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Abstract

We revisit the framework for brain-coupled image search, where the Electroencephalography (EEG) channel under rapid
serial visual presentation protocol is used to detect user preferences. Extending previous works on the synergy between
content-based image labeling and EEG-based brain-computer interface (BCI), we propose a different perspective on
iterative coupling. Previously, the iterations were used to improve the set of EEG-based image labels before propagating
them to the unseen images for the final retrieval. In our approach we accumulate the evidence of the true labels for each
image in the database through iterations. This is done by propagating the EEG-based labels of the presented images at each
iteration to the rest of images in the database. Our results demonstrate a continuous improvement of the labeling
performance across iterations despite the moderate EEG-based labeling (AUC,75%). The overall analysis is done in terms of
the single-trial EEG decoding performance and the image database reorganization quality. Furthermore, we discuss the EEG-
based labeling performance with respect to a search task given the same image database.

Citation: Ušćumlić M, Chavarriaga R, Millán JdR (2013) An Iterative Framework for EEG-based Image Search: Robust Retrieval with Weak Classifiers. PLoS ONE 8(8):
e72018. doi:10.1371/journal.pone.0072018

Editor: Michael J Proulx, University of Bath, United Kingdom

Received November 29, 2012; Accepted July 11, 2013; Published August 20, 2013
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Introduction

Successful decoding of brain signals during rapid serial visual

presentation (RSVP) triggered the idea of using the electroen-

cephalography (EEG) signals as an extra information channel for

image retrieval. By exploiting the neural correlates of visual

recognition of target images in combination with computer vision

techniques, both the robustness and flexibility of the human visual

system are retained, as well as the speed of computer vision (CV)

techniques when dealing with large image collections. Further-

more, CV techniques encounter a problem known as a semantic

gap. It represents the difference between a computational

representation of the image and the semantic descriptions that

users might employ in any given context. Hence, the rationale for

EEG-based image search is to link information decoded from

brain activity to the semantic description of the presented images.

Thus, users can be engaged in the retrieval process by guiding

computer vision directly through their EEG channel. In this paper

we revisit the framework for brain-coupled image retrieval that

relies on the closed-loop synergy between EEG-based image

labeling and content-based image retrieval [1].

Previous studies demonstrated that the EEG signature of visual

recognition under RSVP protocol can be successfully detected on

single trials and applied for real-time image triaging [2,3]. A

combination of BCI based image triaging [2] and CV techniques

was later tested using single-object color images from the Caltech

dataset [4]. The EEG based labels of the presented images were

propagated to a larger image database based on image similarity.

This approach was extended to a closed-loop system [1] where

the system may query the user for more information, by means of

a new RSVP sequence. At each iteration, a set of the EEG-based

labels was evaluated and if it did not satisfy a pre-determined

criterion, then a new image sequence was presented. The EEG-

based labels were refined with each additional RSVP sequence.

Once the criterion was fulfilled, images in the database were

ranked by propagating the final EEG-based labels. For most of the

subjects the stopping criterion was reached after the second

iteration. Reported results show that performance was highly

dependent on the type of target image, in particular due to task-

dependent variations of the CV performance.

Image retrieval applications deal with a large pool of images to

be searched through, in order to find a small portion of the images

the user is interested in. Thus, a random image presentation under

the RSVP protocol is analogous to the visual two-stimuli oddball

experiment (i.e., targets interspersed between frequent non-target

visual stimuli). Numerous studies have demonstrated that the

appearance of the rare stimuli is followed by a cognitive event-

related potential named P300 [5]. It has been shown that the

amplitude and the latency of the P300 are influenced by the target

discriminability and the target-to-target interval in the sequence

[6–8]. In realistic image databases, however, the images could be

semantically and/or visually related, implying possible similarities

between target and some non-relevant images, potentially

increasing the variability of the EEG responses.

Furthermore, some of the non-target images might be so salient

and unique that they may also induce a P300 waveform. Thus, a

parallel between the EEG-based image search and the three-

stimuli oddball paradigm (i.e., three types of stimuli: rare target,

frequent and rare distractors) seems to be more appropriate. In

this paradigm two components of P300 have been identified [6,9].

