
ParallelStructure: A R Package to Distribute Parallel Runs
of the Population Genetics Program STRUCTURE on
Multi-Core Computers
Francois Besnier1*, Kevin A. Glover1,2

1 Department of Population Genetics, Institute of Marine Research, Bergen, Norway, 2 Department of Informatics, Faculty of Mathematics and Natural
Sciences, University of Bergen, Bergen, Norway

Abstract

This software package provides an R-based framework to make use of multi-core computers when running analyses
in the population genetics program STRUCTURE. It is especially addressed to those users of STRUCTURE dealing
with numerous and repeated data analyses, and who could take advantage of an efficient script to automatically
distribute STRUCTURE jobs among multiple processors. It also consists of additional functions to divide analyses
among combinations of populations within a single data set without the need to manually produce multiple projects,
as it is currently the case in STRUCTURE. The package consists of two main functions: MPI_structure() and
parallel_structure() as well as an example data file. We compared the performance in computing time for this
example data on two computer architectures and showed that the use of the present functions can result in several-
fold improvements in terms of computation time. ParallelStructure is freely available at https://r-forge.r-project.org/
projects/parallstructure/.

Citation: Besnier F, Glover KA (2013) ParallelStructure: A R Package to Distribute Parallel Runs of the Population Genetics Program STRUCTURE on
Multi-Core Computers. PLoS ONE 8(7): e70651. doi:10.1371/journal.pone.0070651

Editor: Maria Anisimova, Swiss Federal Institute of Technology (ETH Zurich), Switzerland

Received April 28, 2013; Accepted June 20, 2013; Published July 29, 2013

Copyright: © 2013 Besnier et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was funded by the Norwegian research council. The funders had no role in study design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Competing interests: The authors have declared that no competing interests exist.

* E-mail: francois.besnier@imr.no

Introduction

The software package STRUCTURE was introduced in 2000
by Pritchard et al. [1], and has become one of the most widely
used population genetic programs of the last decade.
STRUCTURE has brought outstanding contributions to the
fields of population genetics and molecular ecology by
providing a user friendly tool for analyzing multi-locus genotype
data to address evolutionary questions such as population
structure, hybridization, or population admixture e.g., [2]-[6].

STRUCTURE analysis relies on multiple MCMC re-sampling
and it is therefore time consuming when it involves data sets
with large numbers of individuals, populations, and loci. Adding
to the time of analysis is the fact that the program is often run
with many iterations for each number of genetic clusters to
provide robust data for implementation of post-hoc methods to
determine the number of populations in the data set [7]. In
general, one efficient way to speed up computing processes is
to distribute tasks on several computing units (core/CPU). This
solution is becoming commonplace since shared memory
multi-core processors are widely available on the market. Even
common laptops are usually equipped with, at least, dual or

quad-core processors, and up to 8 cores are becoming the
standard.

Even though STRUCTURE does not support native multi
processor tasking, it is possible to manually run STRUCTURE
analyses in parallel on multiple CPUs by simply opening
several graphic interface windows at the same time. Indeed,
the analysis of genetic data with STRUCTURE usually involves
multiple independent runs, it is thus straightforward to simply
distribute the N runs to be performed on n available parallel
computing cores. However, manual parallel computing in
STRUCTURE is a suboptimal solution, as it requires frequent
monitoring from the user who needs to distribute the tasks
manually among the available processors. Furthermore, when
the user wants to analyze different combinations of populations
within a data set, separate analyses have to be manually
established on separate data files for each combination of
populations. A much more effective way to distribute jobs
among parallel processors is to use scripts to run
STRUCTURE on the command line version.

Using script programming can make more efficient use of
multi-core processors by automatically distributing analyses to
all the available cores/CPUs and renewing the task of each

PLOS ONE | www.plosone.org 1 July 2013 | Volume 8 | Issue 7 | e70651

https://r-forge.r-project.org/projects/parallstructure/
https://r-forge.r-project.org/projects/parallstructure/

core/CPU as soon as a given job is completed. This solution is
more efficient but requires specific script and parallel
programming skills.

