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Abstract

The abundance of high-dimensional measurements in the form of gene expression and mass spectroscopy calls for models
to elucidate the underlying biological system. For widely studied organisms like yeast, it is possible to incorporate prior
knowledge from a variety of databases, an approach used in several recent studies. However if such information is not
available for a particular organism these methods fall short. In this paper we propose a statistical method that is applicable
to a dataset consisting of Liquid Chromatography-Mass Spectroscopy (LC-MS) and gene expression (DNA microarray)
measurements from the same samples, to identify genes controlling the production of metabolites. Due to the high
dimensionality of both LC-MS and DNA microarray data, dimension reduction and variable selection are key elements of the
analysis. Our proposed approach starts by identifying the basis functions (‘‘building blocks’’) that constitute the output from
a mass spectrometry experiment. Subsequently, the weights of these basis functions are related to the observations from
the corresponding gene expression data in order to identify which genes are associated with specific patterns seen in the
metabolite data. The modeling framework is extremely flexible as well as computationally fast and can accommodate
treatment effects and other variables related to the experimental design. We demonstrate that within the proposed
framework, genes regulating the production of specific metabolites can be identified correctly unless the variation in the
noise is more than twice that of the signal.
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Introduction

Metabolites are the products of cell metabolism and their

functions are highly diverse. The profile of metabolites shows the

current physiological state of a cell and is the end result of the

upstream biological information that flows from the biological

processes going from the genome over the transcriptome and

proteome to the metabolome.

We wish to combine data from transcriptomics and metabo-

lomics into one experimental setup in order to generate hypotheses

about the regulatory processes between different molecular levels.

While the biological processes between different levels of ‘‘omics’’

are highly complex, a combined analysis of metabolite and gene

expression data will help discover and elucidate the underlying

regulatory networks and identify genes that influence the

metabolome because they – directly or indirectly – are involved

in the metabolism.

Gene expression studies measure the simultaneous expression of

up to thousands of genes and can be used to identify which genes

are up- or down-regulated under certain conditions. Metabolomic

studies provide information on the metabolites found within a

biological sample – for example from mass spectrometry data –

and can be used to discriminate between the amount and types of

metabolites in different samples or under different conditions.

These two ‘‘omics’’-approaches address questions at different

biological levels, but they both seek to uncover the underlying

systems biology and when combined they can be succesful in

predicting gene functions or identifying gene-metabolite associa-

tions [1,2].

The idea of coupling data from different aspects of the same

biological system – a term known as integrative analysis or ‘‘multi-

omics’’ – is not new and several recent publications apply this idea

to identify gene function or gene-to-metabolite networks for for

example plant and cancer cells [2–5]. The integrated data analysis

methods all need to reduce the dimensionality of the data (either of

each type of data separately or by combining the two data types

into a single normalized ‘‘dimensionless’’ dataset prior to

dimension reduction) before multivariate correlation analysis,

clustering methods, or for example self-organizing maps are used

to identify groups of associated genes and metabolites [4,6,7].

Other approaches use prior knowledge (e.g., previously identified

regulatory pathways or previously hypothesized gene-metabolite

relationship) to validate findings [6,8]. The recent tool, Mas-

sTRIX, also uses existing annotation information from KEGG

(Kyoto Encyclopedia of Genes and Genomes) to visualize

combined transcriptome and metabolome data [9].
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The references mentioned above typically uses some kind of

correlation measure to describe the association between the two

types of data, but multivariate methods like partial least squares

(PLS) regression have also been used for integrated data analysis

[10]. In PLS, combinations of explanatory variables are computed

and these combinations are subsequently used as predictors in a

statistical model. However, PLS is not without caveats since the

main focus is on prediction and not on identifying the underlying

system and interpreting the effect of individual genes and the

underlying biological system may be difficult at best. When PLS is

applied to full functional mass spectrometry data it results in

components that are a mix of different mass-time combinations so

it is impossible to infer how a set of genes influence a particular

chemical compound and the underlying basis functions often lack

a meaningful interpretation compared to the original data. A

variation of these methods, co-inertia analysis (CIA) is based on

maximizing covariance between PCA (principal component

analysis) components of two separate datasets, which again could

make interpretation difficult [11]. Common for all these methods

is that they try to discover relationships between metabolomics and

transcriptomics data without describing the underlying biological

system except for the fact that the metabolites are the end product

and hence are possibly influenced by one or more genes working

on a level upstream from the metabolites.