The earlier component P3a, localized in the fronto-central region
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of the scalp, is driven by stimulus novelty in the sequence (i.e., the

appearance of an uncommon non-target stimuli can also evoke it).

The later component P3b, localized in the centro-parietal region,

reflects cognitive processes of task-relevant stimuli recognition.

Therefore, in the context of image search under RSVP, the P3b

component seems to be the most relevant.

Extending previous works [1,10] on the synergy between

content-based image retrieval and the EEG-based BCI, we give

a different perspective on iterative coupling between the EEG

decoding and the automatic image labeling – i.e., the process of

propagating the decoded EEG labels through the image database

using CV techniques. In our framework, we trace the labels that

are obtained by propagating the EEG labels after every presented

RSVP sequence (i.e., iteration). This way, all images in the

database are assigned with several multimodal labels (i.e., EEG-

based labels and CV-based labels across iterations) and the final

ranking is done according to their average values. The require-

ment of the previously reported approach for the EEG-based

image retrieval is to obtain EEG labels accurate enough for the

CV part. However, this requirement might be hard to fulfill in the

case of natural images. For this reason, our approach does not rely

on such a requirement and still yields a continuous improvement

of the labeling performance across iterations even in the case of the

moderate performance of direct coupling (i.e., CV propagation of

the EEG labels). We evaluate the decoding performance of the

framework using natural color images of various types (i.e., images

of objects in their natural environment), as might be the case in a

real-world application.

The paper is organized in the following way. First, we introduce

the experimental setup and the protocol used in the study.

Afterwards, we present in detail each part of the framework: the

EEG-based image labeling and the content-based label propaga-

tion, together with the approach for their iterative coupling. Then,

the performance of the individual parts as well as the iterative

closed-loop synergy is reported and discussed. We close the paper

with the concluding remarks.

Methods

We have designed a framework for EEG-based image retrieval,

similar to the one proposed in [1], characterized by the following

course of action (Figure 1A). First, an initial RSVP sequence of

images is presented to the subject, and images are labeled as target

or distractor based on the recorded EEG signals. Second, these

labels are propagated to the unseen images in the database based

on some CV image similarity measure. Third, a new RSVP

sequence is built from the top-ranked images as target, in

accordance to the label propagation results. Following a closed-

loop setting, these steps are repeated iteratively in order to

accumulate evidence of the image labels. A constant number of

iterations (N= 4) is used in the study.

We first performed the experimental evaluation of the proposed

framework. In addition, we conducted a behavioral experiment

measuring the subject’s response time to the target stimuli. Both

experiments were run on a subset of the Corel image database that

we manually selected. The chosen images represent either images

of objects in their natural environment or natural clutter scenes.

Experimental Setup and Protocol
The study was approved by the Ethics Committee of Canton de

Vaud. Fifteen subjects participated in the study. Participants

provided their written informed consent to participate in the

experiment. All subjects had normal or corrected-to-normal vision.

There was no specific criteria for recruiting the subjects. Apart

from subjects 1, 2 and 6, they have not performed these type of

experiments before. Two of them (Subjects 1 and 2) took part in

live demos held during the European Future Technologies

Conference and Exhibition (FET11, 4–6th May 2011, Budapest).

These demos were given in a public space with high environmen-

tal noise. The remaining thirteen subjects were recorded in our

laboratory.

Data recording. EEG data were recorded with a 64-channel

BioSemi ActiveTwo system, in an extended 10–20 montage, at a

sampling frequency of 2048 Hz. The peripheral electrodes were

not considered to reduce any possible artifacts/noise. The EEG

signals, downsampled to 128 Hz, were preprocessed by a fourth-

order Butterworth bandpass filter in the range 1 Hz and 10 Hz,

since delta and theta activities are known to be related to P300

[11], and downsampled to 32 Hz. Signals were re-referenced

based on the Common Average Reference (CAR). On ten subjects

(Subjects 6–15) we also recorded the electrooculographic (EOG)

activity using three electrodes positioned above the nasion and

below the outer canthi of the eyes. Two minutes of calibration data

(voluntary eye movements and blinks) were recorded before the

experiment started. We used these data to estimate the correction

coefficients concerning EOG artifacts [12].

