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Abstract

Recent application of gene expression profiling to the immune system has shown a great potential for characterization of
complex regulatory processes. It is becoming increasingly important to characterize functional systems through multigene
interactions to provide valuable insights into differences between healthy controls and autoimmune patients. Here we
apply an original systematic approach to the analysis of changes in regulatory gene interconnections between in Epstein-
Barr virus transformed hyperresponsive B cells from SLE patients and normal control B cells. Both traditional analysis of
differential gene expression and analysis of the dynamics of gene expression variations were performed in combination to
establish model networks of functional gene expression. This Pathway Dysregulation Analysis identified known transcription
factors and transcriptional regulators activated uniquely in stimulated B cells from SLE patients.
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Introduction

The use of microarray technology enables one to measure the

expressions of tens of thousands of genes simultaneously, allowing

an unbiased view of all biological processes with molecular

precision. Recent application of gene expression profiling to the

immune system has shown a great potential for characterization of

complex regulatory processes playing role in any immunological

phenomena. Gene expression profiling of inflammatory processes

and autoimmune pathologies [1,2], juvenile rheumatoid arthritis

[3,4,5], and Sjögren’s syndrome [6] has enhanced our under-

standing of the delicate balance between a controlled inflamma-

tion response and the development of autoimmune disorders.

A more advanced use of microarray analysis focusing on a

systems-level analysis represents a powerful method to characterize

altered biological systems through dynamic changes of individual

gene expression profiles. Advances in microarray technology and

systems-level analysis has allowed scientists an opportunity to

characterize functional systems through multigene interactions by

identifying and characterizing regulatory correlations between

individual genes. Identification of functional links between genes

responding dynamically to specific treatments through this system

biology approach is being increasingly reported in literature

[7,8,9]. The creative use of gene expression profiling could enable

further progress in better understanding the context of abnormal-

ities in signaling pathways in autoimmune patients, especially in

systemic lupus erythematosus (SLE).

SLE is a complex disease with heterogeneous clinical features

characterized by the production of autoantibodies and the

subsequent damage of multiple organ systems. Though the

immunological events triggering SLE remain unsolved, a central

role for B cells in the SLE pathogenesis has been established in

both mice and humans [10,11,12]. B cell defects including

abnormal function of key signaling molecules, B-cell receptor

signaling defects, and perturbations in B cell developmental

subsets are hypothesized to play a central role in the breakdown of

B cell tolerance and subsequently in SLE pathogenesis.

Research into initiation and pathogenesis of SLE among

patients has begun to offer a complex picture of cell signaling

and cellular response. A number of cell signaling pathways have
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been shown to be altered in SLE patients [13,14,15,16]. These

include alterations in the interferon pathway [17], TNFa signaling

pathway [13,18], abnormal B cell receptor (BCR) signaling

[14,15], and increased phosphatidylinositol 3-kinase activity

[15,16]. Abnormal cellular responses and cellular populations

are also observed in SLE patients. FccRIIB expression is decreased

in the SLE patient memory B cells [19], patient memory B cell

subsets are hyper-responsive to stimulation [20], and consist of a

large number of transitional B cells [21,22] and

CD19+CD24hiCD38hi B cells that lack the suppressive regulatory

functions observed in controls [23].

In these proof-of-concept experiments, we expand current gene

expression profiling methods to apply a systematic approach to the

analysis of statistically significant changes in regulatory gene

interconnections between in B cells from normal control

individuals and the hyperresponsive B cells from SLE patients.

We use a novel self-verified experimental design (in which every

step, selection, or construction was accepted only when repro-

duced in duplicated experiments) to identify differentially

expressed genes between controls and SLE patients. Our Pathway

Dysregulation Analysis identified known transcription factors,

genes for inflammatory responses, genes for cell cycle progression,

genes for cell growth, genes for response to DNA damage, and

genes regulating apoptosis dysregulated in SLE patient derived cell

lines.

Materials and Methods

Ethics Statement
This study has been conducted according to the principles

expressed in the Declaration of Helsinki. These EBV-transformed

cell lines were originally generated from systemic lupus erythe-

matosus (SLE) patients and controls as a part of the Lupus Family

Registry and Repository and were provided as coded samples for

use in this study subject to appropriate IRB approvals at the

Oklahoma Medical Research Foundation and the University of

Oklahoma Health Sciences Center.