In this paper, we will present a statistical modeling approach to

model the association between gene expression and metabolite

development as measured by DNA microarrays and Liquid

Chromatography-Mass Spectroscopy (LC-MS), respectively. The

idea is to use matrix decomposition to identify metabolite

‘‘building block’’ that constitute the observed metabolite profile

data and then combine these results with a multivariate linear

model with the gene expression data as possible predictors

(properly regularized to prevent overfitting). This combined

approach has the nice properties that we are 1) able to identify

which metabolites occur in unison between different experimental

setups, 2) we are able to handle complex experimental designs

through the statistical model, 3) we get information about which

genes are associated with each metabolite as well as the individual

magnitude of their association, and 4) we do not require

information from existing databases on known pathways or

annotations. Thus, our proposed modeling approach can be used

not only to validate previously known gene-to-metabolite networks

but also to uncover new networks for organisms that are less

investigated than, say, yeast or Arabidopsis and to describe the

strength of these relationship. In addition, the underlying

biological assumption that the metabolites are the end product

of a complex biological process is kept in mind because the two

datatypes are not assimilated into a single dimensionless dataset.

Instead, the functional relationship where the gene expression

levels can influence the metabolites forms the basis of the

underlying model.

The paper is structured as follows: in the methods section we

describe how a metabolite matrix decomposition can be combined

with a regularization technique to model the associations between

gene expression and metabolite profile data. The simulation

section describes a simulation setup to show how effective our

method is in identifying the correct relationships between genes

and metabolites for various signal-to-noise ratios. In applications

we apply the method to a Cassava dataset and the results section

presents the results from the simulations and application. In the

discussion we discuss advantages and disadvantages of the

proposed method. Example code for running the analyses in R

and MATLAB can be found at www.biostatistics.dk/ida.

Results

To demonstrate the validity of the proposed method a

simulation study was undertaken. Our primary focus is whether

the approach is able to identify the correct pathways that govern

the underlying relationships among gene expression levels and

peaks in the simulated spectra. We also performed two other

simulations to examine the robustness of the method. In one

scenario we increased the number of genes, while the other

investigated how the method performs if no associations between

genes and peaks in the spectra are present. Each combination of c
peaks and 7 noise levels was run 300 times and the results are

shown in Figure 1. A decomposition with ‘‘number-of-peaks +1’’

components was used and the resulting mixing matrix was

subsequently used as response in ‘‘number-of-peaks’’ models with

the expression from 1000 simulated genes as predictors. The first

selected gene from each model was compared with the gene

known to be associated with the component, and if it did not

match perfectly it was scored as an error. The percentage of the

300 simulations that resulted in errors is our error/misclassifica-

tion rate. Each line in the figure represents a setup with a given

number of peaks and the percentage of incorrectly classified genes

are shown for shown for various signal-to-noise ratios (SNR)

ranging form 52 to 0.1. Note that the x-axis in Figure 1 is on a log

scale to better differentiate the results for both low SNRs and high

SNRs.

The percentage of correctly classified genes was very high, more

than 95% on average when the SNR was higher than 5. With a

SNR of 52 the correct genes were identified in 97.6% on average

of all cases, ranging from 99.7% with 5 peaks to 93.2% with

15 peaks, decreasing slightly to 97.1% and 95.3% for SNR 16 and

6, respectively. From SNR 2.5 the percentage of correctly selected

genes decreased more rapidly from 88.6% to 74.1% SNR 1.4,

53.9% SNR 0.5 and 38.9% for SNR 0.1.

Increasing the number of peaks generally resulted in larger error

rates while the effect of noise appears independent of the number

of peaks. This was most notable with high SNR. For lower SNR,

this trend became less clear, in fact with SNR 0.5 the order of the

lines corresponding to different number of peaks changed order:

the error was 43.7% with 5 peaks and 43.5% with 15. The effect of

lower SNR can be seen in Figure 1, from SNR 52 to 6 mean errors

are below 5% with range about 7%. From SNR 2.5 to 0.1 the

effect of noise appears non-linear, and error range increases to

31.8%.