Task and stimuli. Subjects were instructed to silently count

images of a specified object while natural images were presented to

them at a rate of 4 Hz. Although this dual-task can affect the P300

amplitude, it helps in keeping the subject engaged in the task of

recognizing target images [6]. Subjects sat at about 60 cm from

the screen and the presented images occupy approx 6u 6 4u of

their visual field.

The training dataset contained diverse images of natural scenes,

as well as sample images of four objects (i.e., ‘‘Elephant’’, ‘‘Car’’,

‘‘Lion’’ and ‘‘Butterfly’’, 20 images per object). The testing dataset

consisted of natural images organized in 10 different categories

(‘‘Aviation’’, ‘‘Car’’, ‘‘Dog’’, ‘‘Eagle’’, ‘‘Tiger’’, ‘‘Elephant’’,

‘‘Wave’’, ‘‘Horse-jockey’’, ‘‘Flowers’’ and ‘‘Train’’). Figure 1B–C

illustrates the type of these images. Note that different sets of

images were used in the training (800 different images, presented

twice) and testing phases (1382 images).

Protocol. The experiment consisted of two phases: training

and closed-loop testing. The RSVP sequences were composed of

100 images. In the training phase the RSVP sequences were created

to satisfy the criteria of an oddball paradigm (10% of the images

correspond to the target). There were four different search tasks

(i.e., ‘‘Elephant’’, ‘‘Car’’, ‘‘Lion’’ and ‘‘Butterfly’’). Four RSVP

sequences were presented per task. In the testing phase, the closed-

loop was evaluated through four iterations per search task. Two

RSVP sequences were presented per iteration. In the initial

iteration, 10% of the images were the targets. The content of the

RSVP sequences in a given iteration was selected based on the

propagation of the EEG-based labels obtained in the previous

iteration. All the subjects performed three different search tasks

(i.e., ‘‘Eagles’’, ‘‘Tiger’’ and ‘‘Train’’). Notice that the target tasks

in the testing phase were different from the training phase. Thus, some

images used as target during training might appeared as distractors

in the testing phase.

Behavioral experiment. The response time (RT) to target

images in the RSVP sequence reflects the visual processing behind

target discrimination. In the case of natural images, the semantic

similarity between the target and distractor images affects the

response time to targets [13]. Thus, as a complement to the EEG

study, we analyzed target discriminability across the search tasks

by means of RT analysis. In the behavioral experiment subjects

had to press a key as quickly and accurately as possible whenever

there was a target. The same stimuli were used as for the
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framework evaluation. Ten out of the fifteen subjects took part in

the behavioral test. At least two days were left in-between the two

experiments to minimize any learning effect. The EEG experiment

always preceded the behavioral test. Finally, we examined if the

median response time significantly differ across search tasks by

means of the Friedman statistical test (a non-parametric test for

testing the difference between several related samples).

EEG-based Image Labeling
The images presented to the user are first labeled by means of

the EEG decoding, indicating whether they are interesting for the

user in the given context (i.e., target images). To do so, we perform

EEG single trial classification in the time domain. The data from

the training phase are used to build a classifier. The feature vector

is obtained by concatenating samples in the interval from 200 ms

to 700 ms after stimulus onset of a subset of 8 channels: C3, Cz,

C4, CPz, Pz, PO3, POz, PO4. These channels are chosen based

on the centro-parietal scalp distribution of P3b subcomponent

[6,9] and previous work on channels selection for P300 detection

[14]. Since 128 features (time samples by channels) are too many

to build a robust classifier with a limited number of samples, we

select a subset by computing their discriminant power (DP)