Cell Culture and in vitro Activation
Potential cell lines from 20 African-American female lupus

patients and 20 African-American female controls were screened

to identify cell lines that responded to receptor stimulation and

exhibited a hyperresponsive B cell phenotype associated with SLE

patient B cells. EBV lines were grown under standard culture

conditions in RPMI-1640 10% FBS supplemented with l-

glutamine, Penicillin-Streptomycin. Cells were washed and

cultured at 16106 cells/ml in serum free media overnight. Goat

anti-human-IgM F(ab)’2 polyclonal antibody (Jackson ImmunoR-

esearch, Inc.) at 50 mg/ml in RPMI-1640 10% FBS was used to

stimulate cells for the indicated periods of time. For signaling

experiments, 20 patient and 20 control B cell lines were stimulated

for 0.5 or 2 hours and then protein was isolated for Western

blotting. The degree of Erk1/2 phosphorylation initiated by anti-

IgM F(ab)’2 was used to designate each cell line as a ‘‘high

responder’’ or a ‘‘low responder’’, as shown in Figure 1. Although

cell lines derived from patients were generally more responsive

than those derived from controls, the extremes of the phenotype

were used in subsequent experiments, such that the patient lines

used were among those most responsive and the control lines used

were among those least responsive to BCR stimulation.

For gene expression analysis, a full time course was explored in

two high responding patient EBV cell lines and two low

responding control EBV cell lines. Time points used in these

experiments were 0.5, 1, 2, 4, 8, 16, and 24 hours following

stimulation with anti-IgM F(ab)’2 antibody. Preliminary analysis of

this data revealed that the differences in BCR pathway genes were

most evident in the early portion of the time course. Subsequent

replication experiments (utilizing another eight cell lines, four SLE

lines and four control lines) therefore used time points at baseline,

0.5, and 2 hours only.

Gene Expression Profiling
Total RNA was isolated from B cells at each time point using

RNAqueous total RNA isolation kit (Ambion, Grand Island, NY)

and was quantitated by using a Nanodrop scanning spectropho-

tometer. cRNA was generated and labeled using the Affymetrix

cRNA labeling kit (Affymetrix, Santa Clara, CA) according to

manufacturer’s specifications. Gene expression was assayed using

Affymetrix GeneChipH Human Genome Focus Array represent-

ing 8500 verified human sequences from the NCBI RefSeq

database according to manufactures specifications.

Self-verifying Experimental Design
This study’s experimental design is based on duplication of each

step of the experimental and analytical procedures. The analysis

starts with normalization of expression data followed by selection

of hypervariable expressed genes (HVE) distinctive from back-

ground at least in one time point. Only genes selected in both of

the duplicated experiments are used for further analysis. Verifi-

cation of the expression profile reproducibility for HVE genes was

carried out. Only genes whose expression profiles correlated with

the correlation coefficient were used for further analysis. Genes

were partitioned into clusters and only the genes gathered into the

same clusters in duplicated experiments were used for further

analysis. Finally, the networking of HVE genes based on partial

Figure 1. pERK1/2 is upregulated in hyperresponsive B cells
after stimulation. B cells isolated from SLE patients and matched
controls were stimulated with anti-human IgM F(ab)’2 for 30 seconds or
2 minutes. pERK1/2 (A) and normalized pERK1/2 intensity (B) shows
increase in hyperresponsive B cells after stimulation.
doi:10.1371/journal.pone.0071397.g001

Dysregulated Pathways in Hyper-Reactive B Cells
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correlation is examined and only reproducible edges are presented

in the final network.

Data Analysis
Our methods of data normalization and analysis are based on

the use of internal standards that characterize some aspect of

system behavior such as technical variability (presented in detail in

two recent publications [5,24]). These methods provide an

increase to the power of statistical criterion determined by the

content of the internal standard–normally several thousand

members–and this enables the use of relatively high statistical

thresholds without loss of the sensitivity of the selection. In general,

an internal standard is constructed by identifying a large family of

similarly behaving genes. Experimental conditions are denoted as

an equally expressed cohort. These internal standards were used to

robustly estimate parameters that describe some state of the

experimental system such as the identification of genes expressed

distinctly from background, differentially expressed genes, and

genes having similar dynamic behavior. Microarray data was

generated in compliance with the Minimal Information About a

Microarray Experiment (MIAME) guidelines. This data have been

deposited in NCBI’s Gene Expression Omnibus (GEO) database

(GEO Submission GSE37573, NCBI tracking system

#16567017).

Normalization. Normalization for differences among exper-

iments was conducted using a procedure described previously [25].

First, an internal standard is constructed by identifying a set of

normally distributed genes having expressions indistinguishable

from technological noise [26]. This background cohort enables the

statistical selection of genes above or below background with high

power. Genes expressed above background are used for unbiased

expression levels across arrays by means of a robust regression

procedure based on the use of the second internal standard – the

equally expressed cohort.

After normalization and adjustment of the gene expression

profiles to a common standard, log-transformed gene expressions

are used to calculate expression value deviations from the

averaged control profile. The log-transformed residuals are mostly

independent of expression level and approximate a normal

distribution based on the Kolmogorov-Smirnov criterion. Statis-

Figure 2. Schematic of pathway dysregulation analysis. The self-verified experimental design of pathway dysregulation analysis is depicted.
doi:10.1371/journal.pone.0071397.g002
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tical analysis was performed using STATISTICA 6.1(StatSoft, Inc.

