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Abstract

Background: Links in complex networks commonly represent specific ties between pairs of nodes, such as protein-protein
interactions in biological networks or friendships in social networks. However, understanding the mechanism of link
formation in complex networks is a long standing challenge for network analysis and data mining.

Methodology/Principal Findings: Links in complex networks have a tendency to cluster locally and form so-called
communities. This widely existed phenomenon reflects some underlying mechanism of link formation. To study the
correlations between community structure and link formation, we present a general computational framework including a
theory for network partitioning and link probability estimation. Our approach enables us to accurately identify missing links
in partially observed networks in an efficient way. The links having high connection likelihoods in the communities reveal
that links are formed preferentially to create cliques and accordingly promote the clustering level of the communities. The
experimental results verify that such a mechanism can be well captured by our approach.

Conclusions/Significance: Our findings provide a new insight into understanding how links are created in the communities.
The computational framework opens a wide range of possibilities to develop new approaches and applications, such as
community detection and missing link prediction.
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Introduction

Recently, study of link formation has attracted much attention

from disparate scientific communities. This is because under-

standing the mechanism of link formation can help us predict links

occurring in the future accurately and, in turn, accurate link

prediction indeed gives evidence to some underlying mechanisms

that drive network evolution [1,2]. Researchers have proposed a

variety of link prediction methods from different perspectives of

network dynamics [3–7]. In some real-world networks, nodes

which share similar properties or attributes tend to create links to

each other and cluster together. For example, persons in a social

network who have similar age, location and hobbies are very likely

to be friends, and researchers who have similar research interests

possibly work together on a paper in a co-authorship network.

Such a phenomenon is also called homophily [8]. By investigating

these shared attributes, some algorithms have applied classical

machine learning methods to predict latent links in the networks

[3–5]. However, such type of information, also known as domain

knowledge, may not be easy to obtain in real life due to concerns

associated with confidential data protection or personal privacy

preservation. To overcome such restraints, some simple but

effective methods have been proposed by utilizing the local

clustering features derived using only the topological information

of the network, such as the methods of common neighbors,

Jaccard, Adamic Adar [6], resource allocation [7], and CAR-

based indices [9] etc. Despite the theoretical and practical

advances made on network evolution and link prediction in recent

years, the mechanism of link formation is still vague because the

process of link formation may be a result of the joint influence of

several mechanisms such as small world effect [10], preferential

attachment [11], rich-club [12], etc.

Usually, a small world network is described as such a network in

which geodesic distance between pairs of nodes is small relative to

the total number of nodes in the network. The small world

network generated by the well-known Watts-Strogatz model has

relatively high clustering. This indicates that clustering might be

one of the essential factors that ensures short communication paths

for every two nodes in the small world network. The scale-free

network generated by Barabási-Albert (BA) model has shown that

nodes prefer to connect to nodes that already have many links and

this process is known as preferential attachment [13]. For example,

on the World Wide Web we are more familiar with the highly

connected web pages like portals, and therefore are more likely to

link to them. The process of preferential attachment will promote

the formation of few hub nodes who own the majority of the
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network links. As a result, the scale-free network will generally

exhibit higher clustering than the random network. Rich-club

phenomenon exhibits another important mechanism of link

formation. It has been validated empirically that in Internet

network, some hub nodes, like backbone routers, tend to connect

together to form a rich-club [12]. The rich-club can improve the

efficiency of traffic routing and provide the capacity to resist node

attacks and prevent the network from breaking down easily.

Recently, graphlet-based edge clustering also reveals pathogen-

interacting proteins [14]. All the above discussed mechanisms

imply that clustering is an ubiquitous characteristic for the

evolution of complex networks. Previous studies have also verified

that local clustering measures, such as the nodes clustering

coefficient, can be utilized to improve the accuracy of link

prediction, yet they did not give strong justifications for their

methods [15].

Due to the importance of clustering in the complex networks,

we must explore the process of link clustering in the networks

carefully. Since links tend to cluster in the communities, it provides

researchers with the possibility to explore any underlying

correlations between network community structure and link

formation. Cannistraci et al. [9] and Yan et al. [16] had noticed

the significance of community structure and proposed community-

related link prediction approaches respectively. For example,

Cannistraci et al. proposed a new paradigm to support link

formation called local community paradigm (LCP), which

emphasizes the role of the local network community structure in

link formation. Their previous works have given us good hints to

further study on this problem. In this article, by studying the

theory of network partitioning, we present a novel network

partitioning algorithm called Fast probability Block Model (FBM)

which is based on the greedy strategy. We assess the performance

of our algorithm by applying it to the problem of missing link

prediction on various real-world networks. Experimental results

show that our algorithm improves both prediction accuracy and

computational efficiency compared with conventional methods.