The present package ParallelStructure provides a R [8]
framework to run genetic analysis in STRUCTURE and make
an efficient use of multi-core processors. R is an extremely
popular support for population genetics tools e.g., [9]-[11], and
an increasing number of programs have started to incorporate
R functions to produce graphic outputs, such as the latest
versions of BAYESCAN [12] or ARLEQUIN [13]. It is thus likely
that many STRUCTURE users are already familiar with the R
environment. Here, we introduce the package ParallelStructure
that is intended for users aiming to run intensive analyses of
their data sets (e.g. by making large number of replicates
and/or testing many values of K), and willing to use
STRUCTURE from a R function instead of the graphic interface
in order to efficiently distribute a set of pre-defined jobs on a
multi-core / multiprocessor computer. Furthermore, when
dealing with large data sets, ParallelStructure can make use of
one single data file from which the intended populations can be
selected, thus avoiding the need of creating multiple smaller
data files for each analysis in particular.

ParallelStructure consists of a R script that imports
STRUCTURE command line options into a R function, and
runs several STRUCTURE analyses in parallel by using either
Rmpi package [14] or parallel package [8].

Materials and Methods

Package description
ParallelStructure package consists of two main functions,

MPI_structure() and parallel_structure() as well as an example
data file, corresponding joblist file and a user manual (file S1).
The two functions MPI_structure() and parallel_structure() are
equivalent as they perform the same task and work with the
same input file and parameter set. The difference between
them is the method that the function relies on for distributing
jobs among CPUs: MPI_structure() relies on the R package
Rmpi whereas parallel_structure() relies on mclapply function
from parallel package. Rmpi is distributed in the CRAN
repository for MacOS, but requires manual installation under
Windows. Parallel package is distributed with R since version
2.14.0 but is still under development. parallel_structure() might
not be fully functional under Windows architecture, and should
not be used in GUI or embedded environments as it may cause
crashes. We thus strongly recommend to use MPI_structure()
by default.

A list of tasks to be performed is stored in a joblist file in
which each line corresponds to an individual job. While
STRUCTURE input format requires a different data file for each
set of populations, ParallelStructure offers the possibility to
work from a large input file containing all the populations one
might need to analyze. This avoids making a different input file
for each set of populations to be analyzed. Instead, the user
defines, in each job, the set of populations to be included as
well as parameter K, burnin and number of iterations. If all the
populations in the data set are to be analyzed pairwise (all vs.

all), the list of populations for the given job can be replaced
by ”pairwise. matrix”, e.g. job T11 in example joblist.

Example data set
The example file provided with the package contains

microsatelite data on nine loci for 987 individuals divided in 8
populations. The joblist given with the example consists of 20
jobs for which a variable set of populations from the eight
present in the dataset are included. With the exception of job
T11, the list of populations to be included is given as a comma-
separated list of the population’s id as they appear in the input
data file. For job T11, the list of populations was replaced by
the character string “pairwise. matrix”. In this case, all
populations are analyzed against each other producing a total
of n(n-1)/2 jobs, where n is the total number of populations in
the dataset. Output files can be stored in a dedicated directory
specified by the user. After executing a list of jobs,
ParallelStructure writes a. csv formatted summary file in the
working directory. This file contains for each job, the job ID,
main parameters, and the following summary statistics: log-
likelihood of the data, mean and variance of the likelihood as
well as mean value of alpha. The function argument
“printqhat=1” and “plot_output=1” also give the possibility to
generate graphic output as. pdf files. In such a case, one
graphic file is generated for each job.