Tulsa, USA).

Internal standard for equity in expression and in

variability. The internal standard, or reference group, was

constructed by identifying a group of genes which are expressed

above background with inherently low variability as determined by

an F-test [25,27]. The reference group presents our third internal

standard- technological variation. By creating an estimate of the

technological variation, we are able to select a group of biologically

stable genes (BSG).

Hypervariable expressed genes. Genes whose expression

level varied significantly (P,1/N) when comparing an individual

gene’s variability to that of the reference group were denoted as

HVE [27]. The threshold of P,1/N, N represents the number of

genes expressed above background in at least one time point.

Associative analysis -identification of differentially

expressed genes [25]. These analyses include selections with

a Student T-test for replicates using the commonly accepted

significance threshold of p,0.05. However, a significant propor-

tion of the genes identified as differentially expressed will be a false

positive determination at this threshold level. An associative T-test,

in which the replicated residuals for each gene of the experimental

group are compared with the entire set of residuals from the

reference group defined above, was utilized. The hypotheses are

checked if gene expression in experimental group presented as

replicated residuals (deviations from averaged control group

profile) were associated with very representative (several thousands

of members) normally distributed set of residuals of gene

expressions in the reference group. The significance threshold

was corrected to make the appearance of false positive determi-

nations improbable. Only genes that passed through both tests are

presented in the result tables. Genes expressed distinctively from

background were determined by analysis of the association of each

replicated gene expression with normally distributed background

having an average equal to 0 and standard deviation equal to 1.

Analysis of the enrichment within gene classifications was assessed

using Ingenuity Pathway Analysis (IPA, http://www.ingenuity.

com/), Panther Classification System (Panther, http://www.

pantherdb.org/), DAVID Bioinformatics Resources 6.7, NIAID/

NIH (DAVID, http://david.abcc.ncifcrf.gov/home.jsp) and Gen-

eCards Batch Queries (GeneALaCart, http://www.genecards.

org/BatchQueries/index.php).

Figure 3. Variable gene clustering after stimulation of B cells from lupus patients and controls. Normalized gene expression data
(average= 0, standard deviation= 1) from stimulated hyperresponsive B cells from SLE patients (left) and normal response B cells from control (right).
Blue indicates negative normalized expression data and red indicates positive normalized expression data. Six gene clusters and the corresponding
cluster profiles are shown to the right side of the heat-maps.
doi:10.1371/journal.pone.0071397.g003
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Cross-validation of the Selections
A jackknife procedure was used for characterization of the

robustness or reproducibility of the differentially expressed genes

selection. The comparative analysis was repeated for the two

groups of samples with exclusion of one sample from each group

throughout the analysis. For two groups with n and m replicates, n

6 m comparisons are possible. Genes selected as differentially

expressed in each of these comparisons (selected n6m times) were

ranked as having 100% of reproducibility.

F-means Cluster Analysis
The clustering procedure consists of the following steps: gene

expression normalization, log-transformation and rescaling as

noted above; identifying HVE-genes within a group of samples by

comparing residual variability of each gene among samples with

variability of residuals of all genes in the reference group; and

determination of a parameter, termed connectivity, for each of

these hyper-variable genes. Connectivity was defined as the

number of genes deviated from the seeding profile within ranges

determined by the reference group. The p,0.05 threshold for the

F-test was used to diminish the proportion of false positive

selections.

HVE-genes of each group were sorted by their connectivity and

the clustering process was started with genes of highest connec-

tivity. The gene of highest connectivity and all genes whose

deviations from expression do not have variability higher than that

observed in the reference group are comprised in cluster #1. The

next highest gene connectivity and the genes that do not

significantly deviate from it comprised cluster #2, and the process

continued until all genes were analyzed. Genes that appeared in

more than one cluster were considered to be likely functional links

among these clusters. Genes with zero connectivity did not belong

to any cluster.

Correlation Mosaic Analysis
The visual presentation of the gene co-expressions based on

gene clustering was performed using an original correlation matrix

technique as previously described [28]. Comprehensive pair-wise

correlations were calculated among gene expression levels such

that groups of genes that exhibited temporally correlated behavior

could be identified. The clustering procedure was based on the

Pearson correlation and follows the same sequence of operations

used in the F-means clustering above. However, instead of using

variability as a measure of distance, we use the correlation

coefficient. The number of clusters and cluster contents are

determined by the threshold for correlation coefficient, estimated

in simulation experiments. Matrices of correlation coefficients

were calculated for these clusters and are represented in a

correlation mosaic.