Meanwhile, by analyzing links having high connection likelihoods

in the communities, we find that these links tend to cluster and

form cliques. We therefore conclude three principles to demon-

strate such mechanism of link formation. The experimental results

verify empirically that the mechanism can be well captured by our

approach.

Materials and Methods

Theory for Network Partitioning and Link Probability
Estimation

Communities, which are also called modules or clusters, exist

widely in real-world networks. For social networks, a community

could be a group of people with common interest or location. For

biological networks, a community could be a group of cells or

proteins with common function. From the perspective of graph

theory, a complex network is usually treated as a graph and

accordingly a community is demonstrated as a subgraph having

dense links. Community detection is a fundamental task to exploit

the subgraphs or blocks with different properties and functions

nested in a network (In the latter part of this article, we call a

subgraph as a block). Researchers have proposed a variety of

community detection approaches in recent decades [17–21,21–

25]. However, current approaches are ‘‘biased’’ for they are often

related to some complex structural features such as sparsity, heavy-

tailed degree distribution and short diameter, etc., and also

strongly depend on the specific application [26–28]. As a result, so

far, there is no such a universal measure which can allow an

unbiased determination of whether a block obtained in a given

network is a true community or not. This also suggests that

different community detection measures have different merits such

that researchers have the flexibility to choose a suitable measure to

study a specific community detection problem. In this article, in

order to study the correlations between link formation and

community structure effectively, we adopt the measures of inner

link density and connecting link density to quantitatively ascertain

a community. If a block m has DVmD number of nodes and DEmD
number of edges, the inner link density of the block is defined as

Dm~
mm

nm
, ð1Þ

where mm~DEmD and nm~DVmD(DVmD{1)=2. According to Eq. (1),

the inner link density Dm denotes the ratio of the actual number of

inner links to the maximum possible number of links in the block

m. Notice that, when Dm equals 1, the block will reach the highest

density and form a complete subgraph which is also called a

clique. To quantitatively describe the link density between two

blocks, we also define the connecting link density between every

two blocks m and u in a given network as follows. Suppose DEmuD is

the number of edges between two blocks, while DVmD and DVuD are

the number of nodes in the block m and block u respectively, the

product of DVmD and DVuD denotes the maximum number of links

that can exist between the two blocks. So the connecting link

density is defined as

Dmu~
mmu

nmu
, ð2Þ

where mmu~DEmuD and nmu~DVmDDVuD. Here, we define a commu-

nity as such a block in a given network which has relatively high

inner link density and relatively low connecting link density with

other blocks. We note that the structure and characteristics of the

communities naturally exhibit a statistical mechanism in which

links are more likely to form within the community, whereas they

are less likely to be established between communities. If a network

could be partitioned into communities properly, we will likely be

able to estimate the probability of link formation between any pair

of nodes based on the distribution of communities.

In Fig. 1(a), we give an example of a network which has been

partitioned into three possible communities in accordance with

our community definition, which are marked with different colors.

The conventional community detection methods tend to enforce a

binding of every node in the network to some particular

communities. But, by doing so, some nodes with small degree,

like leaf nodes, are introduced into the community as noise to

decrease the inner link density of the community, and this possibly

result in the so-called issue of the resolution limit for community

detection [29]. We think this is particularly true in scale-free

networks since there are a large number of small degree nodes in

such a kind of network. Unlike the conventional point of view for

community detection, we consider that these nodes do not belong

to any communities and should be categorized as a special

‘‘community’’. Therefore, the leaf nodes, which are marked with

brown color in Fig. 1(a), are grouped together as a special

‘‘community’’ which has no inner links. Of course, in this

‘‘community’’, links have a very small chance of being established

between pairs of nodes. If we partition a network into communities

in this manner, we can obtain a link density distribution matrix by

using Eq. (1) and Eq. (2) to calculate the link densities within and

between communities. In Fig. 1(a), we partition the network into

Community Structure and Link Formation
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four communities including a special ‘‘community’’, thereafter we

obtain a link density matrix shown in Fig. 1(b).