separately on three folds of the training data. The discriminant

power of features is evaluated using a Canonical Variate Analysis

(CVA) based method [15]. For a two-class classification problem,

it scores a feature based on its correlation with the data projection

Figure 1. EEG-based image retrieval. (A) The framework: step 1 - The RSVP sequence of images, presented to the subject, is labeled based on the
recorded EEG signals. step 2 - These labels are propagated to the unseen images in the database using CV similarity. step 3 - A new RSVP sequence is
built from the images top-ranked as target, in accordance to the label propagation results. These steps are repeated iteratively allowing the
accumulation of multimodal labels for the images in the database. (B) Illustration of the training images (four different search tasks). (C) Illustration of
the testing images (three different search tasks). The images in the figure are similar but not identical to the ones used in the study. Reprinted from
http://www.freephotobank.org/main.php and http://animalphotos.info/a/(26-4-2013) under a CC-BY or CC-BY-SA license. Image Copyright is held by
original owners. (D–E) The organization of the RSVP sequences in the training and testing phases respectively (T – a search task).
doi:10.1371/journal.pone.0072018.g001
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onto the decision vector. Finally, the most discriminant features

(DP.1%) across all folds are kept, so as to select stable

discriminant features. The average number of the selected features

(time samples by channels) across subjects is 21.6 6 4.7. Target vs.

distractor trials classification is performed by a Gaussian classifier

[16], using four prototypes per class. A Gaussian classifier is a

generalization of well-known LDA and QDA [17], where each

class may be represented by several clusters (or prototypes). The

output of the classifier is an estimation of the posterior class

probability distribution.

EOG artifacts. To eliminate the EOG as a potential source

of the discriminant activity we did an offline evaluation of the

single trial classification using the EOG corrected EEG signals.

For this purpose we apply an automated correction method based

on regression analysis [12]. Assuming the independence between

the uncorrupted EEG and EOG signals, the correction coefficients

were estimated on the data recorded in the calibration session (see

Experimental Setup). Topographical representation of the estimated

coefficients averaged across the subjects is given in Figure S1.

Image Label Propagation
Once the images presented under RSVP are labeled based on

the recorded EEG, the remaining images in the database are

labeled by means of a propagation technique. For this we use a

semi-supervised approach derived in a Bayesian Network frame-

work, based on a visual similarity graph of the images in the

database [18].

Graph. Each node in the graph represents one image. The

state of a node is the probability that the image belongs to a certain

class (target or distractor); i.e., it corresponds to the label of the

image. In turn, an arc between two nodes represents the

conditional probability that these nodes belong to the same class,

taking into account their similarity in the CV feature space. The

images in our database are indexed in two CV feature spaces: (i)

the colored pattern appearance model (CPAM) [19], character-

izing image patches in terms of the chromatic and achromatic

spatial patterns, and (ii) the edge histograms [20]. First, we build a

similarity graph for each feature space where every node is

connected to K nearest EEG-based labeled and to the same

number of the nearest unlabeled nodes. We consider (K= 5), as no

improvement is observed for higher numbers. Prior to label

propagation, we merge the graphs into a common graph (joint

model), giving them equal contribution. This is done under the

Bayesian framework as the states of nodes and arcs between them

represent probabilities.

Label propagation. EEG-based labels are propagated to

unseen images by solving a quadratic optimization problem on the

graph [18]. The objective is to minimize the difference between

the current image labels and the labels estimated based on the

neighboring nodes, while the available EEG-based labels are taken

as a constraint. Note that the EEG-based labels are hardened prior

to the propagation (i.e., values 1 and 0 correspond to classes target

and distractor, respectively) and they are not changed in the

propagation process. However, the propagation over the unla-

beled nodes results in soft CV-based labels (i.e., labels are

continuous values in the range [0–1]).

Label balancing. To avoid biased label propagation towards

one of the classes, prior to the propagation we undersample the

EEG-based labels in order to have the same number of examples

of targets and distractors. This is done by random elimination of

labeled images from the class with the majority of examples.