Figure 1. Results of simulation study. Each line represents the error
rate for various signal-to-noise ratios for a given number of peaks in the
simulated spectra. Each combination of peaks and noise ratio was run
300 times. x axis on log scale to help visualization.
doi:10.1371/journal.pone.0072116.g001
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The effect of increasing the number of genes from 1000 to

25000 can be seen in Figure 2. More genes does decrease the

precision of the model in particular when the number of genes is

low. However, as soon as the initial number of genes is large (5000)

then the noise in the data is far more influential on the error rate

than the number of genes. With SNR 6 the error went from 0.3%

using 5000 genes to 0.8% with 25000 genes. With lower SNR the

effect of more genes affected the performance to a higher degree,

with SNR 0.5 the error ranged from 8.2% to 43.6%. The effect of

increasing the number of genes from 1000 to 25000 can be seen in

Figure 2. More genes does only decrease the precision of the

model slightly, however the noise in the data is substantially more

influential. With SNR 6 the error went from 0.3% using 1000

genes to 0.8% with 25000 genes. With lower SNR the effect of

more genes affected the performance to a higher degree, with

SNR 0.5 the error ranged from 8.2% to 43.6%.

Finally we wanted to investigate the performance of the model

when no associations between genes and peaks in the spectra are

present. We did this by generating data as previously described

with 10000 genes, a SNR of 20 and 5 peaks. After generating the

spectra we removed the 5 influential genes, and used a random

subset of 1000 genes from the remaining 9995. Following gene

selection by LARS we fitted a multiple regression model with the

selected genes in order to obtain a p-value for the gene selected

first by LARS. This procedure was run 300000 times. Out of the

possible 9995 genes, only 475 genes were among the first selected

genes with a frequency ranging from 1 to 30199 times (mean 3158

and standard deviation 6365). Few genes (87) were selected more

than 5000 times and only 5 of 9995 were selected approximately

30000 times. The average p-values from the multiple regression

model was 0.49 with standard deviation 0.11. P-values centered

closely around 0.5 and few genes selected very often indicates that

the method is robust against unfortunate subset compositions.

Shrinkage methods do not produce p-values and therefore the

strength is not known. The genes selected are the best ones even if

selected from a set with no associations to the response. However

this result suggests that variable importance can be employed to

quantify the significance of the found association.

As mentioned previously the results from the analysis are

directly interpretable with respect to the original data. Assume, for

instance, that one sample like the the upper left panel in Figure 3

corresponds to one biological sample out of several. At the end of

the analysis we know how the individual components/features

look, their positions as described by retention time and m=z makes

it possible to identify the metabolic compounds that represent the

peaks in the LC-MS spectra. For example, the red colored basis

function in Basis A and B can easily be identified in the original

spectra as the peak furthest to the left. At the same time we know

the weights of all the basis functions required to reconstruct the

original samples. Using the corresponding mixing component (also

in red) we are able to find genes associated with that specific peak.

Discussion

The underlying assumption in our setup is that the gene

expression levels may influence the downstream production of

metabolites. We have clearly demonstrated that within this

framework, genes regulating the production of specific metabolites

can be identified even though the proposed method uses very few

assumptions. In that sense, our approach resembles unsupervised

learning techniques since we both extract possible basis functions

from the spectra data and identify associations between the

weights of the basis functions and the gene expression levels.

In the simulation study we achieved very high accuracy in

identifying the genes known to control the peak heights (metabolite

content) in the generated spectra. As expected, the accuracy was

was highest when the signal-to-noise ratio was high and the error

rate was less than 20% until a ratio around 2. Even when the

signal-to-noise ratio is less than one the error rate generally is less

than 60%.

Not surprisingly, the performance of the model decreases when

more peaks are present (see Figure 1). This is a result of poorer

separation by parallel factor analysis (PARAFAC), which is to be

expected as partial or even full peak overlaps become more

frequent. Note that explained variation can still be high even if

separation of the tensor into the original components is poor, in

the sense that the estimated components do not resemble the

original components. This can occur if the estimated components

are mixtures of true components or mixtures of noise and true

components. The simulated spectra were notably smaller (R40|30)

than most real-world spectra purely to reduce computing time for

the simulations. In practice the peaks will be distributed over a

larger surface, resulting in greater separation performance in most

experiments.

For high SNRs there was a clear trend of larger error rate with

more peaks. This trend is obscured when SNR reaches approx-

imately 1, i.e. when the variation in signal and noise is of the same

magnitude. At this point the performance of the PARAFAC

separation becomes less influential than the noise added to the

gene expression before modeling.

The variation of the model precision must increase with the

magnitude of the noise added to the simulated gene expression

data. However, the impact of this will be low since gene expression

data from real experiments can to some extent be cleaned of noise

and often exhibit relatively low noise compared to the values tried

in our simulations [12].