One network partition can only provide one link density

distribution while there usually exist many possible network

partitions. If we want to estimate the link probabilities for any

node pairs in a given network, based on the theory of statistics, we

need to obtain as many independent network partitions as possible

by doing multiple rounds of network partitioning. Such a

procedure is also known as sampling. Considering that an

observed network (a network having missing links) has an

adjacency matrix AO, we use a network partitioning method B

to partition the observed network into communities. According to

the Bayes theorem, the link probability of a node pair xij can be

estimated as

p(xij DAO)~

P
V

Ð
B

p(xij DAO,B)p(AODB)p(B)dBP
V

Ð
B

p(AODB)p(B)dB
, ð3Þ

where V denotes the space of samplings. For a node pair xij within

a community m, we suppose that p(xij DAO,Bm)~Dm. Due to the

high inner link density existing in the community m, it follows that

mm?nm. We obtain

p(AODBm)&D
nm
m (1{Dm)nm{mm : ð4Þ

Let p(Bm) equal a constant. Eq. (3) can be rewritten as

p(xij DAO)~

P
V

Ð 1

0
p(xij DAO,Bm)p(AODBm)dDmP

V

Ð 1

0
p(AODBm)dDm

: ð5Þ

Using Eq. (4) and Eq. (5), one can obtain

p(xij DAO)~

P
V ½(nmz2){1

2nm{mmz2

nm{mm

 !{1

�

P
V ½(nmz1){1

2nm{mmz1

nm{mm

 !{1

�

&
1

DVD

XDVD
nm

2nm{mm
,

ð6Þ

where DVD denotes the times of the sampling. Likewise, for a node

pair xij , where node i is in community m and node j is in

community u, we suppose that p(xij DAO,Bmu)~Dmu. Due to the low

connecting link density between the community m and community

u, it follows that mmu%nmu. We obtain

p(AODBmu)&D
mmu
mu (1{Dmu)nmu : ð7Þ

Let p(Bmu) equal a constant. Eq. (3) can be rewritten as

p(xij DAO)~

P
V

Ð 1

0
p(xij DAO,Bmu)p(AODBmu)dDmuP

V

Ð 1

0
p(AODBmu)dDmu

: ð8Þ

Using Eq. (7) and Eq. (8), one can obtain

p(xij DAO)~

P
V ½(mmuz2){1

nmuzmmuz2

nmu

 !{1

�

P
V ½(mmuz1){1

nmuzmmuz1

nmu

 !{1

�

&
1

DVD

XDVD
mmu

nmuzmmu
:

ð9Þ

In the Results section, by applying the network partitioning

algorithm FBM proposed in the next section, we mainly use Eq. (6)

and Eq. (9) to estimate link probabilities for missing links and non-

existent links, namely the connection likelihood for those node

pairs having no links in the observed network. Notice that, for the

special ‘‘community’’ introduced in this section, the link proba-

bilities for those node pairs within it are always zero.

Algorithm of Fast Block Probabilistic Model
According to the theory of network partitioning, our goal is to

partition the network into a set of blocks and ensure that each

block is either a community or a special community composed of

some small degree nodes. It’s not trivial to find all the communities

in a given network by an exhaustive search because the search

space is usually very large. To perform this task efficiently, we

proposed a Fast Block probabilistic Model (FBM) by applying the

greedy strategy (A greedy algorithm is an algorithm that follows

the problem solving heuristic of making the locally optimal choice

at each stage with the hope of finding a global optimum. In some

cases, a greedy strategy does not in general produce an optimal

solution, but nonetheless a greedy heuristic may yield locally

optimal solutions that approximate a global optimal solution in a

reasonable time). Compared with conventional methods using the

rule of Metropolis-Hasting [30], our algorithm can obtain huge

improvement in computational efficiency in accordance with the

experimental results shown in the Results section. The FBM

algorithm can be described as follows:

Input: a network G(V ,E);

Output: an array of communities (C1,C2,:::,Cn) of the network G;

1B1~(V1,E1) and B2~(V2,E2);//Randomly partition the
network G(V ,E) into two blocks B1 and B2. Let V~

V1|V2, w~V1\V2 and w~E1\E2.