Time of execution
The execution time was compared for the example data set,

i.e., microsatelite genotypes for nine loci for 987 individuals
divided in 8 populations. The set of jobs consisted of 19
STRUCTURE runs with various number of population sub-sets,
with 1000 burnin and 10000 iterations. One full pair-wise matrix
job (Job T11) that runs STRUCTURE for each pair of
populations in the dataset was also included in the list of jobs.
Execution time was computed on: (a) a Windows 7 laptop PC
equipped with a Core i7 2.2GHz quad core processor with 8Gb
of RAM, (b) an Apple workstation equipped with an Intel Xeon
2.26GHz double quad core processor with 16GB of RAM. Both
computer architecture were running on their respective
operating system: Windows 7 and MAC OS X respectively, as
well as on one common operating system for both architecture:
Linux Ubuntu 12.04. To assess the gain of computation time
obtained by parallelization, we computed the speed up as
Sp=T1/Tp, where Sp is the speed-up obtained by distributing a
task on p processors, T1 is the execution time on one
processor (sequential algorithm), and Tp the execution time of
the task on p processors.

Results and Discussion

For the performance comparison, as much as twice the
number of physical processor cores in each respective
architecture were used (i.e., 8 cores for the Intel i7 architecture,
and 16 cores for the Intel Xeon architecture). This was to make
use of hyperthreading technology (duplicating physical
processor cores into two virtual cores) that is available on both
architectures.

A Package to Distribute Parallel STRUCTURE Jobs

PLOS ONE | www.plosone.org 2 July 2013 | Volume 8 | Issue 7 | e70651

Execution time of the sequential tasks (on only one
processor) on the Intel i7 architecture required respectively 640
sec and 462 sec running on Windows 7 and Linux Ubuntu. On
the Intel Xeon architecture, execution time was 630 sec and
613 sec running on Mac OS X or Linux Ubuntu respectively.
When comparing the two architectures on the same operating
system, the newer i7 processor was approximately 25% faster
than the older Intel Xeon.

When using all available cores/CPUs of multiple-core
processors, the execution time was up to 7 times quicker than
the sequential task on the 8-cores Intel Xeon architecture, and
4 times quicker on the 4-cores Intel i7 architecture (Figure 1).
With equal number of CPUs, the gain in computation time
(speed-up) was lower on the 4 cores i7 processor (Figure 1).

In an ideal case, the speed-up brought by parallelization is
linear with the number cores/CPUs allocated for the parallel

Figure 1. Gains in job execution time (speed-up) for the example data when running on variable number of processors on
two computer architectures. (a) a Windows 7 laptop PC equipped with a Core i7 2.2GHz quad core processor with 8Gb of RAM
and (b) an Apple workstation equipped with an Intel Xeon 2.26GHz double quad core processor with 16GB of RAM. Maximum
speed-up is represented by the dashed line (y = x).
doi: 10.1371/journal.pone.0070651.g001

A Package to Distribute Parallel STRUCTURE Jobs

PLOS ONE | www.plosone.org 3 July 2013 | Volume 8 | Issue 7 | e70651

task. Here, while the sequential inclusion of more cores/CPUs
speeded up analysis time, speed-up did not increase linearly
with the number of cores/CPUs allocated (Figure 1). The curve
of speed-up vs. number of cores/CPUs reveals an inflexion
point when all the available physical CPUs are used, i.e., 8 or 4
cores/CPUs on the Intel Xeon architecture or i7 architecture
respectively. Even though in theory, the performance would
increase linearly with the number of allocated cores/CPUs, this
is not the case here. A possible reason for this is that the
execution of a given individual job was slower when running
along with other jobs than when running alone on the machine.
This was noticeable on our example computer architecture,
especially when using the hyperthreading. In the most extreme
case, an individual STRUCTURE job took about 35% longer to
execute when running along with 14 other jobs in parallel
cores/CPUs, than when running alone. This was observed not
only within the framework of ParallelStructure, but also when
running manually several STRUCTURE jobs in command line.
We thus conclude that this phenomenon is not caused by the
implementation of MPI_structure() but it is rather inherent to the
way the processor deals with distribution of execution
resources, especially when hyperthreading.