The number of components for the PARAFAC model, c, should

be carefully selected to ensure that the mixing matrix does indeed

represent the mixing of individual chemical compounds. With

simulated data this is trivial as the true number of components is

known. With real data this can be a daunting task if the peaks in

the spectra are very dense. Too many components will mean that

more than one component will describe a single feature, while too

few will result in components that describe more than one feature.

It is worth noting that a PARAFAC model with ‘‘sufficient’’

components might return basis functions that capture more than

one feature. In this case the genes selected by the analysis are

assumed to influence all features in the original spectra. We argue

that it is not unreasonable to assume that a useful separation can
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Figure 2. Results of simulation study. All simulations used 5 peaks
and was run 300 times for each combination of noise and genes.
doi:10.1371/journal.pone.0072116.g002
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be achieved, and in any setting, decompositions of this type require

a qualified estimate of the number of components. A first step is

likely to be a visual inspection of the spectra followed by fitting a

few models with different (but not much) components. Optimiza-

tion of the number of factors has received some research interest,

[13] and [14] both propose algorithms to aid in the selection. In

extreme cases it might be worthwhile to divide the original tensor

of (aligned) spectra into a number of sub-tensors and apply the

proposed model to each of these. Preprocessing such as alignment

and baseline correction can also aid in reducing the error.

In this paper, we have used PARAFAC to decompose the

metabolomics data and least angle regression (LARS) to reduce

the dimension of the gene expression data. However, essentially

we have formulated a framework which accommodates different

methods for both the decomposition and the covariate selection.

Any method that can decompose the metabolite data could in

principle be used for the matrix decomposition and any

regularization method could be used for the covariate selection.

This leaves the investigator with a large and flexible toolbox where

the choice of method should be based on which qualities of the

methods that are relevant for the situation at hand.

We used LARS for regularization partly because of its speed,

partly because it scales well with increasing number of gene

expressions, and partly because the least angle regression

regularization technique fits directly into our linear model

framework shown in (3). When multiple genes are involved in

the regulation of metabolite production several of the correspond-

ing gene expression profiles could have very similar expression

patterns. In this case, even if all are influential then LARS will tend

to select only one of the genes from this set at random while setting

the coefficient of the remaining genes to zero. An alternative

would be to use OSCAR (octagonal shrinkage and clustering

algorithm for regression) which tries to address this issue by

performing selection and clustering of correlated predictors

simultaneously [15]. OSCAR assigns coefficients to all predictors

in the model, which can then be ranked by the size of the assigned

coefficients. Likewise the clustering is performed by assigning

nearly identical coefficients to co-selected genes.

A disadvantage of our proposed method (as well as other

variable selection methods) is that we consistently consider the first

selected gene regardless of its strength or significance. Thus, we

are guaranteed to find the ‘‘best association’’ from the available

data but is unable to directly infer if an association appears to be

stronger than what could be expected by chance. Our simulation

results indicate that a variable importance approach based on

resampling can be used to determine the strength of an

association. One way to investigate the robustness of a result

would be to run the analysis several times with different subsets of

the genes, in the same way as with simulated data. If the same

genes are selected irrespective of the subset they appear in, one

would be more inclined to trust the effect of these genes to be

‘‘true’’ [16].

Multi-way models are not quite as numerous as shrinkage

models, but alternatives to PARAFAC are available. Tucker

Figure 3. Example of simulated spectra with 5 peaks. Each peak height is controlled by a the expression level of a specific gene. Background is
random normal noise. The simulation study used 10 replicates to construct the Y tensor, one is shown in the upper left panel. PARAFAC
decomposition of the simulated spectra, a 6 component (5 for the peaks and 1 for the noise) model was used. In a real-world application basis A and
B, would be used to identify the compounds in the sample based on their combination of retention time and m=z value. Basis C is used as response
in a regression model with gene expressions as predictors, and for each sample unit a relative weight of the of the components can be seen.
doi:10.1371/journal.pone.0072116.g003
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models are often used to compensate for base shift in spectra [17].

However, we assume that the data has been sufficiently pre-

processed for the metabolite spectra to comparable before

analyzing the data so this is not a huge advantage. Non Negative

Tensor Factorization (NTF) is a generalization of Non Negative

Matrix Factorization aimed at retrieving underlying components

from high dimensional data [18]. The basic formulation NTF is a

PARAFAC model with non-negativity restrictions, while the

extensions NTF1 and NTF2 produce different dimensional

output, most importantly one matrix and one tensor, while

PARAFAC produces three matrices [19]. The mixing matrix can

still be extracted for the NTF1 and NTF2 extensions so NTF-

based methods would all be potential alternatives within our

framework. However, at this moment the computation time can

be prohibitive so in practice we have to wait for some faster

general purpose graphics processing unit implementations of NTF

that are underway [20].