2 for each Bi do

3 j = 1;

4 while Ei=w do

Figure 1. An example network illustrating the relationship
between community distribution and link density matrix. (a)
The community distribution of the network. (b) The link density matrix
of the corresponding community distribution.
doi:10.1371/journal.pone.0072908.g001
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5 Cj = CommunityFind(Bi);//Find a community Cj with

relatively high inner link density in the Bi.
6 Output(Cj );

7 Remove(Cj , Bi);//Remove Cj from Bi including nodes

and edges which belong to Cj and links between Cj

and Bi.
8 j = j+1

9 end
10 Output(Bi);//Obtain a special community composed

of a set of small degree nodes.
11 end
To find a community in step 5, we need to determine whether a

block is a community by calculating its link density. The procedure

of finding a community is described as follows:

Input : a block B(V ,E);
Output: a community C;

1A = Density(B);//Calculate the inner link density of the
block B by using Eq. (1)

2 while Avthreshold do//A threshold for link density is an

accepted maximum value set in advance. threshold[½0,1�.
3 Sort(V );//Sort all nodes by degree in descending

order.
4 B = Remove(v,B);//Pick out the first node v owning

the least degree in the ordered node list. Remove
node v and edges connecting between v and B.

5 A = Density (B);//Recalculate the inner link density
of block B.

6 end
7 C = B;

8 Output(C);

We don’t need to specially provide a mechanism in our

algorithm to ensure a relatively low connecting link density

between blocks due to the fact that most real-world networks are

sparse [31]. By implementing our algorithm, we find that it can

keep the number of links between every two blocks low,

automatically; i.e., every two blocks has relatively low connecting

link density. In fact, we have also verified that our algorithm can

still work well even through the network is relatively dense. For a

single running of the algorithm, we can obtain one network

partition. According to the sampling theory described in the

former section, we need to implement the algorithm iteratively to

obtain enough independent network partitions. To ensure that

each network partition is independent, we have adopted a simple

but effective trick in which we partition the network into two

blocks randomly in the first step in our algorithm. Unlike the rule

of Metropolis-Hasting which requires numerous node moves to

ensure that the next partition is independent of the former one, the

first step can ensure that our algorithm achieves this goal

efficiently. This is also a reason that our algorithm is much faster

than the conventional ones, such as HRG [32] and SBM [33]. As

a result of the first step, a given network partition obtained by our

algorithm always contains two special communities which are

composed of small degree nodes. On the other hand, if we remove

this step, our algorithm will degenerate to a pure community

detection algorithm.

Before using the FBM algorithm to implement link prediction,

we still need to determine an uncertain or free parameter. As

stated in the algorithm, the threshold for link density must be

chosen carefully (the threshold is an accepted maximum value of

the link density to identify a community in our algorithm). We try

to pick out the optimized value of the threshold by observing the

variations in prediction accuracy (see the definition of accuracy

measure in the Results section) with different link density settings.

The fraction of missing links is set to ten percent for four small-

sized networks which we are about to use to test in the Results
section (We obtained similar results on using different fractions of

missing links) and the accuracy variation curves plotted for the

four networks are shown in Fig. 2. We find that the accuracy of

link prediction tends to converge after the link density is larger

than 0.5 and reaches the best when the threshold for link density is

set to 1 such that a block corresponds to a clique. Therefore, we set

the threshold to 1 while implementing the networks partitioning

for all testing networks in this article. Meanwhile, since we’ve

validated that FBM approach has the best accuracy performance

when the threshold is equal to 1, it turns out that the procedure of

finding a community is equivalent to the procedure of finding a

maximum clique in a given network. According to our experi-

ments, we observe that, by using a fast maximum clique detection

algorithm [34] to replace the procedure of finding a community in

our algorithm, the FBM approach can provide same accurate

results but perform even faster (the source code of the FBM

algorithm is freely available upon request).

Data Description
In this article, we consider eight real-world networks for

evaluation. (1) Karate: Social network of friendships between 34

members of a karate club at a US university in the 1970s [35]. (2)

Grassweb: Food web of a grassland ecosystem, i.e., a network of

predator-prey interactions between species [36].(3) Terrorists: A

network of associations between terrorists [37]. (4) C. elegans (CE):

The neural network of the nematode worm C. elegans, in which

an edge joins two neurons if they are connected by either a

synapse or a gap junction [38]. (5) Political Blogosphere (PB):

Political blogosphere is compiled by Lada Adamic and Natalie

Glance. Links between blogs were automatically extracted from a

crawl of the front page of the blog [39]. (6) Online Dictionary of

Library and Information Science (ODLIS): ODLIS is designed to

be a hypertext reference resource for library and information

science professionals, university students and faculty, and users of

all types of libraries [40]. (7) PPI net1: A yeast protein-protein

interaction network. Some links in this network are not reliable.