Gene Networking Based on the Use of Partial Correlation
The method used here was slightly modified from a previously

described method [29,30]. The gene networking analysis was

performed in a pair-wise manner for all genes shown to be related

in a common cluster. Selection of the environment for each gene

(gene X) by determining all genes correlated with given one above

threshold te (gene X environment designated as Ex). Calculation of

a matrix of partial correlations between gene X and each gene

from environment Ex with extraction of the influence of all other

genes from Ex was performed. The Y row of the matrix consists of

partial correlations of given gene X with some other gene YeEx

and with removing the effects of all other genes from Ex (each

element in the Y row is partial correlation X vs Y (y-row) with

Figure 4. Transcription factor analysis of the variable gene
clusters. Transcription factors tested are presented at the top of the
diagram. The cluster content is shown along the right. Individual
elements of the matrix are colored by the significance of the p-values
(threshold p = 0.05): over-representation in the matrix is indicated in
red, under-representation is indicated in green.
doi:10.1371/journal.pone.0071397.g004
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withdrawal of the effect of gene Z from Ex (z-cell in the y-row)).
The partial correlation of variables X and Y with respect to Z was

defined as prxy,z= (rxy2rxzryz)/((12rxz
2)(12ryz

2))1/2.

Significance of the partial correlation between any pair of genes

(X &Y in above example) is based on the calculation of the

minimal PCm among all partial correlations in the row y and

averaged PCa partial correlations between them (for the row y).
The partial correlation is recognized as essential if these values

exceed thresholds tm and ta correspondingly.

The presence of the only one member (PCxy,z) in the row below

threshold tm was evidence that association between X and Y genes

is indirect and is a result of their common association with some

third gene Z. However the presence analogous ‘‘hole’’ in the row z
(Pxz,y,tm) is an evidence for the multiple association between X,
Y, and Z genes (triangle association).

A Monte Carlo simulation study was used to define the

statistical thresholds (te, tm, and ta) below which partial

correlation coefficients were likely to be due to chance. For 8-

replicated randomized data simulating behavior of 200 genes,

using the thresholds te=0.8, tm=0.6, and ta=0.8 produced less

than 5% of false positive selections. The use of duplication

increased the sensitivity of the method essentially enabling to

decrease these thresholds to the levels te=0.6, tm=0.4, and

ta=0.4 without growth of proportion of the false positive

selections.

Results

Identification of Hyperactive B cell Lines from Lupus
Patients
B cells from lupus patients are known to be hyperresponsive to

stimulation through the BCR as evidenced by increased LYN and

ERK1/2 phosphorylation [19,31]. However, it was initially

unclear if the same differences would be observed in EBV

transformed B cell lines from lupus patients compared to B cell

lines derived from unaffected controls. Latent EBV transformation

can impact many cell processes, including BCR stimulation

[32,33,34,35], but it is unclear whether many of the long-term

EBV transformed cells actually express these EBV latent genes. To

minimize such influences, we screened potential cell lines from 20

African-American female lupus patients and 20 African-American

female controls to identify cell lines which responded to receptor

stimulation and exhibited a hyperresponsive B cell phenotype

associated with SLE patient B cells.

We assessed the amount of phospho-ERK1/2 generated

following BCR stimulation in these EBV transformed cell lines.

A representative ERK1/2 phosphorylation response in a case

versus a control cell line and normalized phospho-ERK1/2

intensities before stimulation and after stimulation for 2 minutes

are shown (Figure 1A and B). Almost all cells responded to

stimulation, but the average response was significantly higher in

the EBV transformed cells from the lupus cases (based on the

results of differential gene expression analysis).

The overarching goal of this research was to assess whether our

Pathway Dysregulation Analysis could identify known alterations

in the gene expression and signaling pathways of B cells from lupus

patients. As such, two control cell lines which were responsive to

Figure 5. Differences in gene dynamics between normal control SLE samples. The shown profiles are representative of gene dynamics
observed in duplicated experiments. Three differences in gene dynamics are shown: quantitative differences (left), changes in gene profiles (middle),
and changes from hyper variable to stable (right). Graphs were shown as hours after stimulation (x-axis) and normalized gene expressions (y-axis).
Each line on the graph represents one cell line. Each cell line was classified as a high responder (solid line) or low responder (hatched line). SLE patient
sample gene expression is shown in red; while normal control sample gene expression is shown in blue.
doi:10.1371/journal.pone.0071397.g005
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BCR stimulation and two patient cell lines showing hyperrespon-

siveness to stimulation were selected for phase I of the study where

a complete time-course dynamic expression analysis was per-

formed. Four additional cases and controls were selected in the

same way from this screening group to be used in a more limited

time-course and focused analysis replication phase of the study

where expression at time points 0, 0.5 and 2 hours were analyzed.