Although other studies attempt to model associations between

genomic and metabolic data, none of these are directly compa-

rable to what we present in this paper as they use data in different

forms as well as incorporating prior knowledge [4,6–8]. Methods

based on PCA or PLS cannot be directly compared to our

proposed method as the original data is reduced to components

that are a mix of variables so it is impossible to infer a specific

relationship between a single gene and a metabolite profile unless

the principal components split up very advantageously [10,11].

Unlike many other methods, the modeling framework proposed

here does not make use of prior knowledge and have very few

assumptions, which makes analysis of less studied organisms more

approachable.

In conclusion, the method presented here successfully embraces

the complex structures of modern high resolution analysis

machinery. Our proposed model imposes few restrictions on the

association between the two datasets and is more flexible than

models based on correlation measures [7]. This allows for a more

complex relationship between transcription and metabolite

production. We also allow the model formulation to include more

complex (e.g. interaction) terms without altering the basic concept.

Each individual data type (spectra and gene expression) can be

utilized to full extent and we can bridge the gap between

transcriptomics and metabolomics in order to provide information

as to which specific genes are involved in the underlying system

pathways. This is a promising direction for large-scale analysis in

the future, potentially eliminating separate modeling of different

data types that essentially are part of the same system. The ability

to choose different methods for dimension reduction and modeling

as well as inclusion of treatment or other external variables makes

this approach very flexible and applicable throughout the

biological sciences.

Methods

We wish to construct a statistical model that can model the

observed metabolite data as a function of the observed gene

expression data.

Apart from measuring two aspects of the same system, the two

methods also produce different sized output, which is briefly

described below. The metabolite data are assumed to arise from

an LC-MS experiment, where the liquid chromatography

separates the chemical compounds and measures elution time

while the mass spectroscopy fragments the eluded compounds into

smaller molecules summarized by their mass/charge ratio, m=z.

For each combination of elution time and m=z value, an intensity

representing the amount of a given metabolite is measured. Thus,

for a single experimental unit the resulting metabolome data can

be represented as a matrix where each column represents a specific

elution time, each row a particular m=z value, and the values in

the data matrix are the observed intensities. The metabolome data

from a single experimental unit can therefore be visualized as a

three-dimensional plane with intensities giving the z values. An

example of such a plane is shown in Figure S1. Several samples

will result in a three-dimensional tensor Y[Rmz|elution time|samples

that will be part of our outcome/response data.

Gene expression studies measure the expression of thousands of

genes simultaneously. Microarray experiments, for example, emit

light proportional to the amount of RNA bound at a specific probe

when excited by a laser, and the resulting image is converted to

numeric values for expression. The data structure from such an

experiment for a single experimental unit is a vector of expression

values – one for each gene/probe. For several experimental units

in a sample the full expression data can be combined into a data

matrix where each row represents a gene/probe and where each

column represents an experimental unit. The values in the gene

expression matrix is then the observed expression levels, and each

row will therefore act as a possible predictor in our scenario.

Let n be the number of experimental units and assume that for

each experimental unit data is obtained on both metabolic spectra

as well as on gene expression levels. The three-dimensional tensor

Y[Rr|k|n represents the values from the observed metabolic

spectra from n experiments measured at k time points and at r

m=z values and the two-dimensional tensor X[Rn|m represents

the corresponding observed gene expression values from m genes

based on the n experiments. Note the 1:1 correspondence between

the number and order of the units from the two datasets: n must be

identical for both the metabolic spectra and the gene expression

data for the approach to be meaningful.

We wish to model the expected metabolic spectra as a function

of the gene expression levels in order to determine which genes are

influencing the spectra, i.e., such that

(Y)is a function of Xb, ð1Þ

where b[Rm is a set of parameters describing the effect of each of

the individual genes. If we can identify a set of genes with large

coefficients then that set has an impact on the underlying

biological system that produces the metabolic spectra.