BCI Image Search: Iterative Approach
After the propagation of EEG-based labels to the rest of images

in the database, a new RSVP sequence for the next iteration is

generated with the top 200 images ranked as targets. By repeating

these steps we are accumulating evidence of the true labels for

each image in the database. Four iterations are considered in the

analysis. After the final iteration, the database is reorganized based

on the averaged labels (i.e., the states of the graph) across

iterations. Nevertheless, iterations are run independently; i.e., only

the EEG-based labels obtained in the current iteration are used to

select the images for the next iteration. The retrieved images are

the top 200 ranked images in accordance with the final image

labels.

As mentioned before, the applied label propagation does not

update the EEG labels. Hence, due to the binary EEG-based

labeling (target vs distractor) of the presented images, images

recognized as target in the current iteration will be included in the

next RSVP sequence. Nevertheless, since the final image labeling

is obtained by averaging the accumulated labels (labels after

propagation) over all iterations, the approach indirectly update the

labels of the presented images.

Previous work on iterative coupling [1] improves the set of the

EEG-based labels across all iterations (average labels are used for

images presented multiple times) before propagating them to the

unseen images for the final labeling of the database. To test this

approach in our setting, we did an offline evaluation of image

retrieval and compared it with the method that we proposed.

Results

EEG-based Image Labeling
We report the single-trial EEG classification performance per

iteration, averaged across subjects for each search task in the

testing phase: ‘‘Eagles’’, ‘‘Tiger’’ and ‘‘Train’’, (Figure 2A). The

performance is given in terms of the area under the curve (AUC)

of a receiver operating characteristic (ROC) curve [21]. For each

search task, a Wilcoxon signed-rank test shows a statistically

significant difference between the EEG-based labeling perfor-

mance across subjects and the random labeling of the same RSVP

sequences (p, 0.05 ). Random labels are drawn (100 repetitions)

from the uniform distribution in the interval (0,1) to simulate the

random labeling.

The average performance across iterations is given separately

for each subject in Figure 2B. The decoding performance in the

noisy environment (Subjects 1 and 2) is comparable to the one

obtained with the recordings performed in the laboratory. No

significant difference is found on the average performance after

applying the EOG-correction (p.0.05, Wilcoxon sign-rank test).

The supplementary material (Text S1) provides additional results

of the EOG analysis and illustrates the averaged EOG waveforms

and the averaged EEG responses after the correction of EOG

artifacts, Figure S2.

As pointed out earlier, image search under RSVP protocol is

considered as an oddball paradigm, therefore depending on the

relative appearance of the target stimuli (i.e., target-to-target

interval TTI). In the testing phase of our experiment, the TTI may

vary greatly, as a consequence of the automatic generation of the

RSVP sequences and the prevalence of targets. Thus, we evaluate

the EEG classification performance distinguishing four categories

of target trials with respect to TTI (i.e., TTI= 1, 2, 3, .3), where

the TTI is given as the distance of a target image to its preceding

target in the RSVP sequence. A significant drop in the

performance (p,0.05, Wilcoxon signed-rank test) is found for

the successive targets (TTI= 1) compared to the other three

An Iterative Framework for EEG-Based Image Search
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conditions in all of the search tasks, except (TTI= 3) condition in

the search task ‘‘Train’’. Furthermore, the difference between

(TTI.3) and (TTI= 3, ‘‘Eagles’)/(TTI = 2, ‘‘Tiger’’) is statistically

significant.

On the other side, we compare the classification performance

between the search tasks. Overall, the lowest performance is

obtained for the search task ‘‘Train’’. A Wilcoxon signed-rank test

shows a significant difference (p,0.05) in the classification

performance between the search task ‘‘Train’’ and the other two

tasks (TTI= 3, .3).

We hypothesize that target discriminability varies across the

tasks, causing the task dependent performance. The high

performance for class ‘‘Tiger’’ can be explained by its salience in

the sequence (the characteristic pattern of tiger’s stripes). On the

other side, the search task ‘‘Train’’ is characterized with a higher

intraclass variability (e.g., different colors and models of train).

Furthermore, the similarity with the images of objects such as

‘‘Car’’ and ‘‘Aviation’’, which appeared among the distractor

images, made the task ‘‘Train’’ more challenging. The results of

the behavioral experiment support our hypothesis. There is no

significant difference (Friedman, p.0.05) in the median response

time between the different targets in the training phase. However,

there is a significant difference (p,0.05) between the targets in the

testing phase, as well as between the training targets and the target

‘‘Train’’ in the testing phase (Figure 2C). The longest median

response time is observed for the target ‘‘Train’’, indicating its

lowest discriminability.