Multi-level Analysis of the Dynamic Response of B cells to
Stimulation in vitro

Experimental data analysis pipeline. We applied a multi-

level analysis approach to understand the dynamic response of B

cells to stimulation. The first level of analysis identified genes with

constitutive differences in expression. These differences were not

altered in the course of B cell activation, were able to contribute

into activation dynamics as modulating factors creating specific

background, and were favorable for differences in dynamic

activation in patient B cells. The second level of analysis identified

differences in dynamic profiles of expression of individual genes

between the two phenotypic groups (gene profiles as independent

events). The third level of analysis identified differences in

collective behavior of genes associated with changes in gene to

gene regulatory interactions. The schematic of this analytical

approach is presented in Figure 2. Only reproducible results

between the two phenotypic pairs were used in the final analysis.

Using this strategy we were able to increase the sensitivity of the

statistical tests without the corresponding decrease of specificity

and to identify reproducible results in these two independent

experimental series within phase I.

Common Dynamic Expression Responses in Lupus
Hyperresponsive B cells Compared to Control B cells
Dynamic gene expression profiles that were independent of the

phenotype classifications (patient/control status and B cell

hyperresponsiveness) were analyzed. Only genes having statisti-

cally significant deviations from the majority of stable genes were

selected for the analysis. HVE genes were also assessed between

the phenotypic groups. As would be expected, most dynamic gene

expression profiles for individual genes were the same following

stimulation between the two phenotypic groups. Cluster analysis

groups genes based on similar expression profiles and provide

clues to the function or regulation of genes. About 500 genes were

selected for clustering and networking procedures based on their

expression levels (3SD above background at a minimum of one

time point) and reproducibility of the expression profiles (replicate

phenotype pairs with similar expression profiles and a correlation

above 0.8 for each gene in at least one group).

From this analysis, we derived six large clusters containing a

total of 160 genes, as shown in Figure 3 (a list of these genes

presented in Table S1 in File S1). Clusters are numbered in order

of the time of the maximal change in expression of the genes. The

six clusters observed included genes which expression was induced

during the stimulation protocol followed by a decline in their

expression. Cluster #1 presents genes with the earliest (0.5 h)

increase of expression and then immediate decline. Cluster #2

shows genes with maximal increase of expression at the 1 h time

point with Clusters 3–5 peaking at sequentially later time points

and with fewer numbers of genes. Cluster #6 presents genes that

had maximal expression before any stimulus was applied and

slowly decreased thereafter reaching minimal expression between

16 and 24 hours.

Although the general pattern observed here is the same in all

cell lines chosen for study, this general similarity does not exclude

significant differences in the behavior of a fraction of the genes

between the two phenotypic groups. The genes which do display a

difference in dynamic expression profile are described further

below.

Figure 6. Transcription factor analysis of uniquely activated
genes in control and SLE patient samples. The transcription
factors tested are shown at the top of the figure. Blue text represents
unique genes identified in control samples; while red text identifies
unique genes identified in SLE patient samples. Individual elements of
the matrix are colored by the significance of the p-values (threshold
p = 0.05): over-representation in the matrix is indicated in red, under-
representation is indicated in green.
doi:10.1371/journal.pone.0071397.g006
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Transcriptional motif analysis within gene expression

clusters. Analyzing the significance of the individual gene

clusters identified by correlated dynamic expression profiles is

based upon the assumption that co-expressed genes are likely to

share common regulatory motifs [36,37]. Regulatory motifs

common to genes in each of the six clusters were identified using

the web-based program PAINT [38]. The predicted list of the

transcription factors for the 0.5, 1 and 2 hour time point clusters is

shown on the top of Figure 4. A detailed annotation of select

transcription factors and their association with known B cell

activation events is shown in Table S1 in File S1.

Genes within the clusters and the predicted transcription factors

(TFs) responsible for the co-expression of the clustered genes are in

agreement with the current B cell activation literature [9,39,40,41]

and are detailed in Table S2 in File S1. Analysis of the enrichment

within particular gene classifications was next assessed. Cluster 1

mainly consisted of ‘‘early response genes’’ (p = 3.1E212), while

clusters 2 and 3 consisted of ‘‘regulation of transcription’’ genes

(p = 2.9E29 and p= 1.2E26, respectively).

Many TFs known to regulate B cell genes following activation

are identified in this study; however, since these clustered genes

represent those which show no differences between the phenotypic

groups, the activation signals in the EBV transformed cells cause

predictable dynamic expression changes for most B cell genes.

Individual Gene Differences
While similarities between the expression patterns observed in

the EBV-transformed lines exist, specific genes do differ between

the phenotypic groups. Utilizing hyperresponsive lupus patient

derived cell lines, we sought to identify constitutive differences in

gene expression at time 0. Individual gene dynamic expression

profiles and/or correlations between multiple gene dynamic

Figure 7. Correlative gene associations in normal B cell responses and in hyperresponsive B cell responses. Pearson correlation was
utilized to estimate the correlation coefficients. Negative correlations are shown in blue; while positive correlations are shown in red. Genes examined
are listed in table on the left. Gene numbers (right column) are used as coordinates along x and y-axis. Select gene expression graphs are shown on
the far right with the two SLE patient cell lines depicted in red and the two control cell lines depicted in blue. The order of genes is maintained giving
clear visualization of differences in gene associations.
doi:10.1371/journal.pone.0071397.g007
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profiles that are different between the two phenotypic groups were

examined.

