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Abstract

Local and regional-scale knowledge of climate change is needed to model ecosystem responses, assess vulnerabilities and
devise effective adaptation strategies. High-resolution gridded historical climate (GHC) products address this need, but
come with multiple sources of uncertainty that are typically not well understood by data users. To better understand this
uncertainty in a region with a complex climatology, we conducted a ground-truthing analysis of two 4 km GHC temperature
products (PRISM and NRCC) for the US Northeast using 51 Cooperative Network (COOP) weather stations utilized by both
GHC products. We estimated GHC prediction error for monthly temperature means and trends (1980–2009) across the US
Northeast and evaluated any landscape effects (e.g., elevation, distance from coast) on those prediction errors. Results
indicated that station-based prediction errors for the two GHC products were similar in magnitude, but on average, the
NRCC product predicted cooler than observed temperature means and trends, while PRISM was cooler for means and
warmer for trends. We found no evidence for systematic sources of uncertainty across the US Northeast, although errors
were largest at high elevations. Errors in the coarse-scale (4 km) digital elevation models used by each product were
correlated with temperature prediction errors, more so for NRCC than PRISM. In summary, uncertainty in spatial climate data
has many sources and we recommend that data users develop an understanding of uncertainty at the appropriate scales for
their purposes. To this end, we demonstrate a simple method for utilizing weather stations to assess local GHC uncertainty
and inform decisions among alternative GHC products.
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Introduction

A growing demand for high-resolution spatial climate informa-

tion by researchers, educators and decision-makers has led to the

creation of various gridded historical climate (GHC) data products

(e.g., [1–9]). These GHC products are often freely available and

easily incorporated in geographic information systems (GIS) and

are now being widely used for mapping and estimating climate

conditions at local and regional scales. Applications of these data

include regional bioclimatic modeling [10], ecosystem simulations

[11], and the statistical downscaling of global climate model

(AOGCM) forecasts [12], [13].

Despite rapid growth in use of high-resolution GHC products in

research and decision-making, there remain several issues that

have received little attention. First, GHC users without formal

training in climatology or geospatial modeling may be unaware of

the inherent uncertainty associated with these products [14].

Although GHC data are generated using robust techniques to

assess uncertainty, few (if any) GHC products are provided with

their corresponding error or uncertainty estimates at grid

resolution [2], [8], [15]. Instead of treating the data as model

outputs with associated uncertainty, it appears many GHC users

treat them as ‘true’ climate information – i.e., an accurately

measured independent variable – in statistical, spatial and

simulation models. Yet these GHC products are model outputs

that typically have increasing uncertainty at higher resolutions,

creating a ‘resolution vs. realism tradeoff’, in which finer grain

maps appear more intuitively accurate but cannot be validated

[14]. Model errors are not uniform across space or time, but tend

to be spatially and temporally complex, representing error

propagation from sources related to both measurement and

modeling [14], [16], [17].

One of these complexities results from the strong influence of

elevation on climate itself. As a result, the modeling techniques

that are used to represent continuous climatic variation across

complex terrains tend to be heavily dependent upon elevation as a

predictor variable [1], [3], [5], [7], [8]. Spatial interpolation of

daily temperature is strongly influenced by elevation, more so for

maximum temperatures than minimum temperatures [18],

because the former are particularly sensitive to the effects of

temperature inversions in inland areas [3].

Another issue facing data users is that many different GHC

products exist and there are few, if any, clear guidelines for

choosing among them. At face value, GHC products generated at

similar resolutions may appear quite similar when mapped, but

have significant disparities in their predictions [17]. In general, a

robust approach would be to compare multiple GHC products

using their relative uncertainties at locations of interest (model
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comparison) and to determine their level of agreement with each

other and with reference data. Few studies of this type have been

done (but see [14], [19]) and to our knowledge a regional-scale

validation and comparison of two or more GHC products has not

been done. The PRISM (Parameter Regression on Independent

Slopes Model, PRISM Group, Oregon State University, Corvallis,

OR; www.prism.oregonstate.edu) product has been subject to

cross-validation analyses, measuring the difference in station

observations and GHC estimates after the station has been

removed from the model [3], [4]; but, this method tends to favor

models that excessively smooth the results, ignoring local

climatology. A basic ground-truthing analysis, which can be

performed by data users, may be especially useful when multiple

GHC products disagree in data-sparse areas, or seem very

different from local observations, and can inform specific choices

on GHC usage in research and decision-making.