Furthermore, from the results of the behavioral experiment we

observed that the subjects’ responses are more accurate in the

training sequences. On average, the subjects responded correctly

to 98.9% of the training targets (98.8% ‘‘Elephant’’, 99.5%

‘‘Lion’’, 98% ‘‘Car’’, 99.3% ‘‘Butterfly’’) and to 90.63% of the

testing targets (90% ‘‘Eagles’’, 94.8% ‘‘Tiger’’ and 90.1%

‘‘Train’’). Figure 2D–E shows the grand average of the potentials

evoked at CPz by the different search tasks. Note the lower

amplitude of the peaks associated to the testing search tasks, with

the target ‘‘Train’’ eliciting the smallest peaks. For this later target,

peaks are also delayed with respect to all others.

EEG-based Image Search: Iterative Approach
We assess the image search performance using the average

precision (AP), since the system returns a ranked sequence of

images. The precision score of a target image in the retrieved

sequence is computed as i/n, where i is its position among the

targets in the sequence and n is its absolute position in the

sequence. If one target image is not in the retrieved sequence its

precision score is zero. Then, AP is defined as the mean of the

precision scores over all target images [22].

One can notice persistent improvement across iterations in the

AP of the retrieved 200 images (Figure 3A). On average, the AP

after four iterations reaches 0.37 (class ‘‘Eagles’’), 0.39 (class

‘‘Tiger’’) and 0.22 (class ‘‘Train’’). Figure 3B shows, for all

subjects, that the AP for the final retrieval (y-axis) is consistently

higher than for the initial iteration (x-axis).

Figure 2. EEG-based Image Labeling. (A) Average EEG-based labeling performance (AUC) across subjects. (B) Single trial EEG classification
performance (AUC) on the EEG data averaged across the iterations, given for each subject individually. The rightmost boxplots show the median (the
central mark of the box), the 25th and 75th percentiles (the edges of the box) and the most extreme performance (dashed lines) over all subjects per
search task. (C) Median response time (in seconds) across subjects for the different search tasks. (D–E) Grand Average of the potentials evoked by the
target and distractor images at CPz: Training vs. testing sequences and Individual testing tasks as compared to the training task.
doi:10.1371/journal.pone.0072018.g002
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Furthermore, the percentage of retrieved target images also

increases due to the iterative coupling (Figure 3C). In the initial

RSVP sequence 10% of images are targets, which corresponds to

22% (class ‘‘Eagles’’), 27% (class ‘‘Tiger’’) and 10% (class ‘‘Train’’)

of all target images in the database. After the final ranking, on

average, the percentage of the retrieved target images is 62% (class

‘‘Eagles’’), 68% (class ‘‘Tiger’’) and 40% (class ‘‘Train’’).

The strength of the system is not in one of the components but

in the iterative coupling. The performance of simply propagating

the latest EEG labels is given in Figure 3D. No increase in the AP

is noticed after the second iteration. However, the results are

significantly different from the propagation of the random labels

that are assigned to the presented images (p,0.05, Wilcoxon

signed-rank test). Moreover, when applying a propagation where

the EEG labels obtained in the previous iterations are averaged

before being propagated, as in [1], there is no increase in the AP

after the second iterations (Figure 3E).

The image distributions of the initial RSVP sequences over the

classes in the database are given individually for each search task

in Figure 4A–C. No bias toward the target class can be noticed. In

the same figure, distributions of the retrieved images (after the last

iteration) are given as a boxplot across the subjects. One can notice

that the distributions are largely in favor of the target class, across

the subjects and the search tasks.

These results demonstrate that the iterative closed-loop design

improves the initial performance (first iteration) despite the

relatively high false positive (FP) rate of the EEG-based labels.