Constitutive differences in gene expression between

phenotypic groups defined by hyperresponsive lupus

patient B cells and control B cells. Traditional differential

gene expression analysis was carried out at time 0 between SLE

patient hyperresponsive B cells and control B cells. This examines

the underlying expression signature characteristic to the hyperre-

sponsive state found in patient-derived cell lines. A detailed list,

including baseline differences between high-responders and low-

responders that regress to the mean over the course of stimulation,

is presented in Table S3 in File S2.

Differential gene expression analysis identified initial gene

expression differences which are important for regulating cellular

responses preceding B cell activation (such as ICAM1, VCAM1,

and chemokine receptors). We also observe SLE markers whose

association with disease is well known but whose role in B cell

activation is not clear such as IRF5, SlamF7 and TLR7.

Identification of differences in dynamic gene expression

profiles between phenotypic groups. A simple clustering

Figure 8. Gene network interaction after B cell stimulation of SLE patient and normal control samples. A gene network interaction map
(from the initial analysis group) built using the partial correlations method is shown. Genes were grouped in different colored clusters representing
maximum expression levels at various time points after B cell stimulation. The center gene clusters represent genes with maximum expression levels
obtained after 0.5 hours of stimulation; then followed by colored circles for genes with maximum expression levels at 1, 2, 4, 8 hours, while the genes
in peripheral circle reach maximum expression levels 16 to 24 hours after stimulation. Blue lines linking genes represent gene associations found in
normal control samples. Red lines represent gene associations found in SLE patient samples. Black lines indicate gene associations found in both
groups. Dashed lines represent negative gene associations.
doi:10.1371/journal.pone.0071397.g008
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analysis reveals, as expected, a very high level of similarity in the

dynamic expression profile of most genes. However, discreet

differences in the dynamic expression profiles for select genes were

found. We were able to discriminate between three types of gene

expression dynamics between the high and low B cell activation

response groups as outlined in Figure 5. These differences in gene

expression dynamics can reflect quantitative differences in the level

of expression despite similar profile patterns, changes in associa-

tion between genes, and gene clusters. Examples of these

differences are given in Figure 5 and in Table S3 in File S2.

Interestingly, these include genes previously associated with B cell

activation and SLE. Since our phenotypic groups are based upon

differences in B cell responsiveness to stimulation, it is encouraging

that we were able to identify these enhanced responses in dynamic

profiles of early response genes.

Several genes demonstrated very unique profiles of dynamic

expression responses following B cell stimulation. While these

genes have not previously been associated with SLE, they might

warrant further investigation as potential candidate genes. These

include genes such as ZBTB25, AICDA, HMGCL, PGF, HIG2,

HRSP12, GCHFR, and LGMN. Each of these genes was only

activated in normal responsive B cells. In contrast, some genes

such as GPR137B, NAB1, and TCIRG1 were only expressed in

hyperresponsive B cells from SLE patients. Transcription motif

analysis for such genes uniquely variable in only one subgroup is

shown in Figure 6.

Evidence of Potential Functional Associations between
Genes Based Upon Dynamic Gene Expression Data

Analysis of differences in gene functional

associations. In the results presented above, we have outlined

three types of dynamics of gene expression. Of these, changes in

dynamic expression profiles and expression of genes exclusively in

one phenotype group can clearly be visualized using a correlative

mosaic presentation [28] as shown in Figure 7.

Correlative mosaics yield information about all gene-to-gene

associations within the functionally defined group of genes and

enables direct visual comparison of these associations between the

two phenotypes. Genes with similar profiles tended to cluster

together. Correlations were very high between genes within the

same cluster, suggesting a functional link [42].

Comparison of the correlation mosaic between the B cell

control samples and the hyperresponsive B cells derived from

lupus patients identifies regulatory associations that are different

between the two groups. In hyperresponsive B cells, significantly

changed dynamic expression profiles are easily observed. Other

patterns of dynamic expression, including genes whose pattern of

expression dynamics is similar between the phenotypic groups but

whose quantitative levels of expression differ, can also be easily

observed. These genes can not necessarily be excluded from

having a functional association difference because of the lack of

correlation differences in this type of visualization.

