset without any later parameter tuning can help to obtain

more reliable performance results. After the algorithm was

applied on other databases, high detection rates were obtained

on the QT database, NSR, TWA, IAF, ST, SV, AFT,

FANTASIA, NST and ICART databases. Interestingly, the

detector’s speed over 130-minute recordings is about 2.2 sec-

onds; thus, the proposed detector is an auspicious tool for

processing large-recorded ECG signals. Furthermore, its

simplicity makes it an ideal algorithm for mobile-phone

applications and battery-driven ECG signal devices. Moreover,

such a fast robust algorithm could have several interesting

applications in an online analysis of cardiac data collected by

the smallest long-term recording devices that have been studied

in the form of necklaces and smart electrodes. The assessment

of the QRS detector has been reliably conducted over the

existing standard databases. Moreover, the number of anno-

tated beats used in testing the new algorithm is considered

sufficient as it is tested on a good representation of the possible

morphologies found in ECG signals.
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