This is the same PPI used as network1 in Cannistraci et al. [9]. (8)

PPI net2: A yeast protein-protein interaction network. Some links

in this network are not reliable. This is the same PPI used as

network2 in Cannistraci et al. [9]. Here, we only consider the

giant connected component and every network is treated as an

Figure 2. The dependence of AUCs on the thresholds of link
density for the four networks.
doi:10.1371/journal.pone.0072908.g002
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undirected network. The statistics on the topological features of

the eight networks are summarized in Table 1.

Results

To estimate the connection likelihood of missing links,

researchers have developed various probabilistic prediction models

in recent years. A typical model, Hierarchical Random Graph

(HRG), which was proposed by Aaron Clauset et al., was applied

to predict missing links in some networks with obvious hierarchical

structure [32]. Based on a similar principle of statistics as used by

HRG model but from another angle of view, Roger Guimerà et al.

proposed a Stochastic Block Model (SBM) which can predict both

missing links and spurious links and is able to give much better

accuracies of prediction on various kinds of networks than current

popular methods including the HRG approach [33].

Because the SBM algorithm is a state-of-the-art approach which

has very outstanding accuracy performance of link prediction on

undirected networks without additional node’s or edge’s attribute

information, we mainly make performance comparisons on both

accuracy of missing link prediction and computational efficiency

between our algorithm and the SBM approach. The measures for

prediction accuracy we used here are AUC (area under the

receiver operating characteristic curve) and precision. The AUC is

a widely used accuracy measure which can be interpreted as the

probability that a randomly chosen missing link is given a higher

score than a randomly chosen non-existent link. The precision is

also a popular measure which can be defined as the proportion of

top-ranked candidate links matched to the actual missing links.

The prediction accuracies of the common neighbors method are

presented here as a baseline. Our algorithm and the SBM

approach have a common characteristic which is that in both the

approaches one is required to sample network partitions. To

ensure that the comparison is fair, we apply the same sampling

standard to both the approaches which is set to 50 times (This

sampling standard is validated empirically by our experiments

which can ensure that both the approaches obtain stable

prediction accuracy on the testing networks and more samplings

only incur more time consumption for the implementation). The

machine we use for testing is a desktop with a processor of Intel (R)

Core (TM) i7 CPU 930 @ 2.8 Ghz and 8 Gigabytes memory.

Here, we use four real-world networks including Karate, Grass-

web, Terrorists and CE for evaluation. The links removed from

the network constitute the probe set of missing links while the rest

of the network constitutes the training set. The prediction

accuracies on the four networks, measured by AUC and precision,

are plotted in Fig. 3 and the corresponding comparisons for

running time (the unit is seconds) are shown in Fig. 4. To ensure

that the results can be trusted, each value of the accuracy is

obtained by averaging over 100 implementations with indepen-

dently random network divisions of training set and probe set

while the error bars denote the standard deviation. Accordingly,

each value of the running time is the cumulative time over 100

implementations.

According to the AUC comparison results shown in Fig. 3, the

FBM approach performs better than the SBM approach on the

networks of Grassweb and Terrorists, and has very close accuracy

results to that of the SBM approach for the other two networks. As

for the precision measure, FBM approach also obtains similar

results compared with SBM approach. Meanwhile, according to

the computational efficiency comparison results shown in Fig. 4,

the running time used by the FBM approach is far less than that

used by the SBM approach. During the experiments, we observed

that the running time consumed by the SBM approach increased

rapidly along with the size of the network while that of the FBM

approach increased gradually, and this indicates that the SBM

algorithm has much higher time complexity than the FBM

algorithm and is also the main reason that we only choose four

networks with relatively small size for making performance

comparison. We have also performed accuracy and running time

comparisons with some other popular local similarity indices, such

as classical local similarity indices and CAR-based indices [9] on

six networks including two large-sized networks (see Figure S1,

Table S1, Table S2 and Table S3 in Appendix SI for detailed

results). All the experimental results confirm that the FBM

approach is able to provide very good accuracy for missing link

prediction on real-world networks with superior computational

efficiency.

Analysis

Link Prediction within Network Communities
In this section, we try to find out why the FBM approach can

give very good accuracy for missing link prediction on the tested

networks. Using the FBM approach, we partition the networks

into communities and obtain link density distributions shown in

Fig. 5. We note that some node pairs within the communities have

a relatively high connection likelihood. This implies that these

node pairs are possible to form links within the communities. By

further analyzing the local structures connecting to these node

pairs, we deduce that there are mainly three important principles

driving link formation in the communities. To demonstrate the

three principles easily, we give three typical cases shown in Fig. 6,

each of which is able to uncover one kind of links which are likely

to form in the communities.