The reduction in performance gain for each processor that is
sequentially included in the analyses is not caused by
excessive use of the available memory (RAM), as when the
maximum numbers of cores/CPUs were allocated to the
STRUCTURE jobs, the available RAM was never fully used on
either computer. This is consistent with the fact that
STRUCTURE is not known to be a memory-demanding
program and thus extra performance gains would not be
achieved through the addition of extra memory beyond the test
specifications detailed here.

In addition to parallelization of structure runs,
ParallelStructure offers the possibility to analyze large
datasets, and divide analyses among combinations of
populations without the need to manually produce multiple
projects, as it is currently the case in STRUCTURE. However,
because it relies on the command line version of
STRUCTURE, ParallelStructure does not offer the possibility to
set up repeated iterations for various values of parameter K, as
it would be possible to do with the front-end version of
STRUCTURE. In ParallelStructure, each iteration for each
value of K has to be specified as a separated job on the ‘joblist’
input file. This issue was addressed by another freely available
program: StrAuto (www.crypticlineage.net/pages/software.html)
that streamlines command line analyses in STRUCTURE. This
program makes it possible to set up multiple iterations for

various values of parameter K from STRUCTURE command
line version, however StrAuto is not parallelized yet, and does
not seem to work on Windows operating system.

In conclusion, ParallelStructure provides population
geneticists and molecular ecologists with an effective tool that
is able to command STRCUTURE to run jobs in parallel in
order to speed up computation time several-fold. It also
provides a set of commands that enables large data sets to be
analyzed in multiple ways without having to divide up
populations into smaller data files. Based on the analysis of the
example data, we conclude that the use of MPI_structure() or
parallel_structure() can speed up computation time of genetic
analysis in STRUCTURE, however, hyperthreading brings little
improvement, and significant performance gain should not be
expected when calling more processors than physically
available on the machine.

Software Availability
Software is hosted on R-forge (https://r-forge.r-project.org),

and can be downloaded from:

https://r-forge.r-project.org/R/?group_id=1636 or installed in
R directly by typing:

install.packages("ParallelStructure", repos="http://R-Forge.R-
project.org")

Information document with installation instruction and
example run can be downloaded from:

http://parallstructure.r-forge.r-project.org/ParallelStructure.pdf

Supporting Information

File S1. User manual and installation instruction for R
package ParallelStructure.
(PDF)

Acknowledgements

Monica F. Solberg and Geir Dahle are acknowledged for
testing the program and providing insightful comments on the
user manual. Dr Hubisz, Dr Chhatre and a third anonymous
reviewer are acknowledged for their valuable suggestions.

Author Contributions

Conceived and designed the experiments: KAG FB. Analyzed
the data: FB. Wrote the manuscript: KAG FB.

References

1. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population
structure using multilocus genotype data. Genetics 155: 945-959.
PubMed: 10835412.

2. Rosenberg NA, Burke T, Elo K, Feldman MW, Freidlin PJ et al. (2001)
Empirical evaluation of genetic clustering methods using multilocus
genotypes from 20 chicken breeds. Genetics 159: 699-713. PubMed:
11606545.

3. Rosenberg NA, Pritchard JK, Weber JL, Cann HM, Kidd KK et al.
(2002) Genetic structure of human populations. Science 298:
2381-2385. doi:10.1126/science.1078311. PubMed: 12493913.

4. Falush D, Wirth T, Linz B, Pritchard JK, Stephens M et al. (2003)
Traces of human migrations in Helicobacter pylori populations. Science
299: 1582-1585. PubMed: 12624269.

5. Harter AV, Gardner KA, Lentz Falush D, Bye RA et al. (2004) Origin of
extant domesticated sunflowers in eastern North America. Nature 430:
201-205. doi:10.1038/nature02710. PubMed: 15241413.