In this study we compared the predicted means and trends of

two 4 km GHC temperature products – PRISM [2] and NRCC

(Northeast Regional Climate Center, Cornell University, Ithaca,

NY; www.nrcc.cornell.edu) [8] – for the same region (US

Northeast) and time period (1980–2009) with the observed

temperature means and trends from a group of weather stations

that were incorporated in both products. Given the reference data

was directly used in the GHC models, we could have expected to

find negligible differences between station observations and model

(map) predictions. On the other hand, previous analyses of PRISM

and NRCC indicated there might be systematic sources of

uncertainty in the US Northeast: cells located at higher elevations

and along coastlines appeared to have consistently larger cross-

dataset bias, and a ground-truthing at a very high-elevation station

suggested very large prediction errors [17].

To better understand this situation as GHC data users, our

objective was to gain some insight on sources of uncertainty and

make further comparisons between the PRISM and NRCC

products. We evaluated effects of landscape factors such as

elevation and distance to coast on prediction errors using

information-theoretic modeling [20]. Other error sources, such

as the coarse-scale (4 km) elevation models used by GHC models,

were also assessed. Lastly, we demonstrate a method for using local

weather stations to interpret areas of significant disparity between

GHC predictions [17] and to inform decisions among alternative

GHC products.

Methods

1. Gridded Climate Data Products
Characteristics of the PRISM and NRCC gridded data

products are summarized in Table 1; each is briefly described

here. The PRISM product is generated using moving-window,

elevation-dependent regression models that interpolate a large

group of high-quality instrumental records to a 4 km grid across

the US states from 1895-present. PRISM incorporates a complex

weather station weighting system including spatial topographic

facets, coastal proximity, topographic position, effective terrain

height, elevation, station distance, and station clustering [2], [4].

The PRISM temperature and precipitation climate products are

freely available GHC products that serve as the official climato-

logical data of several US agencies.

The NRCC product is generated by downscaling and bias-

correcting the 40 km resolution outputs of the North American

Regional Reanalysis (NARR). The NARR is based on a regional

meteorological model that has been back-calibrated using satellite

observational data, radar, and weather stations [8], [21]. NRCC

downscales the NARR using a digital elevation model (DEM) at
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2.562.5 arc-minute resolution, which is approximately 4 km at

45uN. Bias correction in the NRCC is based on a subset of NOAA

Cooperative Observer Network (COOP) stations in the region

(Fig. 1).

The two 4 km GHC products have nearly identical raster

geometry (within 0.00001 degrees congruence) across the US

Northeast region, which is defined by the extent of the NRCC

spatial domain, containing all of Maine (ME), New Hampshire

(NH), Vermont (VT), Massachusetts (MA), Connecticut (CT),

Rhode Island (RI), New York (NY) and portions of northern

Pennsylvania (PA) and New Jersey (NJ). Each product uses a

different DEM, employing different methods to smooth to a

similar resolution ,4 km (Table 2). DEMs present an elevation

estimate for each gridded cell. As DEMs represent a continuous

area rather than a discrete point, these elevation estimates may

differ from a point’s exact elevation depending on surface

roughness and slope.

All computations including statistical models were conducted

using the R Project [22]. The R packages ncdf [23], raster [24],

lme4 [25], gdata [26], sp [27], and spatstat [28] were used.

2. Station Validation Analysis
Temperature means and trends from the PRISM and NRCC

products were compared with concurrent observations (1980–

2009) from a subset of Cooperative Observer Network (COOP)

stations across the US Northeast. Of the 116 COOP stations in the

region, we analyzed prediction error at the 51 stations that were 1)

used, to our knowledge, by both PRISM and NRCC, and 2) did

not contain any missing or erroneous monthly data (Fig. 1).

Twenty of the COOP stations we utilized are part of the US

Historical Climatology Network (US HCN; [29]). In this paper,

individual stations are referenced by their unique identifiers (Table

S1). The remaining 65 stations not included here were not used in

NRCC because of measurement schedules [8], but may have

Figure 1. Map of study area and COOP stations. Station density for each state listed in upper left-hand corner: Maine (ME), New Hampshire
(NH), Vermont (VT), Massachusetts (MA), Connecticut (CT), Rhode Island (RI), New York (NY) and northern portions of Pennsylvania (PA) and New
Jersey (NJ). Stations are assigned unique identifications listed in Table S1.
doi:10.1371/journal.pone.0070260.g001

Table 2. PRISM and NRCC digital elevation model (DEM) summary.