The formulation in (1) poses two major problems: First, the

dimension of the matrices comprising Y is typically extremely

large compared to the number of experimental units, n, and at best

we can only hope to identify and model the primary trends

observed in Y. Consequently, we need to extract the primary

components that constitute the observed spectra and model those

as a function of the observed gene expression levels. Secondly,

classical multiple regression techniques will fall short even if we are

able to extract a set of spectra components to use as outcomes

since the number of genes, m, is also very large relative to the

number of experiments, n. Hence, we need to apply dimension

reduction techniques on both Y and X to extract the important

aspects of the two types of data and to be able to model the

relationship between the spectra, Y, and the gene expression

profiles, X.

Here, we suggest to decompose the spectra data, Y, using

PARAFAC to produce a three-way decomposition with c
components [21,22]. The number of desired components, c, is

chosen by the investigator and the decomposition produces

matrices, A,B, and C such that Y&
Xc

i~1
Ai0Bi0Ci, where

C~½C1D � � � DCc�[Rn|c is called the mixing matrix, and where

Genetic Regulation of Metabolites
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A~½A1D � � � DAc�[Rk|c and B~½B1D � � � DBc�[Rr|c can be inter-

preted as basis functions for retention time and m=z values,

respectively. A and B can be seen as the underlying building blocks

of the mass spectrometry data in the sense that each column of A

and B represents a building block profile, while C provides the

amounts of each building block that is necessary to reconstruct Y.

The available gene expression values act as possible predictors

in model (1), but since the number of genes, m, typically is orders

of magnitude larger than the number of observations, n, we need

to make some kind of regularization on the regression parameters

in order to prevent overfitting and to account for possible

collinearity so we are able to identify a subset of genes of interest.

Here we suggest to use least angle regression (LARS) as a way to

apply constraints on the coefficient matrix of the model [23]. Least

angle regression has the advantage that it is computationally very

fast and that two predictors obtain coefficients that behave in the

same way when they are equally correlated with the response.

Thus, we can use LARS to select a small subset of genes from

thousands of gene expressions and identify how they influence the

mixing components of the spectra.

Our modeling idea is to employ two dimension reduction

techniques: One to decompose the spectra into components that

include basis functions and a mixing matrix and one that imposes

restrictions on the vector of parameters b such that all parameters

do not enter the model at the same time. Consequently, we can

rephrase our model (1) as a set of c regression models (one for each

of the mixing components):

Ci~XbizEi for i~1, . . . ,c ð2Þ

with bi subject to some restrictions

where we essentially model the mixing or weight of the basis

functions as a function of the observed gene expression levels.

Each Ei vector is assumed to follow an independent Gaussian

distribution with mean zero and variance s2
i In. The restrictions

applied to bi is due to prevent overfitting as defined by the least

angle regression [23].

Our primary interest is to identify any associations between the

gene expression data and the metabolic profiles data so model (2)

can be illustrated as shown in Figure 4a. Model (2) is extremely

flexible, however, and we can easily include additional predictors

based on the experimental design. If, for example, some of the

experimental units were assigned to special treatment groups or

belonged to specific genetic strains then we would like to model the

effect of these external covariates. Two possible situations exists:

either the external variables influence both the gene expression

levels and the metabolic profiles (corresponding to the diagram

shown in Figure 4d) or the variables may influence only the

metabolic profiles (see Figure 4c). The former situation is often

more realistic and corresponds to the situation where the external

variables act as confounders. In either case, we can easily include

external variables pertaining to the experimental design in our

model when modeling each of the c components in order to

control for them by adding them to the model:

Ci~XbizX0bi
’zEi for i~1, . . . ,c ð3Þ

with bi
’ subject to some restrictions

Here, the extra design matrix X0 with corresponding parameters

bi
’ represents the external variables. Finally, the model also

accommodates situations where external variables act as effect

modificators of the gene expression levels (i.e., the external

variables change the effect of the gene expression data, see

Figure 4b). That situation is handled by including an interaction

between the gene expression data and the external variable in

model (3). If the primary hypothesis of interest is how the external

variables influence the metabolite profiles then the interaction can

be used to answer that as well.

To summarize, our proposed approach consists of two stages:

1. Decompose the n spectra into c basis functions for retention

time, A, and m=z values, B, and the mixing matrix C.

2. Fit each of the c estimated mixing components as function of

the observed gene expression values using a multiple linear

regression model approach that accommodate overfitting (i.e.,

can handle more regressors than observations).