6. Backström N, Saetre G-P, Ellegren H (2013) Inferring the demographic
history of European Ficedula flycatcher populations. BMC Evol Biol 13:
2. doi:10.1186/1471-2148-13-2. PubMed: 23282063.

7. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of
clusters of individuals using the software STRUCTURE: a simulation

A Package to Distribute Parallel STRUCTURE Jobs

PLOS ONE | www.plosone.org 4 July 2013 | Volume 8 | Issue 7 | e70651

http://www.crypticlineage.net/pages/software.html
https://r-forge.r-project.org
https://r-forge.r-project.org/r/?group_id=1636
http://parallstructure.r-forge.r-project.org/parallelstructure.pdf
http://www.ncbi.nlm.nih.gov/pubmed/10835412
http://www.ncbi.nlm.nih.gov/pubmed/11606545
http://dx.doi.org/10.1126/science.1078311
http://www.ncbi.nlm.nih.gov/pubmed/12493913
http://www.ncbi.nlm.nih.gov/pubmed/12624269
http://dx.doi.org/10.1038/nature02710
http://www.ncbi.nlm.nih.gov/pubmed/15241413
http://dx.doi.org/10.1186/1471-2148-13-2
http://www.ncbi.nlm.nih.gov/pubmed/23282063

study. Mol Ecol 14: 2611-2620. doi:10.1111/j.1365-294X.2005.02553.x.
PubMed: 15969739.

8. Team RDC (2013) R: A language and environment for statistical
computing. Vienna: R Foundation for Statistical Computing.

9. Goudet J (2005) hierfstat, a package for R to compute and test
hierarchical F-statistics. Mol Ecol Notes 5: 184-186. doi:10.1111/j.
1471-8286.2004.00828.x.

10. Guillot G, Mortier F, Estoup A (2005) Geneland: A computer package
for landscape genetics. Mol Ecol Notes 5: 712-715. doi:10.1111/j.
1471-8286.2005.01031.x.

11. Jombart T (2008) adegenet: a R package for the multivariate analysis
of genetic markers. Bioinformatics 24: 1403-1405. doi:10.1093/
bioinformatics/btn129. PubMed: 18397895.

12. Foll M, Gaggiotti O (2008) A genome-scan method to identify selected
loci appropriate for both dominant and codominant markers: A
Bayesian perspective. Genetics 180: 977-993. doi:10.1534/genetics.
108.092221. PubMed: 18780740.

13. Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: An
integrated software package for population genetics data analysis. Evol
Bioinform Online 1: 47-50.

14. Yu H (2002) Rmpi: Parallel Statistical Computing in R. R NEWS 2:
10-14.

A Package to Distribute Parallel STRUCTURE Jobs

PLOS ONE | www.plosone.org 5 July 2013 | Volume 8 | Issue 7 | e70651

http://dx.doi.org/10.1111/j.1365-294X.2005.02553.x
http://www.ncbi.nlm.nih.gov/pubmed/15969739
http://dx.doi.org/10.1111/j.1471-8286.2004.00828.x
http://dx.doi.org/10.1111/j.1471-8286.2004.00828.x
http://dx.doi.org/10.1111/j.1471-8286.2005.01031.x
http://dx.doi.org/10.1111/j.1471-8286.2005.01031.x
http://dx.doi.org/10.1093/bioinformatics/btn129
http://dx.doi.org/10.1093/bioinformatics/btn129
http://www.ncbi.nlm.nih.gov/pubmed/18397895
http://dx.doi.org/10.1534/genetics.108.092221
http://dx.doi.org/10.1534/genetics.108.092221
http://www.ncbi.nlm.nih.gov/pubmed/18780740

	ParallelStructure: A R Package to Distribute Parallel Runs of the Population Genetics Program STRUCTURE on Multi-Core Computers
	Introduction
	Materials and Methods
	Package description
	Example data set
	Time of execution

	Results and Discussion
	Software Availability

	Supporting Information
	Acknowledgements
	References