Data Product Spatial Resolution Source Methods

PRISM 2.5 arc-minute EROS Data Center’s 3-arc-second
DEM

Mosaiced & resampled to 15-arc-second resolution; Smoothed with
modified Barnes filter [34]

NRCC 2.5 arc-minute NOAA NGDC 30-arc-second
(,1 km) DEM

Mosaiced & resampled to 150-arc-second resolution

doi:10.1371/journal.pone.0070260.t002

Uncertainty in Spatial Climate Data
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potentially been used in PRISM. It is important to note that we say

‘‘potentially been used’’ because PRISM draws its data from

numerous stations but not all model runs utilize all stations with

equal weighting.

Trend magnitude estimates for PRISM, NRCC and weather

station records were calculated using the least squares regression

slope coefficient to estimate rate of change. The slope coefficients

were multiplied by 10 to present trend magnitudes as decadal rates

(uC decade21).

Prediction errors as simple differences (predicted–observed)

were calculated at the 51 COOP station points using the 4 km

raster cell containing the coordinates of each station. The

monthly-resolution prediction errors were averaged annually for

each station, producing 8 sets of prediction errors at each weather

station: 2 GHC products (PRISM, NRCC) 62 temperature

variables (TMin, TMax) 62 statistics (mean, trend magnitude).

The monthly-resolution prediction errors were also averaged

seasonally into winter (DJF), spring (MAM), summer (JJA) and fall

(SON). Probability distributions of the errors were compiled for

each set of seasonal and annual outputs, from which moments

were estimated (mean, median, standard deviation, etc). A pooled

probability distribution combining PRISM and NRCC errors for

a given variable (e.g., mean TMax, trend TMin) was also compiled

for outlier analysis.

3. Sources of GHC error
We used information theoretic modeling [20] to evaluate effects

of landscape factors on error at the station locations. The factors

evaluated were latitude, longitude, elevation and distance to coast.

Elevation, latitude and longitude were derived from the station’s

NCDC metadata. Distance to coast was calculated in ArcGIS for

each station using a coastline shapefile provided by the NOAA

NGDC (www.ngdc.noaa.gov/mgg/coast).

To reduce collinearity, a correlation screening was conducted

using the Pearson product-moment test. Based on these results,

longitude was excluded from model selection because it was highly

correlated, using the Pearson correlation coefficient (r), with both

distance to coast (r = 0.83) and latitude (r = 0.80). The remaining

predictor variables (latitude, elevation, and distance to coast) were

incorporated in a model selection procedure that evaluated all

possible combinations of variables, including null models and

interaction terms (Table 3). Response (dependent) variables were

the prediction error sets for seasonal temperature means and trend

magnitudes based on differences with station observations (n = 51)

averaged over 1980–2009. For this analysis, model selections were

run based on the 16 error sets summarized for each GHC product:

4 seasons62 variables (TMin, TMax) 62 statistics (mean, trend

magnitude).

General multiple linear regression models were created using all

possible combinations of explanatory variables, including a null

model and models with interaction terms, and compared using the

corrected Akaike Information Criterion [20] adjusted for small

sample sizes (AICc). Model explanatory power was estimated using

the maximum likelihood pseudo-coefficient of determination (R2).

We also evaluated a known source of error in GHC predictions

– the use of coarse-scale digital elevation models that poorly

represent local topography, especially in complex terrains [7,8].

Table 3. Temperature prediction error models.

Model

A) Null

B) Lat

C) Elev

D) Coast

E) Lat+Elev+Coast

F) Lat+Elev

G) Elev+Coast

H) Lat+Coast

I) Elev*Lat

J) Coast*Elev

K) Coast+Elev*Lat

L) Lat+Coast*Elev

M) Elev*Lat+Coast*Elev

Explanatory variables included latitude (Lat), elevation (Elev), and coastal
distance (Coast).
doi:10.1371/journal.pone.0070260.t003

Table 4. PRISM and NRCC temperature mean and trend magnitude prediction error averages (standard deviations) and medians.