Fig. 6(a) shows a ring structure with six nodes labelled by

numbers and two possible links for node pair (1,3) and node pair

(3,6) which are denoted by red dashed line and blue dashed line.

We evaluate the likelihoods of the two possible connections by

applying the FBM approach to the network. The results show that

Table 1. Statistics on the topological features of the eight
networks.

DV D DED C D M SkT SdT

Karate 34 78 0.588 0.139 0.416 4.588 2.408

Foodweb 75 113 0.497 0.041 0.635 3.013 3.875

Terrorists 62 152 0.58 0.08 0.529 4.903 2.508

CE 297 2148 0.308 0.049 0.397 14.465 2.946

PB 1222 16714 0.36 0.022 0.426 27.355 2.738

Odlis 2898 16376 0.351 0.004 0.456 11.302 3.17

PPI-1 4036 10411 0.094 0.001 0.576 5.159 4.412

PPI-2 4385 12234 0.128 0.001 0.569 5.58 4.424

DV D and DED denote the number of nodes and links. C and D are the average
clustering coefficient and the density of the network, respectively. If a vertex vi

has ki neighbours, ki(ki{1)=2 edges could exist among the vertices within the
neighbourhood. Thus, the local clustering coefficient for a network can be

defined as Ci~
2Dfejk : vj ,vk[NigD

ki(ki{1)
[39], where Ni denotes the neighbours of vi .

C is defined as
1

DV D

XDV D

i~1
Ci . D is defined as 2DED=(DV D{1)DV D. M is the

modularity of the network defined as
X

ij
½ Aij

2DED
{

kikj

4DED2
�d(ci ,cj ) [26], where ci

denotes a community which includes the vertice vi and Aij~1 if vertices vi and

vj are connected and 0 otherwise and d(a,b)~1 if a~b and 0 otherwise. SkT
and SdT denote the average degree and the average shortest distance.
doi:10.1371/journal.pone.0072908.t001
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Figure 3. Accuracy comparisons for missing link prediction between FBM, SBM and CN approaches on four networks. Each of AUC
value and precision value is averaged over 100 implementations and the error bar represents the standard deviation.
doi:10.1371/journal.pone.0072908.g003

Figure 4. Comparisons of computational efficiency on four networks. Each value of running time is the cumulative time for 100
implementations.
doi:10.1371/journal.pone.0072908.g004
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the link probability of node pair (3,6) is only 50 percent of that of

node pair (1,3) which means that the node pair (1,3) is more likely

to connect together compared with node pair (3,6). We note that if

a link is added to node pair (1,3), a clique (1,2,3) will be

established. This indicates that a link tends to establish a clique in

a network. Fig. 6(b) shows a five-node network and two possible

links for node pair (1,3) and node pair (3,5) which are also denoted

by blue dashed line and red dashed line, respectively. After

calculating the link probabilities of the two node pairs, we find that

the link probability of node pair (1,3) is 75 percent of that of node

pair (3,5). The difference between the two link probabilities can be

accounted from the observation that an addition of link (3,5) will

form a larger clique (2,3,4,5) than the clique (1,2,3) if link (1,3) is

added. This case demonstrates that a link tends to create a larger

clique first in a network when there are many options available to

choose from. Fig. 6(c) shows another interesting phenomenon of

link formation. After calculation, the link probability of node pair

(2,5) is 1.5 times higher than that of node pair (1,3). We find that

link (2,5) can create three cliques including (1,2,5), (2,3,5) and

(2,4,5) while link (1,3) is only able to create two cliques, i.e., (1,2,3)

Figure 5. Link density distributions for the four networks. The diagonal highlighted blocks are corresponding to communities with link
densities which are not less than 0.8.
doi:10.1371/journal.pone.0072908.g005

Figure 6. Three artificial networks illustrating the link formation mechanism in the communities.
doi:10.1371/journal.pone.0072908.g006
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and (1,3,5). This result implies that if adding a link is able to create

more cliques, the link will have higher likelihood of being

established. Based on the three typical cases, we summarize three

principles to explain how a link is created in a given community.

(i) Links tend to be established such that they form a clique in a

given community.

(ii) A link prefers to create a large-sized clique rather than a

small-sized clique in a given community.