In this paper we use parallel factors analysis (PARAFAC) to

provide the three-way decomposition of the Y tensor while least

angle regression (LARS) will be used for shrinkage regression and

subset selection on the set of b parameters from X. Other methods,

like singular value decomposition, or non-negative tensor factor-

ization for the metabolome data decomposition and ridge

regression, or OSCAR (octagonal shrinkage and clustering

algorithm for regression) for the shrinkage of the gene expression

data could essentially be applied as well depending on a given

situation. We consider alternative choices further in the discussion.

If an association between a gene expression level and a mixing

component (i.e., a b coefficient is found to be non-zero for one of

the c regression models) then that suggests that the corresponding

gene is associated with the metabolites corresponding to the peaks

in the relevant basis functions. For example, if we analyze, say,

mixing component C2 and find that b3 is non-zero for that

component then this suggests that gene 3 influences the weight of

basis functions A2 and B2. Basis function B2 consists of a full

metabolite profile so gene 3 will be associated to the full metabolite

profile, but since the matrix decomposition separates the profiles

based on the peaks in the spectra we essentially have that gene 3 is

associated to the peaks (and the corresponding metabolites they

represent for a given m=z value) found on basis function B2. The

same is true for basis function A2. An important feature of the

tensor (spectra) decomposition is that the two basis functions A
and B retain the x-values of the original spectra. Subsequently, a

GE MP

(a)

GE × EV MP

(b)

GE MP

EV

(c)

GE MP

EV

(d)

Figure 4. Relevant models when integrating gene expression
and metabolic profile data. ‘‘GE’’, ‘‘MP’’ and ‘‘EV’’ correspond to
gene expression data, metabolic profile data, and external variables,
respectively. The dashed lines represent the primary focus of interest:
the association between gene expression levels and metabolic profiles
while the solid lines represent possible associations between the
available data.
doi:10.1371/journal.pone.0072116.g004
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table of compounds corresponding to the peaks found in the basis

functions can be produced and metabolite databases such as

Metlin can then be searched for compounds with these attributes.

Thus, the individual component characteristics are intact and both

chemical compounds of interest and the genes controlling their

production can be identified from the model.

Simulations
A simulation study was undertaken to demonstrate the validity

of the proposed method, and data were generated as described

below. Background and treatment effects were all arbitrarily

chosen to create a data structure resembling what might be

observed with real data, but the numbers have no further

interpretation. Artificial treatments were constructed to make the

gene expression data resemble what could be observed by using

different experimental conditions. We assume that measurement

error such as variation between microarrays, retention time shifts

can be remedied by pre-processing and do not impose these on the

simulated data.

The simulation procedure was as follows:

1.

(a) Gene expression data resembling output from a DNA

microarray experiment were generated first. In this case we used

n~10 biological replicates and m~1000 genes to represent the

results from a small DNA microarray chip. The average

expression level for each gene was drawn from a Gaussian

distribution with mean 500 and standard deviation 4, N(500,42).
These 1000 simulated gene levels background were repeated 10

times to form the replicates.

(b) To simulate three groups of genes: up-, down-, and

unregulated, we applied two different background levels (+225

and 2180), to 400 and 500 randomly selected genes (rows)

respectively. Secondly, two treatments (+100 and 2320) were

applied to 5 and 4 randomly selected replicates (columns)

respectively. Finally Gaussian noise with standard deviation 100

was added to all observations, and absolute values used. Note that

the up-, and down-regulated genes have an effect of approximately

2 standard deviations.

2.

(a) c basis spectra Basis1, . . . ,Basisc, Basisi [R40|30, each

containing one peak were generated by first simulating random

Gaussian N(0:05,0:12) background noise. The coordinates of the

peaks were found by randomly drawing c positions and they were

sorted to make subsequent matching simpler. At each position a

Gaussian N(10,12) density replaced the original values to create a

building block peak.

The dimension was arbitrarily chosen but kept small to make

computations fast, and c was varied in the following from 5 to 15

to represent different complexities in the spectra. We chose to let

one peak represent the rows normally seen i LC-MS as these can

be assume to arise from the same compound.

(b) Each basis spectra was scaled by the first c genes, e.g., in the

case of 5 basis spectra, the expression levels of each of the first 5

genes would influence the height of each of the 5 peaks in the

‘‘observed’’ spectra, thus, the observed spectra for sample i is given

by

Yi~
Xc

j~1

xij
:Basisj ,

where xij is the gene expression level from gene j from sample i.

An example of a simulated spectra is shown in Figure 3. The

scaled basis spectra, Yi, were combined to make a 3-D tensor

[R40|30|10

After simulation of the gene expression and metabolic data we

applied the proposed method to see if we could identify which

genes that are associated with each of the peaks in the metabolic

spectra.