Averages Medians

Means (6C ) Trends (6C decade21 ) Means (6C ) Trends (6C decade21 )

TMax TMin TMax TMin TMax TMin TMax TMin

Annual 20.230 (0.37) 20.145 (0.52) 0.012 (0.18) 0.014 (0.23) 20.188 20.125 0.001 0.030

Winter 20.229 (0.37) 20.351 (0.67) 0.006 (0.17) 20.047 (0.32) 20.195 20.379 20.014 20.057

PRISM Spring 20.223 (0.39) 20.143 (0.49) 0.015 (0.20) 0.042 (0.25) 20.190 20.069 0.004 0.018

Summer 20.252 (0.42) 0.056 (0.57) 0.027 (0.22) 0.070 (0.22) 20.179 0.083 0.013 0.051

Fall 20.213 (0.37) 20.143 (0.52) 0.006 (0.18) 20.008 (0.25) 20.217 20.139 20.026 20.004

TMax TMin TMax TMin TMax TMin TMax TMin

Annual 20.197 (0.58) 20.463 (0.62) 20.044 (0.11) 20.025 (0.19) 20.153 20.382 20.010 0.006

Winter 20.347 (0.47) 20.775 (0.72) 20.058 (0.12) 20.019 (0.25) 20.304 20.701 20.026 0.018

NRCC Spring 20.161 (0.63) 20.387 (0.63) 20.039 (0.13) 20.020 (0.20) 20.163 20.300 20.015 20.018

Summer 20.113 (0.73) 20.164 (0.68) 20.037 (0.14) 20.016 (0.17) 20.094 20.122 0.001 20.010

Fall 20.167 (0.58) 20.525 (0.63) 20.041 (0.12) 20.045 (0.19) 20.102 20.413 20.011 20.014

Uncertainty in Spatial Climate Data
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Figure 2. Mean monthly TMax prediction errors for NRCC and PRISM at 51 COOP weather stations. Stations across the US Northeast
during 1980–2009. Data presented are averages of 12 monthly errors.
doi:10.1371/journal.pone.0070260.g002

Figure 3. Mean monthly TMin prediction errors for NRCC and PRISM at 51 COOP weather stations. Stations across the US Northeast
during 1980–2009. Data presented are averages of 12 monthly errors.
doi:10.1371/journal.pone.0070260.g003
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Differences between each product’s DEM elevation estimates and

actual station elevation were calculated and relationships between

GHC prediction error and DEM elevation errors were evaluated

using Pearson correlation tests, calculating the Pearson correlation

coefficient (r) and the significance level using the test’s p-value (p).

4. Evaluating GHC Products at Local Scale
A previous analysis of PRISM and NRCC indicated consistent

areas of map disagreement between temperature predictions, for

both means and trends, across the US Northeast [17]. To better

evaluate these areas of disparity, we developed a three-step

method using weather stations as an unbiased reference.

First, we identified areas of spatially continuous and empirically

large cross-GHC bias, based on simple differences (PRISM minus

NRCC). These cross-dataset bias maps were used to represent

areas of PRISM.NRCC (high values; mapped in red) and

PRISM,NRCC (low values; mapped in blue). These maps

allowed us to examine bias patches, or continuous zones of

disagreement between the two products, across the region for

temperature means and trends.

Next, we identified stations where one or both GHC product

had significant prediction errors. Two types of errors were flagged:

‘large’ were those falling outside 61 SD of the mean pooled error,

and ‘outlier’ were those outside 62 SD of the mean pooled error.

Four sets of large and outlier errors were flagged for mean TMax,

mean TMin, TMax trend, and TMin trend based on the

corresponding pooled error distributions of PRISM and NRCC

for each variable.

Lastly, to interpret which local-scale GHC predictions may be

more reliable, we overlaid the bias maps with station locations

where large and outlier prediction errors were found. For instance,

if the PRISM-NRCC bias map indicated that PRISM was

consistently warmer than NRCC (i.e., a PRISM.NRCC ‘red

patch’), and there was a large positive prediction error for PRISM

at weather station(s) in that area, we can infer that PRISM was too

warm. Alternately, if NRCC was shown to have a large negative

prediction error at weather station(s) within the PRISM.NRCC

patch, NRCC might be inferred as too cold. For each map, up to

five stations with the largest absolute bias (PRISM – NRCC

difference) were included for reference; a sixth station location

where both GHC predictions were similar but erroneous – i.e.,

large error, low bias – was included to illustrate where neither

prediction may be reliable.

Results

1. Prediction Error – Mean Temperatures
Both the PRISM and NRCC 4 km products predicted lower

than observed mean temperatures across the US Northeast during

1980–2009, based on seasonal and annual averages of errors

calculated on a monthly basis at 51 COOP weather stations

(Table 4). The exception was PRISM mean summer TMin error,

which was positive but near zero (+0.056uC). Median prediction

errors are typically closer to zero than mean prediction errors,

indicating that large outliers may bias the mean error estimates.