(iii) A link tends to form as many cliques as possible in a given

community.

The three principles reveal that links tend to cluster and form

cliques in the community. To validate whether the link formation

mechanism described by the three principles can be well captured

by our algorithm, we perform an additional experiment on the

four networks. We vary the link density threshold from 0.6 to 0.9

and use the FBM approach to partition each network into

communities. In each running, we apply the three principles to

selectively remove 10 percent of links which exist in the

communities. The set of removed links is treated as the probe

set and the rest of the network is treated as the training set. We

again use the AUC and precision measures to evaluate the

accuracy of prediction and obtain the average results over 100

implementations shown in Fig. 7. As expected, we find that the

prediction accuracies for the links removed selectively are much

better than those for the links removed randomly. The best AUC

result for Karate network is nearly as high as 95% and those for

other three networks even exceed 95%. Likewise, the precisions on

four networks are improved drastically as well. Even in the worst

case of the grassweb network, the precision can achieve 34.04%

improvement. The results empirically verify that the FBM

approach can indeed identify missing links in the communities

very accurately.

Link Prediction in Noisy Networks
Link prediction in noisy networks (networks having unreliable

links) is a vital challenge in the domain of bioinformatics. To

further validate the FBM approach’s performance, we assess our

approach on two noisy protein-protein interaction (PPI) networks.

Because it’s reported that CAR-based indices have outstanding

performance of link prediction on the two noisy PPI networks [9],

we also adopt the two networks to make comparisons between

FBM approach and CAR-based indices shown in Fig. 8. Here, we

directly treat each noisy network as the observed network and take

an external referee (gene ontology) to validate the accuracy of

prediction on the non-adjacent links, and therefore random link-

removal is not necessary in this case (for details on this evaluation

procedure referring to Cannistraci et al. [9]). The results

demonstrate that the FBM approach basically performs worse

than CAR-based indices in both precision and computational

time. During the experiments, we specially tuned the sampling

parameter for the FBM by 20, 30 and 50 respectively. We notice

that more or less samplings will both impact the accuracy of the

approach negatively (when the sampling parameter is set to 30, it

can produce the best accuracy results in terms of the two

experiments). And this implies that too many samplings will cause

the FBM model over-fitting to the noisy or unreliable network

which can’t truly reflect the real link formation mechanism of

protein-protein interaction (in other words, unreliable network will

mislead the training procedure of the FBM model). Meanwhile,

less samplings will inevitably cause the issue of under-fitting. So,

the noisy networks have put the FBM into a dilemma and

degraded its performance. The results shown in Fig. 8 also verify

that CAR-based methods are quite robust to resist noisy

information, and this is a merit of CAR-based methods.

Discussion

In this article, based on the theory for network partitioning and

the greedy strategy, we proposed the algorithm of Fast probability

Block Model (FBM) which can partition a given network into

communities efficiently. By applying it to predict missing links on

four real-world networks, the FBM algorithm exhibited slightly

better accuracy of prediction and overwhelmingly better compu-

tational efficiency than the state-of-the-art method SBM. Accord-

ing to the accuracy comparison results (see Figure S1 of Appendix

SI for detailed results), FBM can basically outperform all local

similarity indices on six real-world networks. We believe that the

FBM approach has the potential to give fairly good accuracy of

link prediction on much larger and more complex networks such

as massive biological networks, rapidly growing social networks,

and World Wide Web networks, etc., for its outstanding

performance in prediction accuracy and computational efficiency.

Meanwhile, our method merely uses the topological information of

the networks. So it is very likely to give enhanced prediction

Figure 7. Accuracy comparisons between predicting links selectively removed from the communities by following the three link
formation principles and predicting links removed randomly. The fraction of links removed is always 10 percent.
doi:10.1371/journal.pone.0072908.g007
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accuracy in specific applications when domain knowledge, such as

node properties and edge features, is introduced. However, it must

be pointed out that, according to our experimental results, the

current version of FBM approach can’t perform very well on the

noisy networks for it has the over-fitting limitation to the unreliable

network data. And this will be an interesting question for us to

explore further in the future.