1. The simulated spectra were separated into basis and mixing

matrices with a PARAFAC model using cz1 components.

The extra component is meant to capture the background

noise of the spectra. In practice, the true number of

components, c, is not known but the number of peaks can be

visually determined from the spectra, so it is not an

unreasonable assumption that c is known.

2. Seven different noise levels were applied to the simulated DNA

microarray data to represent measurement error from the gene

expression experiment. At each noise level, Gaussian noise with

a standard deviation ranging from 0 to 60 in steps of 10 were

added to X prior to using the data for gene identification in the

LARS model (but after the true gene expression level had been

used to influence the peak height).

3. Finally, the mixing matrix was used as response in c LARS

regression models where the ‘‘noise component’’ from the

decomposition is disregarded.

The first selected gene was compared to the true gene for each

LARS model. PARAFAC does not retain the order of the peaks,

thus the components of the mixing matrix were sorted according

to the corresponding peak order of the basis matrix, B[R30|c.

This ordering is purely to ensure that we can verify if the correct

gene is matched with the correct peak as per step 2 (c) above.

This setup allows for rapid calculations and the LARS model

produces compact output which is ideal since only the first gene

selected by each of the LARS models is of interest in this study (i.e.,

for the j’th component we hope to find bj as the first selected

gene). Explained variation in the PARAFAC decomposition was

very high in all cases, 95{99%. We quantify the noise added to

the gene expression using (4), where s2
x is the variance of the

simulated gene expressions, s2
u is the variance of the added noise, s

is the residual error from the LARS model and b is the matrix of

coefficients from the LARS model.

Signal to Noise Ratio (SNR)&

ffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

xbT b
q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

ubT bzs2

q ð4Þ

Our initial parameters for the simulation results in s2
x~86342,

s was found to be between 7:5|10{3 and 3|10{1 and bT b was

between 8|10{7 and 7|10{10. The calculated SNR values are

found on the x-axis of Figure 1. A SNR value of 1 corresponds to

equal variation in gene expression and background.

Application
We applied the method to a Cassava (Manihot esculenta) dataset

with 32 samples of leaf material of both LC-MS and single-color

microarray data. Cassava is an important tuber crop in Africa,

Asia and South America but due to its content of the toxic

cyanogenic glucosides extensive processing is required before

consumption. In spite of its socio-economic importance and

identification of some of the processes in the catalyzation of

cyanogenic glucosides [24] many pathway steps are yet
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unidentified. Likewise, gene annotation is far from complete;

Roughly 3% of the genes in Phytozome (May 2013) are labeled

‘unknown protein’, and 15% have no annotation. Thus

identification of genes associated with the compounds of interest

could target potential areas of interest, which might eventually

lead to non-toxic varieties.

Of the 32 samples, two samples were disregarded due to

insufficient quality. A control sample revealed the region of

interest in the LC-MS spectra, an example of which is shown in

Figure S1. The 30 individual spectra shoved little variation with

regard to peak height. After cropping and combining the spectra,

the resulting dimension was R30|451|371. Gene expression of

13865 genes of which 30% were not annotated were measured in

the microarray experiment for each of the 30 samples. The

expression data was used without any preprocessing, such as

normalization or alignment.

A three component PARAFAC model explained 90.71% of the

variation in the LC-MS spectra. This was expected as 3 major

peaks can be visually identified in the spectra (see Figure S1).

Following our approach from the simulation study, a four

component model would have been ideal, however the signals in

the spectra was much stronger than in the simulated data. Thus,

an additional component would not capture the noise but be a

replicate of one of the other three components. Each column of

the 30|3 mixing matrix was subsequently used as response in 3

LARS models with all 13865 genes as potential predictors.

The first peak in the spectra was identified as Linamarin, a well-

known compound in Cassava. The LARS regression selected a

gene involved coupled to several CYP79 enzymes, which has been

identified as a catalyst in the synthesis of Linamarin in Cassava

[24]. With further study we hope to identify one of the other peaks

as Lotaustralin and using the selected genes to further elucidate its

synthesis pathway.

Supporting Information

Figure S1 LC-MS data, one biological sample. Ea-

ch\row’’ of peaks, illustrated by the red line, corresponds to a

molecule fragmented into smaller parts. The width of the red line

is exaggerated, as a single time point would be to narrow to be

seen. Often one such row consists of many small peaks, and are

analyzed one at a time.

(EPS)
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