NRCC errors were consistently larger for TMin relative to

TMax (Table 4), ranging from 23.501uC (PN-NH) to +0.746uC
(L-NY) for mean TMax (Fig. 2) and from 22.756uC (PN-NH) to

+0.857uC (L-NY) for mean TMin (Fig. 3). Averaged annually,

NRCC predicted lower temperatures than observed at 37 of 51

stations for mean TMax and 45 of 51 stations for mean TMin.

Figure 4. Mean TMax Trend prediction errors for NRCC and PRISM at 51 COOP weather stations. Stations across the US Northeast during
1980–2009. Data presented are averages of 12 monthly errors.
doi:10.1371/journal.pone.0070260.g004
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Figure 5. Mean TMin Trend prediction errors for NRCC and PRISM at 51 COOP weather stations. Stations across the US Northeast during
1980–2009. Data presented are averages of 12 monthly errors.
doi:10.1371/journal.pone.0070260.g005

Figure 6. Relationships between GHC annual mean prediction error and DEM error. Plots for relationships between differences between
DEM elevation estimates and station elevation (x-axis) and a) NRCC TMax Mean, b) NRCC TMin Mean, c) PRISM TMax Mean, and d) PRISM TMin Mean
prediction errors. Plots shown all have Pearson’s correlation coefficients (r) labeled at the bottom of each plot.
doi:10.1371/journal.pone.0070260.g006
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Figure 7. Mean TMax prediction error: Locations of large prediction errors. Error locations are in relation to areas of locally high and low
temperature differences (PRISM-NRCC). Inset graphs display associated prediction errors for both GHC products, with a cross above large prediction
errors (above 61 SD) and an ‘X’ above prediction error outliers (above 62 SD). Each station has two prediction errors plotted: purple (NRCC) and
orange (PRISM).
doi:10.1371/journal.pone.0070260.g007
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Figure 8. Mean TMin prediction error: Locations of large prediction errors. Error locations are in relation to areas of locally high and low
temperature differences (PRISM-NRCC). Inset graphs display associated prediction errors for both GHC products, with a cross above large prediction
errors (above 61 SD) and an ‘X’ above prediction error outliers (above 62 SD). Each station has two prediction errors plotted: purple (NRCC) and
orange (PRISM).
doi:10.1371/journal.pone.0070260.g008
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Figure 9. TMax Trend prediction error: Locations of large prediction errors. Error locations are in relation to areas of locally high and low
temperature differences (PRISM-NRCC). Inset graphs display associated prediction errors for both GHC products, with a cross above large prediction
errors (above 61 SD) and an ‘X’ above prediction error outliers (above 62 SD). Each station has two prediction errors plotted: purple (NRCC) and
orange (PRISM).
doi:10.1371/journal.pone.0070260.g009
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Figure 10. TMin Trend prediction error: Locations of large prediction errors. Error locations are in relation to areas of locally high and low
temperature differences (PRISM-NRCC). Inset graphs display associated prediction errors for both GHC products, with a cross above large prediction
errors (above 61 SD) and an ‘X’ above prediction error outliers (above 62 SD). Each station has two prediction errors plotted: purple (NRCC) and
orange (PRISM).
doi:10.1371/journal.pone.0070260.g010
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PRISM errors were consistently larger for TMax relative to

TMin, with the exception of winter (Table 4). Errors ranged from

21.227uC (PN-NH) to +0.848uC (L-NY) for mean TMax (Fig. 2)

and from 21.924uC (CR-NJ) to +1.073uC (M-PA) for mean TMin

(Fig. 3). Averaged annually, PRISM predicted lower mean

temperatures at 38 of 51 stations for mean TMax and 33 of 51

stations for mean TMin.

2. Prediction Error – Temperature Trends
The NRCC product consistently predicted lower magnitude

(cooler) trends than observed across the US Northeast (1980–2009)

and the PRISM product mostly predicted higher magnitude

(warmer) trends (Table 4). For both products, the average trend

prediction errors were near zero (,0.050uC decade21), but this

was due to much larger positive and negative errors being offset.

For example, PRISM had absolute prediction errors #0.250uC
decade21 at 10 of 51 stations for TMax trends, and 3 of these 10

errors were negative (i.e., a more positive trend was observed than

predicted). Both products had their largest prediction error at the

same station (M-PA) for TMin trends. Median prediction errors

are typically closer to zero than mean errors.