On the other hand, from the theoretical aspect, we conclude

three principles to demonstrate that links are formed preferentially

to create cliques in the communities, which shed light on the

underlying mechanism of link formation in the communities. In

accordance with our experiments, the FBM algorithm can give

much better accuracy of prediction for the specific links removed

from the communities using the three principles than that for

randomly missing links. This result indicates that some rules

governing the link formation and clustering in the communities

have been well captured by our approach. Previous studies in

biological networks have found that, in terms of gene expression,

clique represents the most trusted potential for identifying a set of

interacting genes [41]. Our work can provide new evidences

demonstrating that the process of link formation and clustering in

the communities is promoted by the growth of cliques. Further-

more, the mechanism of common neighbors approach, usually

explained by the balance theory [42,43], is actually a special

application of the principle (iii). If a given node pair has many

common neighbors, it implies that it will form many triangle

cliques if a link is added to the node pair. Therefore, the common

neighbors approach can still perform well in some cases. But

because it only captures one aspect of link formation, it could not

give good results of accuracy in our experiments.

Supporting Information

Figure S1 Accuracy comparisons for missing link
prediction between FBM, CAR-based approaches and
classical approaches on six networks. The fraction of links

randomly removed is always 10 percent. Each value of the AUC

and precision is averaged over 100 implementations.

(EPS)

Table S1 Statistics on the average AUCs with standard
deviations for the FBM, CAR-based indices and classical
indices on six networks with 10 percent of links
randomly removed. Each value of the AUC is averaged over

100 implementations. The values in boldface are the top-3 best

results.

(PDF)

Figure 8. Accuracy and computational time comparisons between FBM and CAR-based approaches on two noisy PPI networks. (a)
The upper plot illustrates the precision curves for all approaches on the PPI-1 network while the bars in the lower plot illustrate the corresponding
AUP (area under precision curve) values for each approach. (b) The upper plot illustrates the precision curves for all approaches on the PPI-2 network
while the bars in the lower plot illustrate the corresponding AUP (area under precision curve) values for each approach. The sampling parameter is
tuned by 20, 30 and 50 for the FBM approach. The computational time (seconds) for each method is shown in the legend.
doi:10.1371/journal.pone.0072908.g008
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Table S2 Statistics on the average precisions with
standard deviations for the FBM, CAR-based indices
and classical indices on six networks with 10 percent of
links randomly removed. Each value of the precision is

averaged over 100 implementations. The values in boldface are

the top-3 best results.

(PDF)

Table S3 Statistics on the running time (seconds) for
the FBM, CAR-based indices and classical indices on six
networks with 10 percent of links randomly removed.
Each value of the running time is the cumulative time for 100

implementations. The values in boldface are the best results.

(PDF)

Appendix SI Appendix to the manuscript.

(PDF)
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34. Östergård PRJ (2002) A fast algorithm for the maximum clique problem.

Discrete Applied Mathematics 120: 197–207.

35. Zachary W (1977) An information flow model for conflict and fission in small

groups. J Anthropol Res 33: 452–473.

36. Dawah HA, Hawkins BA, Claridge MF (1995) Structure of the parasitoid

communities of grass feeding chalcid wasps. Journal of animal ecology 64: 708–
720.

37. Krebs V (2002) Mapping networks of terrorist cells. Connections 24: 43–52.

38. White JG, Southgate E, Thomson IN, Brenner S (1986) The structure of the

nervous system of the nematode caenorhabditis elegans. Philos Trans R Soc
Lond B Biol Sci 314: 1–340.

39. Adamic LA, Glance N (2005) The political blogosphere and the 2004 us
election: divided they blog. In: Proceedings of the 3rd international workshop on

Link discovery. New York, NY, USA: ACM, 36–43.

40. Reitz JM (2002) Odlis: Online dictionary for library and information science.

Online.

41. Voy BH, Scharff JA, Perkins AD, Saxton AM, Borate B, et al. (2006) Extracting

gene networks for low-dose radiation using graph theoretical algorithms. PLOS

Computational Biology 2: e89.

42. Dong YX, Tang J, Tian SWJL, Chawla NV, Rao JH, et al. (2012) Link

prediction and recommendation across heterogeneous social networks. In: 2012
IEEE 12th International Conference on Data Mining. Brussels, BR, Belgium:

IEEE, ICDM ‘12, 181–190.

43. Symeonidis P, Tiakas E, Manolopoulos Y (2010) Transitive node similarity for

link prediction in social networks with positive and negative link. In: Proceedings
of the fourth ACM conference on Recommender systems. New York, NY, USA:

ACM, RecSys ‘10, 183–190.

Community Structure and Link Formation

PLOS ONE | www.plosone.org 10 September 2013 | Volume 8 | Issue 9 | e72908