Use of discrete time periods of a dynamic gene

expression response to reconstruct networks of gene

functional associations. The correlative clustering presented

in Figure 7 partitions genes with similar expression dynamics into

highly correlated groups. However, not every pair of highly

correlated genes is necessarily functionally interconnected. As

such, we next utilized partial correlation coefficients which are

better able to identify direct functional interconnections and tend

to exclude third party influences [43]. The unique gene-gene

regulatory associations that appear in only one phenotypic group

were obtained from a paired analysis. Partial correlations were

calculated for each pair of genes. If significant partial correlations

appeared for any given pair of genes simultaneously in both

independent experiments, this was considered evidence for the

functional association between these genes. The resulting associ-

ations are visualized by the network shown in Figure 8. This figure

reveals groups of genes which likely share a common biological

process at the peak time interval where the cluster’s genes are

expressed. Networking gives additional information about cause-

effect or temporal nature of a relationship between genes. Detailed

information about all gene interconnections is given in Table S1 in

File S1.

Phenotype specific sub-networks focused on B cell

activation, apoptosis or lupus associated genes. If we focus

on genes that demonstrate statistically significant dynamic

behavior in one phenotypic group while remaining stable or not

expressed in another phenotypic group we can gain insight into

potentially functional genes and their interconnections in path-

ways. Figure 9A presents fragments of the dynamic expression

network we constructed in Figure 8, where a majority of the genes

display a prominent dynamic behavior only in the normally

responsive phenotypic group derived from controls. Based upon

information presented in Table S3 in File S2, all of these genes fall

into two functional categories: regulatory control of the B cell

activation and pro-apoptotic activity. In this analysis, these very

early response genes were correlated with the expression of

inflammatory, cytokine and chemokine receptor genes in samples

from normally responsive control B cells. Connections to genes

downstream of B cell activation and inflammation were observed.

In addition, interconnections between the early activation genes

and downstream apoptosis related pathway genes exist and were

only observed in the normal responsive B cells from control

subjects (Figure 9A).

In contrast, several interconnections are found between genes

based on correlated expression which are only observed in

hyperresponsive B cells (Figure 9B). While several of the gene

nodes in the activation/signaling/inflammation pathway are

similar between the normal responsive and hyperresponsive B

cells, it is the correlations between these genes that differ. Only a

few genes in the apoptosis pathway appear to be correlated with

the upstream early activation genes, suggesting that the apoptosis

pathway regulation is different between the two phenotypic

groups.

Confirmation analysis. While the results presented thus far

in two independent dynamic expression experiments unambigu-

ously demonstrate reproducibility, we carried out an additional

experimental series with 8 additional pairs of cell lines character-

ized as normal responsive and hyperresponsive. We only

replicated the most informative time points (0 and 0.5 hours)

and were able to demonstrate confirmation of approximately 80%

of earlier established differences (See Table S2 in File S1). The

analysis of dynamic changes in gene expressions between the two

earliest time points (0 and 0.5 hr) confirmed the same increase of

expression of most genes from cluster 1 in Figure 4 with the

exception of EGR4 (data not shown).

Figure 9. Dynamic gene networks in normal and SLE patient B cells. Unique dynamic gene networks of the examined (A) normal (n = 2) and
(B) hyperresponsive B (n = 2) cells are shown. Genes that appear in both the normal and hyperresponsive B cells are in bold.
doi:10.1371/journal.pone.0071397.g009
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Discussion

Gene expression profiling by microarray analysis has revolu-

tionized the study of biology by allowing for the simultaneous

examination of thousands of genes. However, the ultimate goal is

to characterize details of the studied system by identifying

functional associations between its genes.

Here we use a systems biology approach in proof-of-concept

experiments to analyze differences in gene functional associations

in B lymphocytes. B cells from two different phenotypically

discrete groups, normally responsive B cells derived from African-

American healthy donors and hyperresponsive B cells derived

African-American lupus patients were used to identify differences

in the regulation of sub-networks characteristic for the B cell

response. We employed a multistage analysis collectively called the

Pathway Dysregulation Analysis. The first step established genes

that responded to B cell activation irrespective of the phenotypic

group. The sequences of changes in expression, or the dynamic

profiles, were clustered to identify groups of genes with similar

functionality. The next step in the analysis was to establish

constitutive differences in gene expression between the phenotypic

groups. The third step was to identify genes where differences in

the dynamic expression profile could discriminate between the

phenotypic groups. The final step was to create a model reflecting

the complexity of the functional associations between genes in the

network and allow one to visualize unique features of the

interconnections.

A critical caveat of this approach, discriminating it from many

similar analyses, is that the course is determined in part by the

reproducibility of the data. First, all of the data (phenotype group 1

(patient), group 2 (control), stimulated and unstimulated) were

normalized together, thereby minimizing the systemic differences

within and between groups of samples (Level 1). Next, genes were

selected on the basis of their variability in the system; those with

significantly extended variation compared with the majority of

genes (which were stable both between both phenotypic groups

and under stimulatory conditions) (Level 2). This step demanded

replication; only HVE-genes with highly correlated profiles in

duplicated subgroups (cc.0.8) were used for subsequent analysis.