NRCC trend prediction errors ranged from 20.457 (PM-PA) to

+0.118 (NC-NH) uC decade21 for TMax (Fig. 4) and from 20.799

(M-PA) to +0.333 (S-PA) uC decade21 for TMin (Fig. 5). Negative

prediction errors for NRCC were largest for TMax during winter

and for TMin during fall (Table 4).

PRISM trend prediction errors ranged from 20.339 (PM-PA)

to 0.605 (PN-NH) uC decade21 for TMax (Fig. 4) and from

20.952 (M-PA) to 0.453 (C-VT) uC decade21 for TMin (Fig. 5).

Positive prediction errors for PRISM were largest in summer for

both TMax and TMin (Table 4).

3. Landscape Analysis of GHC Error
To evaluate effects of landscape factors on local-scale GHC

prediction error, we conducted a general linear model comparison

using all possible combinations of explanatory variables: latitude,

elevation, distance to coast and interaction terms (Table 3).

Overall, linear models provided scant evidence for consistent

spatial sources of uncertainty in the temperature means and trends

predicted by either PRISM or NRCC. In several model

comparisons, the null model had the most support (lowest AICc),

and in nearly every case the null was within 2.0 units AICc of the

best model. Nearly all of the supported models had very low

explanatory power (R2,0.2), indicating that these variables

explained little of the observed variance in prediction errors at

station locations across the region.

For predicting NRCC mean TMin error, models containing

both distance to coast and latitude consistently were among the best

for all seasons. In contrast, the PRISM mean TMin model

containing only the distance to coast term performed among the best

for all four seasons. For NRCC TMin trend error, a model with

only latitude was best for all seasons, while for PRISM TMin trend

error, the null model is consistently among the best for all four

seasons (Tables S2.1–S2.8). As noted above, these models

explained very little of the variability in PRISM and NRCC

prediction error observed across the region.

Errors in digital elevation models were strongly negatively

correlated with prediction errors for NRCC mean TMax

(r = 20.93; p,0.0001) and mean TMin (r = 20.70; p,0.001),

indicating that when NRCC increasingly overestimates elevation,

its temperature predictions are increasingly colder than observed.

For PRISM, TMax prediction error was also significantly

correlated with its DEM errors, but to a lesser degree than

NRCC (Fig. 6), while PRISM mean TMin error was not

significantly correlated with DEM error. Neither of the trend

estimate error sets for NRCC or PRISM were correlated with

DEM error (all p.0.05).

4. Evaluating GHC Products at Local Scale
We identified large outlier errors of NRCC and PRISM at

weather stations and used these in conjunction with smaller errors

as reference points to evaluate areas of disagreement between

NRCC and PRISM. Using this approach, we found cases where

the two products disagreed but one was clearly more representa-

tive of local conditions (i.e., mean temperature or trend magnitude

during 1980–2009). There were also cases where PRISM and

NRCC disagreed, but both had large errors and neither closely

represented local conditions. For each set of analyses of TMax and

TMin, these cases are depicted in Figures 7–10 and briefly

described below.

For mean TMax, there was one station where large outlier

errors coincided with a zone of disagreement in which

PRISM.NRCC (Fig. 7). At Pinkham’s Notch, NH both PRISM

and NRCC had large outlier errors but the NRCC error

(23.501uC) was much larger than the PRISM error (21.227uC).

Within a PRISM,NRCC zone, at the North Conway, NH station

(NC-NH) PRISM had large negative error while the NRCC error

was relatively small.

For mean TMin, the 5 stations identified with the largest

PRISM-NRCC bias were all located in PRISM.NRCC zones

(Fig. 8). In two of these cases NRCC had an outlier error that

predicted much colder than observed. At Montrose, PA (M-PA),

PRISM had a large positive outlier error while NRCC closely

predicted the observed mean temperature. At Charlotteburg

Reservoir (CR-NJ), both PRISM and NRCC had an outlier error,

only slightly smaller than the NRCC error. This station was not

located within a zone of disagreement, as the two products were in

close agreement of each other.

For TMax trends, all of the 5 stations with the largest PRISM-

NRCC bias magnitude were within PRISM.NRCC zones, i.e.,

where PRISM predicted more positive (warming) trends relative to

NRCC (Fig. 9). PRISM had large positive outlier errors at three

stations in close proximity in NH (B-NH, PN-NH, NC-NH). In

northwestern PA, NRCC had a large negative outlier while

PRISM closely predicted the observed trend (W-PA). However, in

northeastern PA, both PRISM and NRCC were in relative

agreement, exhibiting large negative outliers (PM-PA).