Discussion

The EEG-based image search is founded on the supervised

EEG decoding. Thus, knowing that the EEG signature associated

to natural images may differ depending on the search task, its

performance heavily relies on the training image examples. But

selecting a representative set of example images is a daunting task.

We have then revisited the framework for brain-coupled image

search [1,2,10] and analyzed the effect of the target class using

natural images.

We have shown that the performance of the EEG single-trial

classification is affected by the target image class. We explain it as

a result of the changes in the EEG signature caused by variation in

target discriminability [6,7]. The behavioral response to different

target images across subjects supported our hypothesis, as the EEG

classification performance were the poorest for the target class with

the largest median response time across subjects. This points out

Figure 3. Closed-loop retrieval performance evaluated on testing tasks (i.e., ‘‘Eagles’’, ‘‘Tiger’’ and ‘‘Train’’). (A) Average precision by
successive averaging. (B) Average precision of the 200 retrieved images after the first iteration vs the final retrieval (closed-loop with successive
averaging). (C) Retrieved target images after each iteration in respect to the total number of targets in the database. (D) Average precision of the 200
top ranked images obtained by propagating only the harden EEG-based labels obtained for the last seen sequence; (E) Average precision of the 200
retrieved images using the approach for the iterative EEG-based image retrieval in [1]. Note that, after propagation of EEG-based labels, images in the
database that were included in the presented RSVP sequences have the original soft EEG-based labels for this approach, while our approach assigns
them hard labels. The rightmost side of the plots show the performance across subjects in the last iteration. The median (the central mark of the box),
the 25th and 75th percentiles (the edges of the box) and the most extreme performance (dashed lines) across subjects, are reported per search task
for the final database ranking.
doi:10.1371/journal.pone.0072018.g003
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the existence of behavioral and perceptual target-dependent

differences when dealing with natural images. In turn, this

variability is likely to be found also in the discriminability of the

elicited EEG signals (see Figure 2D–E). This fact should be taken

into account so as to build decoding systems that properly reflect

the stimulus diversity that may be encountered. It is worth noting

that all images come from the same database implying that in real

conditions it is difficult to control the image discriminability.

In addition, CV features may not be able to capture all the

particularities of a large variety of natural images. Because of the

intrinsic limitations of EEG-based labeling and CV features, we

didn’t refine the available EEG-based labels through iterations as

proposed in [1,23]. Instead, we exploited the multimodal labels

(EEG-based and CV-based), accumulated through iterations, for

the final ranking.

The results obtained in our setting by propagating the EEG-

based labels averaged across the iterations, as in [1], are inferior to

those obtained by successive averaging of the results of label

propagation across the iterations (Figure 3A and E). The reason is

that the quality of the EEG-based labels, in terms of the false

positive rate, does not significantly improve throughout the

iterations (FP.0.6). On the other side, the successive averaging

of the labels obtained after propagation in each iteration can be

interpreted as the fusion of the weak classifiers decision, what

explains the lower sensitivity to the single-trial misclassification.

In this study we have constrained our analysis to centro-parietal

electrodes. We compare how performance changes when all

Figure 4. Distributions of the images in the initial RSVP sequences (gray bars) and the retrieved set of images, after the last
iteration, over the classes. Distributions of the retrieved images are given across the subjects as a boxplot: the median (the central mark of the
box), the 25th and 75th percentiles (the edges of the box) and the most extreme values (thin lines). Red color indicates the target class. (A) Search
task: ‘‘Tiger’’. (B) Search task: ‘‘Train’’. (C) Search task: ‘‘Eagles’’.
doi:10.1371/journal.pone.0072018.g004

Figure 5. Classification performances comparison (AUC) for different number of channels and classifier types. The data from the initial
RSVP sequences in the testing phase are used. The median (the central mark of the box), the 25th and 75th percentiles (the edges of the box) and the
most extreme performance (dashed lines) over the subjects are reported per search task.
doi:10.1371/journal.pone.0072018.g005
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channels are taken into account, instead of that small set of

channels. Since the increased input dimensionality makes imprac-

tical the use of the Gaussian classifier, we used instead an ensemble

of LDA classifiers [2]. This method fuses several LDA classifiers

(one per each time window of 100 ms) and exploits all the channels

(41 channels in our case), but also allows channel reduction.