We cannot conclude that the differences seen between the two

phenotypic groups are necessarily representative of all SLE

patients and all controls as our study was focused on assessing

whether the Pathway Dysregulation Analysis method would

identify genes/pathways indicative of the reported biology. As

such, our experiments were not powered to fully test dynamic gene

expression differences between lupus patient and healthy control B

cells. However, differences in the dynamics of gene expression

following B cell activation between these two phenotypic groups

can give some insights into the genes and pathways which are

potentially different between these two groups.

Other multivariate methods of analysis show potential to rapidly

identify genes and groups of genes involved in normal and disease

processes. However, there are practically no examples of

reproduction of the sophisticated constructions created for the

explanation of biological phenomena. A well-recognized problem

with multivariate analyses in microarray experiments is reproduc-

ibility and verification [44]. To reduce this concern, we utilized an

experimental design with reproducibility testing at each level of

analysis.

The final results of our analysis include a very complicated

network of functional associations of many genes, but the details of

this complex network can be replicated by two independent

experiments. While this is of course encouraging, it is still difficult

to ascertain functional consequences of discrete differences in such

complicated networks. Our approach takes advantage of incorpo-

rating additional parameters derived from analysis of the

differences in the individual gene dynamics, contents of the

clusters, gene functional interconnections in the network, and

comparison of this information with prior knowledge about B cell

activation and gene expression dynamics. Numerous approaches

can create gene networks through reverse engineering methods.

However, most of these methods rely upon correlation or other

measures of association and are unable to discriminate between

direct and indirect associations [43]. Our technique is based on the

use of partial correlation which is able to discriminate between

direct and indirect associations similar to the method applied in

series of publications on the ARACNe method (Data Processing

Inequality method in [9,45,46,47]). More informative associations

can be obtained with methods based on the estimation of the

probabilities of associations and mutual information

([9,45,48,49,50], however, these methods need much more

information (more replicates or time points) to establish reliable

associations. These methods are more sensitive to experimental

errors and depend upon categorizing the data into a discrete

binary parameter (e.g. expressed/not expressed states) for entropy

calculation.

It is important to be able to discriminate between the

biologically driven variations of gene expression and the chaotic

noise type variations that are very common for microarray

experiments. The approaches usually employed are based on

subjectively established thresholds for this discrimination [9]. In

our analysis we employed the selection of hyper-variably expressed

genes. This is based upon the use of the internal standard

methodology and application of strong statistical criteria to enable

high power and high specificity selections of genes. Application of

an additional filter to the selection of genes in the dynamic analysis

is based upon the use of reproducibility of their dynamic

expression profiles. Variations due to background noise are

usually not reproducible.

Our study demonstrates that multilevel analysis is capable of

defining gene regulatory pathways which not only reflect the

differences in hyper vs. normal B cell responsiveness to activation,

but also represents candidate pathways that may be the target of

functional dysregulation in diseases with hyperresponsive B cells,

such as lupus.

Supporting Information

File S1 Table S1, Cluster allocations and functional intercon-

nection of 160 hyper-variably expressed genes in response to B cell

stimulation. Data is a composite of the initial analysis group

consisting of two control and two SLE patient cell lines. Table S2,

Differentially expressed genes between normal and SLE-patient

samples at early time points after B cell stimulation. Columns A

and B describe information about the genes in the array. Columns

C–H and I–M show normalized levels of gene expression (mean

and standard deviation) for normal control and SLE-patient

samples. Columns G and M depict the p-value obtained from an

associative test, while columns H and N have the ratio of patient to

control expression levels. The results of analysis are shown in

columns O–R. In columns O–R, the minimum expression level set

at .20 is used as the requirement for gene expression to be

considered above background. In columns O and P, minimum

differences in fold expression changes is set at .2. In columns Q

and R the restriction for fold differences is decreased to 1.3.

Expression Changes designations: A1= significant overexpression

in patient samples versus control samples; A2= significant

overexpression in control samples versus patient samples;
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A3= gene expressed only in patient samples; A4= gene expressed

in only control samples. Columns S-AF show the results of the

confirmatory analysis using the same samples as the initial analysis.

Data from the initial two SLE patient and two 2 control cell lines

are shown.

(XLSX)

File S2 Table S3, Differences in dynamic gene expression

profiles between phenotypic groups. Genes marked with blue are

overexpressed in normal control samples, marked with red are

overexpressed in pathological samples, bold symbols are used for

genes uniquely dynamical in one group and stabile or not

expressed in another. The lines on the graph are representative of

the two SLE patient (red) and two control (blue) cell lines initially

examined. Each phenotypic group was split into a high responder

(solid) or low responder (hatched) cell line based on response to

BCR stimulation.

(DOC)
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