Lastly for TMin trends, 4 of the 5 high bias stations were in

PRISM.NRCC zones (Fig. 10). At Cavendish, VT (C-VT), the

two products predicted different trend directions but at similar

magnitudes (rates). One station (TWW-PA) was within a

PRISM,NRCC zone, as PRISM exhibited a large negative error

and NRCC predicted relatively close to the observed trend. For

the sixth station in Montrose, PA (M-PA), both products had large

negative outliers, which was not within a zone of disagreement.

Discussion

The increasing proliferation and use of high-resolution spatial

climate data products has largely outpaced efforts to assess their

uncertainty for various applications. Few guidelines exist for using

these modeled data [14] and most of the GHC products are not

provided to users with any estimates of uncertainty. We suggest

that assessing this uncertainty, even at a basic level as we have

done in this study, can be helpful for understanding strengths and

limitations of these high-resolution gridded historical climate

(GHC) products.
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Our results based on 51 weather stations across the US

Northeast suggest a relatively low degree of uncertainty in GHC

predictions, but that this uncertainty varied in complex ways. On

average, NRCC predicted lower than observed (cooler) for both

means and trends, while PRISM predicted lower than observed

for means and higher than observed for trends. Error varied by

seasons and both PRISM and NRCC products had the largest

errors during winter (DJF).

Although comparisons of overall prediction accuracy could be

drawn from these results, our purpose was not to determine which

product was ‘best’ for the US Northeast region. In fact, our results

confirmed that, whether focusing on maximum or minimum

temperatures, or means or trends, in different cases PRISM or

NRCC might more accurately represent local conditions. In a few

cases, both products had large errors that, depending on the

application, may be considered unsatisfactory for representing

local conditions. Mean error estimates were often biased by these

large outliers and therefore median errors may better represent the

overall uncertainty of a GHC product. However, these large

outlier errors indicate that some degree of caution should be taken

when applying these GHC data in research and decision-making.

Despite some prior indications of greater GHC uncertainty with

increasing elevation and proximity to coast for the US Northeast

[17], we found little evidence that these factors represented

systematic sources of uncertainty in either PRISM or NRCC.

Despite this result, there remains some circumstantial evidence

that high elevation predictions, particularly those in rugged

terrain, may be more erroneous. Our modeling was constrained

by the lack of high elevation weather stations in the US Northeast,

since we could not include any information at points above the

highest elevation station located at 613 m (PN-NH).

However, elevation cannot be ruled out as a source of GHC

uncertainty. We found that GHC errors may be a result of coarse-

scale (e.g., 4 km) digital elevation models that inaccurately

represent terrain [14], as well as modeling errors from interpo-

lation or smoothing procedures [8]. For the US Northeast, we

found that one product (NRCC) was more sensitive to these DEM

errors than the other (PRISM). This result may be due to the

different station weighting schemes used. PRISM employs a

climate-elevation regression for each individual DEM grid cell,

which assigns weights dependent on each weather station’s

climatological similarity to the grid cell [3]. This methodology

appears to reduce the sensitivity of PRISM TMax and TMin

prediction errors to DEM error, relative to the NRCC product.

NRCC uses modeled temperature lapse rates to interpolate

gridded estimates to the weather station points, then bias-corrects

the temperature fields based on station observations [8]. Our

findings suggest the lapse rate calculations at elevations that are

higher than actual elevation are likely the source of the error, since

NRCC became increasingly colder than observed as its DEM

error increased. We note that this sensitivity was apparent for

mean temperature predictions but was absent for trend estimates,

suggesting that DEM-related error does not explain uncertainty in

GHC-based trend estimates. This is not surprising, as trend

estimates would only be altered by temporal variability in

interpolation methodology and each product’s DEM is constant

throughout each time series.

As GHC users ourselves, we anticipate that ground-truthing

analyses will support more informed decisions among the different

GHC products available. While there are many considerations for

choosing a GHC product, one of the primary concerns will likely

be whether the local predictions are more or less consistent with

local observations. Our approach of mapping large outlier errors

with spatial zones of cross-product disagreement (PRISM-NRCC

bias) provides a basis to make decisions about which GHC product

might be more reliable in a local context. Results of this study

suggest that such decisions may vary depending on whether the

variables of interest represent average conditions or metrics of

change. For example, in the case of mean temperatures, in zones

where PRISM was consistently predicting higher temperatures

than NRCC, we observed that it was often because NRCC had

large negative errors (i.e., predicted much cooler than the station).