Figure 5 shows the results for the initial RSVP sequence of the

testing phase. In both cases, the input is the time window from

200 ms to 700 ms after stimulus onset. We can make three

observations. First, the influence of the target class on the

classification performance is confirmed. The classification for

target class ‘‘Train’’ underperforms the other two classes

irrespective of the method. Second, when the analysis is limited

to the subset of centro-parietal channels, we observe that the

classifier ensemble outperforms the single Gaussian classifier. This

may be due to temporal variance in the neural signature, which

can be better modeled by the classifier ensemble since each

classifier corresponds to a different temporal interval of a trial.

Third, the results revealed a lower performance when only the

subset of centro-parietal channels is used.

Conclusion
Keeping in mind practical applications, we demonstrated that a

limited number of EEG channels provide sufficient information

about subject’s preference to be exploited in image retrieval by the

proposed synergistic scenario (e.g., by coupling CV and EEG

single trial classification).

Furthermore, as for the observed behavioral responses, the

discriminability of the elicited EEG signals exhibit task-dependent

variations when dealing with natural images. As a consequence,

this effect should be taken into account so as to build decoding

systems that properly reflect the stimulus diversity that may be

encountered when working with natural images. In this work we

have shown how an iterative framework for EEG-based image

search can yield a robust retrieval with moderate EEG classifiers.

It is worth noticing that the proposed system was tested outside

the laboratory in a real-world environment. Remarkably, the

performance obtained in this setting was comparable to the one

obtained in the laboratory.

Supporting Information

Figure S1 EOG artifacts correction. Topography of the

correction coefficients (left central-left, right cental-right).

(TIFF)

Figure S2 EOG and EEG waveforms. (A–F) Grand average

EEG ERPs with and without EOG correction across ten subjects;

(G–J) Grand average EOG ERPs: (G–H) Ten subjects, (I–J) Nine

subjects. The intervals of significant difference between the two

conditions are marked in blue (two-sample t-test, at the 5%

significance level).

(TIFF)

Text S1 Analysis of EOG signals in the EEG-based
image search.

(PDF)
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15. Galán F, Ferrez PW, Oliva F, Guàrdia J, Millán JdR (2007) Feature extraction

for multi-class BCI using canonical variates analysis. In: Proceedings of the IEEE

International Symposium on Intelligent Signal Processing. 1–6.

16. Millán JdR, Renkens F, Mourino J, Gerstner W (2004) Noninvasive brain-

actuated control of a obile robot by human EEG. IEEE Transactions on

Biomedical Engineering 51: 1026–1033.

17. Duda RO, Hart PE, Stork DG (2000) Pattern Classification. Wiley-Interscience.

18. Yang M, Guan J, Qiu G, Lam K (2006) Semi-supervised learning based on

bayesian networks and optimization for interactive image retrieval. In: British

Machine Vision Conference. p.969.

19. Qiu G (2004) Embedded colour image coding for content-based retrieval.

Journal of Visual Communication and Image Representation 15: 507–521.

20. Won CS, Park DK (2002) Efficient use of MPEG-7 edge histogram descriptor.

Electronics and Telecommunications Research Institute 24: 23–30.

21. Fawcett T (2006) An introduction to ROC analysis. Pattern Recognition Letters

27: 861–874.

22. Buckley C, Voorhees EM (2000) Evaluating evaluation measure stability. In:

Proceedings of the 23rd annual international ACM SIGIR Conference on

Research and Development in Information Retrieval. 33–40.

23. Pohlmeyer EA, Jangraw DC, Wang J, Chang SF, Sajda P (2010) Combining

computer and human vision into a BCI: Can the whole be greater than the sum

of its parts? In: Proceedings of the International Conference of IEEE

Engineering in Medicine and Biology Society. 138–141.

An Iterative Framework for EEG-Based Image Search

PLOS ONE | www.plosone.org 8 August 2013 | Volume 8 | Issue 8 | e72018