For temperature trends, by contrast, PRISM typically had large

positive errors (i.e., predicted warmer trends) while NRCC

predictions were often closer to station observations, with a few

exceptions.

At Pinkham’s Notch, NH (PN-NH), where PRISM and NRCC

differed significantly for both means and trends, we found that

PRISM more accurately predicted the mean TMax (Fig. 7) while

NRCC more accurately predicted the TMax trend, despite both

products exhibiting a large outlier error (Fig. 9). Therefore, if

GHC users are interested in assessing both temperature means

and trends with highest local-scale accuracy, it may be appropriate

to use both PRISM and NRCC, respectively. Despite the potential

complexities that such an approach poses, our results suggest that

incorporating several spatial climate datasets into a project –

which is akin to comparing multiple alternative models [20] – can

enhance the use and interpretation of these products, especially at

local scales.

Lastly, although we did not question the accuracy of reference

data from COOP weather stations, these observations may be

affected by instrumental changes and environmental (site) mod-

ifications [30]. Instrumentation changes or alteration of measure-

ment schedules can result in biases of.61uC at individual stations

[31], while observation-time adjustments may be used robustly in

some cases [32]. NRCC accounts for this potential bias, using

stations with a specific observation times within their daily 8 am to

8 am Local Standard Time (LST) observation window [8].

PRISM uses stations with a variety of time steps ranging from

hourly to yearly, with the daily station data observation times

varying over a range of time steps [3]. Maximum and minimum

temperature estimates, as well as precipitation totals, could vary on

a daily basis in the source data for these two products. An analysis

evaluating the impacts of the source data would produce very

applicable uncertainty estimates; however a specific spatial and

temporal record of PRISM source data is not readily available for

public users. These records could be used to identify data to

download from the source’s official platforms.

Other sources of error in weather station records include: warm

bias in nighttime minimum temperatures, poor site location,

failure to account for the effects of wind and humidity on

temperature trends, uncertainties in homogenization of surface

temperature data, and the influences of land use and land cover

change on trends; most of these are poorly understood [33].

Despite these possible issues, we treated COOP station data as

‘‘truth’’ because their role as source data in the modeling of both

NRCC and PRISM designated them as an ideal reference point.

Other local reference points of value may include independent

weather record (outside of the COOP network) as well as long-

term phenological observations such as lake and river ice,

migratory arrivals, and the emergence of insects or spring foliage.

Conclusions
Our study points to recommendations for both GHC users and

GHC producers. First, GHC products may incorporate the same

source data differently, creating output that can disagree

considerably with both the source and other products. We suggest

that GHC users become more familiar with the underlying models

Uncertainty in Spatial Climate Data

PLOS ONE | www.plosone.org 13 August 2013 | Volume 8 | Issue 8 | e70260



and prediction capabilities before utilizing these products,

especially in cases where the GHC data takes the place of an

independent (explanatory) variable in statistical or simulation

models. This should include a stronger grasp of the fundamental

tradeoff between resolution and realism in spatial climate data, a

concept that is well-documented for GHC datasets [14].

Second, although there is some evidence that GHC uncertainty

may be related to elevation or geographic factors [17], we found

no consistent or significant effects of these factors on GHC

prediction error across the US Northeast. However, we found

evidence that climate-elevation interpolation techniques, namely

the selection of a DEM, have a strong impact on GHC prediction

error for mean temperatures. While estimating these errors is

straightforward, GHC users cannot evaluate uncertainty for the

vast majority of raster cells without a corresponding climate

record, which does not exist [2].

Third, we suggest that GHC producers could provide metadata

with their products, such as the inclusion of confidence intervals

[2] or bias fields [8] that are generated by their modeling process,

as they would be of great value to GHC users applying these data

in research and decision-making. Numerous techniques exist that

allow researchers to incorporate these uncertainty estimates in

statistical, spatial and simulation models, allowing the necessary

propagation of error in their model frameworks [20]. In decision-

making situations, these uncertainty estimates can provide bounds

for scenario development and/or evaluation, and provide a richer

basis for users to decide among GHC products for local

applications.

Lastly, we encourage GHC users weigh the available uncer-

tainty estimates and related information associated with GHC

products and to consider using multiple alternative climate

datasets, model outputs and information sources in any scientific

application of GHC products. Whenever possible, utilizing a non-

modeled (measured) reference data source, as displayed in this

study, is helpful for deciding which GHC product may be best

utilized for a given location and purpose.
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